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Abstract. In this paper, we present some new upper bounds for the signless Laplacian spectral radius
of graphs embeddable on a fixed surface, which improve several previously known results. We also give
several improved upper bounds for the signless Laplacian spectral radius of outerplanar graphs and Halin
graphs.

1. Introduction

We consider finite, undirected, and simple graphs in this paper. Let G be a graph with vertex set
V(G) = {v1, v2, . . . , vn} and edge set E(G). For i = 1, 2, . . . ,n, let d(vi) denote the degree of vertex vi in
G. In particular, denote by ∆(G) and δ(G) the maximum and the minimum degree of vertices in G,
respectively. The adjacency matrix of G is A(G) = (ai j), where elements ai j = 1 if two vertices vi and v j
are adjacent in G and 0 otherwise. The signless Laplacian matrix of G is Q(G) = D(G) + A(G), where
D(G) = diag(d(v1), d(v2), . . . , d(vn)) is the diagonal matrix of vertex degrees in G. The signless Laplacian
spectral radius (resp., spectral radius) of G, denoted by q1(G) (resp., λ1(G)), is the largest eigenvalue of Q(G)
(resp., A(G)). It is well known that if G is connected, then Q(G) is irreducible and nonnegative, and by the
Perron-Frobenius theorem, q1(G) is simple and has a unique positive unit eigenvector. The study on the
signless Laplacian matrix and its spectral radius of graphs has attracted much attention in recent years, we
refer the reader to [3] for a survey.

Let Σ be a closed surface and γ be its Euler genus (the number of crosscaps plus twice the number of
handles). An embedding of a graph into Σ is cellular if every face of the embedding is homeomorphic to an
open disk. In particular, if γ = 0, then Σ is a sphere, which can be mapped to a plane using stereographic
projection.

We call G a planar graph if G can be embedded in a plane such that no two edges intersect except at
a common vertex. A planar graph G is outerplanar if it can be embedded in a plane such that all vertices
lie on the outer boundary face. An outerplanar graph G is maximal outerplanar if all its faces, besides the
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outer face, are triangles. It is well known that a maximal outerplanar graph with n vertices has 2n− 3 edges
and at least two vertices of degree 2.

Let T be a tree with n ≥ 4 vertices and without vertices of degree 2. If T is embedded in the plane with
the leaves v1, v2, . . . , vt arranged in clockwise direction, then T, together with the new edges vivi+1 (where
vt+1 = v1) that induce a cycle on the set of leaves, forms a 3-connected planar graph G called a Halin graph.
The leaves of T are called the outer vertices, while the remaining vertices are called the inner vertices.

The investigation on the eigenvalues of planar graphs was first suggested by Schwenk and Wilson [12].
After that, lots of excellent work on the upper bounds of the spectral radius of planar graphs was done
[1, 7–9]. In further work, Hong [8, 9] studied the upper bounds on the spectral radius of graphs on an
arbitrary surface. Ellingham and Zha [4] provided new upper bounds on the spectral radius of graphs
embeddable on a given compact surface. Other work on the upper bounds of the spectral radius of planar
graphs included work on outerplanar graphs [1, 13] and Halin graphs [13].

Motivated by the above results, Lin [11] obtained the upper bounds on the (signless) Laplacian spectral
radius of graphs embeddable on a fixed surface in terms of the number of vertices, maximum degree and
Euler genus; he also presented the upper bounds on the signless Laplacian spectral radius of outerplanar
graphs and Halin graphs. Recently, Feng et al. [5] established the upper bounds on the signless Laplacian
spectral radius of graphs on surfaces (including outerplanar graphs and Halin graphs), which only depend
on the number of vertices and Euler genus.

In this paper, we continue to consider the upper bounds on the signless Laplacian spectral radius of
graphs on surfaces. We present some new upper bounds for the signless Laplacian spectral radius of
graphs embeddable on a fixed surface, which improve several previously known results. We also give
several improved upper bounds for the signless Laplacian spectral radius of outerplanar graphs and Halin
graphs.

2. Preliminaries

In this section, we shall give some known results that will be used in the next section.

If e = uv is not an edge of a graph G, then we denote by G + e the graph obtained from G by adding the
edge e.

Lemma 2.1. (see [2]) If e is not an edge of a graph G, then q1(G) ≤ q1(G + e).

For a matrix B, we denote by si(B) the ith row sum of B.

Lemma 2.2. (see [10]) Let G be an n-vertex graph, Q = Q(G) and P(·) any polynomial. Then

min
v∈V(G)

sv(P(Q)) ≤ P(q1(G)) ≤ max
v∈V(G)

sv(P(Q)).

For a vertex v in G and an integer l ≥ 1, let nl(v) denote the number of vertices in G at distance l from v.
Clearly, n1(v) = d(v). The next result is due to Ellingham and Zha [4].

Lemma 2.3. (see [4]) Let G be a graph on at least two vertices, with adjacency matrix A and with a cellular embedding
in a surface of Euler genus γ. For any vertex v in G, if n1(v) ≥ 3, then

sv(A2) ≤ 6n1(v) + 2n2(v) + 8γ − 8.

Using Lemma 2.3, Ellingham and Zha [4] obtained the following.

Lemma 2.4. (see [4]) Let G be an n-vertex graph, n ≥ 3, with spectral radius λ1(G). Suppose G can be embedded on
a surface of Euler genus γ. Then

λ1(G) ≤ 2 +
√

2n + 8γ − 6.
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A classic upper bound on the spectral radius for general graphs in terms of the maximum degree is as
follows.

Lemma 2.5. (see [2]) For any graph G, λ1(G) ≤ ∆(G).

Recalling that Q(G) = D(G) + A(G), by the Weyl’s inequalities (see, e.g., [2]), we may get (see also [6])

q1(G) ≤ ∆(G) + λ1(G). (1)

Evidently, together with (1), any upper bound for λ1(G) of the graph G would yield an upper bound for
q1(G). Hence, by Lemmas 2.4 and 2.5, we have the following result directly.

Proposition 2.6. (i) (see also [2]) For any graph G,

q1(G) ≤ 2∆(G). (2)

(ii) Let G be a graph as mentioned in Lemma 2.4. Then

q1(G) ≤ ∆(G) + 2 +
√

2n + 8γ − 6. (3)

The next two lemmas were proved by Shu and Hong in [13].

Lemma 2.7. (see [13]) Let G be a maximal outerplanar graph of order n ≥ 2 with adjacency matrix A. Then for any
v ∈ V(G),

sv(A2) ≤ 3d(v) + n − 4.

Lemma 2.8. (see [13]) Let G be a Halin graph of order n ≥ 4, with t ≥ 1 inner vertices and adjacency matrix A.
Then for any v ∈ V(G),

sv(A2) ≤ 2d(v) + n − 2t + 1.

3. Main Results

3.1. Upper bounds for q1(G) of graphs on surfaces

Lemma 3.1. Let G be a graph of order n ≥ 4, with maximum degree ∆ and minimum degree δ ≥ 3. If G can be
embedded on a surface of Euler genus γ, then

q1(G) ≤
1
2

(
∆ + δ + 4 +

√
(∆ + δ + 4)2 − 8∆δ + 16(n + 4γ − 5)

)
.

Proof. Our proof is based on well-known ideas of Ellingham and Zha (see [4], Theorem 3.1). Assume that
the embedding is celluar. For convenience, we would write Q(G) = Q, A(G) = A, D(G) = D, and nl(v) = nl
for l ≥ 1. Consider the following matrix

M = Q2
− (∆ + δ + 4)Q.

Recall that Q = D + A, and then Q2 = D2 + DA + AD + A2. Obviously, sv(Q) = 2d(v) = 2n1, sv(D2) = sv(DA) =
d(v)2 = n2

1, and sv(AD) = sv(A2). Noting that n1 ≥ δ ≥ 3, n1 + n2 ≤ n − 1, and using Lemma 2.3, we have

sv(M) = sv(D2) + sv(DA) + sv(AD) + sv(A2) − (∆ + δ + 4)sv(Q)
= 2sv(A2) + 2n2

1 − 2(∆ + δ + 4)n1

≤ 2[n2
1 − (∆ + δ)n1 + 2n1 + 2n2 + 8γ − 8]

≤ 2[n2
1 − (∆ + δ)n1 + 2n + 8γ − 10]. (4)
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Now consider the following quadratic function

f (x) = x2
− (∆ + δ)x, δ ≤ x ≤ ∆.

It is easy to see that, for δ ≤ x ≤ ∆,

f (x) ≤ max{ f (δ), f (∆)} = −∆δ.

This together with (4) would yield that

sv(Q2) − (∆ + δ + 4)sv(Q) + 2∆δ − 4(n + 4γ − 5) ≤ 0.

Thus, from Lemma 2.2, it follows that

q1(G)2
− (∆ + δ + 4)q1(G) + 2∆δ − 4(n + 4γ − 5) ≤ 0,

which implies that

q1(G) ≤
1
2

(
∆ + δ + 4 +

√
(∆ + δ + 4)2 − 8∆δ + 16(n + 4γ − 5)

)
,

completing the proof. �

Using Lemma 3.1, we now can deduce the first main result of this paper.

Theorem 3.2. Let G be a graph of order n ≥ 3, with maximum degree ∆. If G can be embedded on a surface of Euler
genus γ, then

q1(G) ≤

 2∆, if ∆ < 2 +
√

2n + 8γ − 6,
∆+7+
√

(∆−5)2+8(2n+8γ−7)
2 , if ∆ ≥ 2 +

√
2n + 8γ − 6.

(5)

Proof. Note first that q1(G) ≤ 2∆ always holds (see (2)). If n = 3, then one can check easily that (5) holds.
So we may assume n ≥ 4 in the following. We further suppose δ(G) = δ ≥ 3. Otherwise, instead, we would
consider a new graph G? embedded on the same surface, which is obtained from G by adding some edges
and hence satisfies q1(G) ≤ q1(G?) (by Lemma 2.1). For completeness, we here include the argument of
Ellingham and Zha (see [4], Theorem 3.1), concerning the way of adding edges to obtain the new graph G?,
as follows. If v is a vertex of degree 1, with neighbour u, then since n ≥ 4 there are at least two other vertices
besides u on the boundary of the unique face with which v is incident, and we may join v to both of those
without creating any multiple edges. If v has degree 2, then since n ≥ 4 at least one of the faces with which
v is incident is not a triangle (if both were triangles G would have a multiple edge), so there is a vertex to
which v may be joined without creating a multiple edge.

In order to obtain (5), we now consider the function

h(x) =
1
2

(
∆ + 4 + x +

√
(∆ + 4 + x)2 − 8∆x + 16(n + 4γ − 5)

)
, 0 ≤ x ≤ ∆.

Clearly, it follows from Lemma 3.1 that

q1(G) ≤ h(δ). (6)

Also, a little calculation shows that, for 0 ≤ x ≤ ∆,

h′(x) < 0, if ∆ > 2 +
√

2n + 8γ − 6,

h′(x) > 0, if ∆ < 2 +
√

2n + 8γ − 6.
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Therefore, if ∆ ≥ 2 +
√

2n + 8γ − 6, then h(x) is decreasing in x, and hence,

h(δ) ≤ h(3) =
1
2

(
∆ + 7 +

√
(∆ − 5)2 + 8(2n + 8γ − 7)

)
. (7)

If ∆ < 2 +
√

2n + 8γ − 6, then h(x) is increasing in x, and hence,

h(δ) ≥ h(3); (8)

furthermore, we have ∆2
− 4∆ − (2n + 8γ − 10) < 0, which implies that

h(3) > 2∆. (9)

Thus, (5) follows immediately from (6), (7), (8), (9) and the fact that q1(G) ≤ 2∆. This completes the
proof. �

Moreover, noting that ∆ ≤ n− 1 and the upper bound in (5) is increasing in ∆ when n ≥ 4, we obtain the
next corollary.

Corollary 3.3. Let G be a graph of order n ≥ 4 that can be embedded on a surface of Euler genus γ. Then

q1(G) ≤

 2(n − 1), if n < 4 +
√

8γ + 1,
n+6+
√

n2+4n+64γ−20
2 , if n ≥ 4 +

√
8γ + 1.

(10)

Remark. Let G be an n-vertex graph with maximum degree ∆ that can be embedded on a surface of Euler
genus γ. In [11], Lin proved that, for n ≥ 3,

q1(G) ≤
1
2

(
∆ + 4 +

√
(∆ + 4)2 + 8(2n + 8γ − 10)

)
= h(0). (11)

Here, our bound (5) is always better than Lin’s bound (11). Indeed, by Theorem 3.2 and the monotonicity
of the function h(x), one can check that, if ∆ < 2 +

√
2n + 8γ − 6, then ∆2

− 4∆− (2n + 8γ− 10) < 0, implying

q1(G) ≤ 2∆ < h(0);

otherwise, we have ∆2
− 4∆ − (2n + 8γ − 10) ≥ 0, which is equivalent to√

(∆ − 5)2 + 8(2n + 8γ − 7) ≤ 3∆ − 7,

implying
q1(G) ≤ h(3) ≤ h(0).

Note that h(3) = h(0) holds if and only if ∆ = 2 +
√

2n + 8γ − 6.

Also, the bound (5) would be better than the bound (3) in Proposition 2.6. In fact, one can verify that, if
∆ < 2 +

√
2n + 8γ − 6, then

2∆ < ∆ + 2 +
√

2n + 8γ − 6;

otherwise,

∆ ≥ 2 +
√

2n + 8γ − 6

= 2n + 8γ − 4 − (
√

2n + 8γ − 6 − 1)
√

2n + 8γ − 6

≥ 2n + 8γ − 4 − (∆ − 3)
√

2n + 8γ − 6,

that is,
2n + 8γ − 4 − ∆ ≤ (∆ − 3)

√
2n + 8γ − 6



X. Chen, Y. Hou / Filomat 30:13 (2016), 3473–3481 3478

which is equivalent to
h(3) ≤ ∆ + 2 +

√
2n + 8γ − 6.

Note that the equality holds if and only if ∆ = 2 +
√

2n + 8γ − 6.

Finally, in [5], Feng et al. showed that, for n ≥ 4,

q1(G) ≤
1
2

(
n + 6 +

√
n2 + 4n + 64γ − 20

)
,

which, obviously, is improved slightly by Corollary 3.3.

3.2. Upper bounds for q1(G) of outerplanar graphs and Halin graphs

Theorem 3.4. Let G be a connected outerplanar graph of order n ≥ 2 with maximum degree ∆. Then

q1(G) ≤

 2∆, if ∆ < 1
2 (3 +

√
4n − 7),

∆+5+
√

(∆−3)2+8(n−2)
2 , if ∆ ≥ 1

2 (3 +
√

4n − 7).
(12)

Proof. We first assume that G is maximal outerplanar. Otherwise, we may, instead, consider a maximal
outerplanar graph G?, which is obtained from G by adding some edges, and hence from Lemma 2.1, satisfies
q1(G) ≤ q1(G?). Then for any v ∈ V(G), we have d(v) ≥ 2. As the argument in the proof of Theorem 3.1, we
consider the following matrix

M = Q2
− (∆ + 5)Q.

Using Lemma 2.7, we then get

sv(M) = sv(D2) + sv(DA) + sv(AD) + sv(A2) − (∆ + 5)sv(Q)
= 2sv(A2) + 2d(v)2

− 2(∆ + 5)d(v)
≤ 2[d(v)2

− (∆ + 2)d(v) + n − 4]. (13)

Consider the following quadratic function

f (x) = x2
− (∆ + 2)x, 2 ≤ x ≤ ∆.

Obviously, for 2 ≤ x ≤ ∆,
f (x) ≤ max{ f (2), f (∆)} = −2∆.

This together with (13) would yield that

sv(Q2) − (∆ + 5)sv(Q) + 4∆ − 2(n − 4) ≤ 0.

Thus, from Lemma 2.2, it follows that

q1(G)2
− (∆ + 5)q1(G) + 4∆ − 2(n − 4) ≤ 0,

which implies that

q1(G) ≤
1
2

(
∆ + 5 +

√
(∆ − 3)2 + 8(n − 2)

)
. (14)

Now, combining (14) and (2) and, by some calculation, we have (12). This completes the proof. �

Observing that ∆ ≤ n−1 and the upper bound in (12) is increasing in ∆, we obtain the following corollary,
which can be seen as a slight improvement of Theorem 3.2 in [5].
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Corollary 3.5. Let G be a connected outerplanar graph of order n ≥ 2. Then

q1(G) ≤
{

2(n − 1), if n = 2, 3,
n + 2, if n ≥ 4.

Similarly, for Halin graphs, we have the following.

Theorem 3.6. Let G be a Halin graph of order n ≥ 4 with t ≥ 1 inner vertices and maximum degree ∆. Then

q1(G) ≤

 2∆, if ∆ < 1 +
√

n − 2t + 2,
∆+5+
√

(∆−7)2+8(n−2t−2)
2 , if ∆ ≥ 1 +

√
n − 2t + 2.

(15)

Proof. Note first that for any v ∈ V(G), we have d(v) ≥ 3. Similar to the proof of Theorem 3.4, again we
consider the matrix

M = Q2
− (∆ + 5)Q.

From Lemma 2.8, it follows that

sv(M) ≤ 2[d(v)2
− (∆ + 3)d(v) + n − 2t + 1].

Observe that for 3 ≤ x ≤ ∆, the quadratic function

f (x) = x2
− (∆ + 3)x ≤ max{ f (3), f (∆)} = −3∆.

Thus
sv(Q2) − (∆ + 5)sv(Q) + 6∆ − 2(n − 2t + 1) ≤ 0,

and by Lemma 2.2 we get
q1(G)2

− (∆ + 5)q1(G) + 6∆ − 2(n − 2t + 1) ≤ 0,

which implies that

q1(G) ≤
1
2

(
∆ + 5 +

√
(∆ − 7)2 + 8(n − 2t − 2)

)
. (16)

Now, combining (16) and (2) and, by some calculation, we have (15). The proof is completed. �

For Halin graphs, it was proved in [13] that ∆ ≤ n−2t+1 and t ≤ n/2−1. Note also that for 1 ≤ t ≤ n/2−1,
n− 2t + 1 ≥ 1 +

√
n − 2t + 2. Then by Theorem 3.6, we may get the following corollary, which has also been

obtained by Feng et al. (see, [5], Theorem 3.3).

Corollary 3.7. Let G be a Halin graph of order n ≥ 4 with t ≥ 1 inner vertices. Then

q1(G) ≤
1
2

(
n − 2t + 6 +

√
(n − 2t + 2)2 + 24

)
.

Remark. In [11], Lin proved the following results:

• Let G be a maximal outerplanar graph of order n ≥ 3 with maximum degree ∆. Then

q1(G) ≤
1
2

(
∆ + 3 +

√
(∆ + 3)2 + 8(n − 4)

)
. (17)

• Let G be a Halin graph of order n ≥ 4 with t ≥ 1 inner vertices and maximum degree ∆. Then

q1(G) ≤
1
2

(
∆ + 2 +

√
(∆ + 2)2 + 8(n − 2t + 1)

)
. (18)
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Here, our bounds (12) and (15) are always better than Lin’s bounds (17) and (18), respectively. Indeed, a
simple calculation shows that,

• If ∆ < 1
2 (3 +

√
4n − 7), then ∆2

− 3∆ − (n − 4) < 0, which implies that

2∆ <
1
2

(
∆ + 3 +

√
(∆ + 3)2 + 8(n − 4)

)
;

otherwise, we have ∆2
− 3∆ − (n − 4) ≥ 0, which is equivalent to√

(∆ − 3)2 + 8(n − 2) ≤ 3∆ − 5,

implying
1
2

(
∆ + 5 +

√
(∆ − 3)2 + 8(n − 2)

)
≤

1
2

(
∆ + 3 +

√
(∆ + 3)2 + 8(n − 4)

)
.

Note that the equality holds if and only if ∆ = 1
2 (3 +

√
4n − 7).

• If ∆ < 1 +
√

n − 2t + 2, then ∆2
− 2∆ − (n − 2t + 1) < 0, implying

2∆ <
1
2

(
∆ + 2 +

√
(∆ + 2)2 + 8(n − 2t + 1)

)
;

otherwise, we have ∆2
− 2∆ − (n − 2t + 1) ≥ 0, which is equivalent to√

(∆ − 7)2 + 8(n − 2t − 2) ≤ 3∆ − 5,

implying
1
2

(
∆ + 5 +

√
(∆ − 7)2 + 8(n − 2t − 2)

)
≤

1
2

(
∆ + 2 +

√
(∆ + 2)2 + 8(n − 2t + 1)

)
.

Note that the equality holds if and only if ∆ = 1 +
√

n − 2t + 2.

In [13], Shu and Hong studied the spectral radius of outerplanar graphs and Halin graphs. They showed
that,

• Let G be a connected outerplanar graph of order n ≥ 2. Then

λ1(G) ≤
1
2

(
3 +
√

4n − 7
)
.

• Let G be a Halin graph of order n with t ≥ 1 inner vertices. Then

λ1(G) ≤ 1 +
√

n − 2t + 2.

These together with (1) would yield directly the next results:

• Let G be a connected outerplanar graph of order n ≥ 2 with maximum degree ∆. Then

q1(G) ≤ ∆ +
1
2

(
3 +
√

4n − 7
)
. (19)

• Let G be a Halin graph of order n with t ≥ 1 inner vertices and maximum degree ∆. Then

q1(G) ≤ ∆ + 1 +
√

n − 2t + 2. (20)
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It is worth pointing out that our bounds (12) and (15) would also be better than the bounds (19) and (20),
respectively. In fact, one can check that,

• If ∆ < 1
2

(
3 +
√

4n − 7
)
, then 2∆ < ∆ + 1

2

(
3 +
√

4n − 7
)
; otherwise,

∆ ≥
1
2

(
3 +
√

4n − 7
)

= 2n − 2 −
1
2

(√
4n − 7 − 1

) √
4n − 7

≥ 2n − 2 − (∆ − 2)
√

4n − 7,

that is,
2n − 2 − ∆ ≤ (∆ − 2)

√

4n − 7,
which is equivalent to

1
2

(
∆ + 5 +

√
(∆ − 3)2 + 8(n − 2)

)
≤ ∆ +

1
2

(
3 +
√

4n − 7
)
.

Note that the equality holds if and only if ∆ = 1
2

(
3 +
√

4n − 7
)
.

• If ∆ < 1 +
√

n − 2t + 2, then 2∆ < ∆ + 1 +
√

n − 2t + 2; otherwise,

2∆ ≥ 2 + 2
√

n − 2t + 2
= n − 2t + 4 −

(√
n − 2t + 2 − 2

) √
n − 2t + 2

≥ n − 2t + 4 − (∆ − 3)
√

n − 2t + 2,

that is,
n − 2t + 4 − 2∆ ≤ (∆ − 3)

√

n − 2t + 2,
which is equivalent to

1
2

(
∆ + 5 +

√
(∆ − 7)2 + 8(n − 2t − 2)

)
≤ ∆ + 1 +

√

n − 2t + 2.

Note that the equality holds if and only if ∆ = 1 +
√

n − 2t + 2.
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