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Abstract. In the present paper, we introduce a new difference sequence space rq
B(u, p) by using the Riesz

mean and the B- difference matrix. We show rq
B(u, p) is a complete linear metric space and is linearly

isomorphic to the space l(p). We have also computed its α-, β- and γ-duals. Furthermore, we have
constructed the basis of rq

B(u, p) and characterize a matrix class (rq
B(u, p), l∞).

1. Introduction, Background and Notation

We denote the set of all sequences (real or complex) by ω. Any subspace of ω is called the sequence
space. LetN, R and C denotes the set of non-negative integers, of real numbers and of complex numbers,
respectively. Let l∞, c and c0 denote the space of all bounded, convergent and null sequences, respectively.
Also, by cs, l1 and l(p) we denote the spaces of all convergent, absolutely and p-absolutely convergent series,
respectively.

Let X be a real or complex linear space, h be a function from X to the set R of real numbers. Then, the
pair (X, h) is called a paranormed space and h is a paranorm for X, if the following axioms are satisfied :
(pn.1) h(θ) = 0,
(pn.2) h(−x) = h(x),
(pn.3) h(x + y) ≤ h(x) + h(y), and
(pn.4) scalar multiplication is continuous, that is, |αn − α| → 0 and h(xn − x)→ 0 imply h(αnxn − αx)→ 0 for
all α’s in R and x’s in X, where θ is a zero vector in the linear space X. Assume here and after that (pk) be a
bounded sequence of strictly positive real numbers with supk pk = H and M = max{1,H}. Then, the linear
space l(p) was defined by Maddox [10] as follows

l(p) = {x = (xk) :
∑

k

|xk|
pk < ∞}

which is complete space paranormed by
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h1(x) =

∑
k

|xk|
pk


1/M

.

We shall assume throughout the text that p−1
k + p′k

−1
= 1 provided 1 < in f pk≤ H < ∞.

Let X,Y be two sequence spaces and let A = (ank) be an infinite matrix of real or complex numbers ank,
where n, k ∈ N. Then, the matrix A defines the A-transformation from X into Y, if for every sequence
x = (xk) ∈ X the sequence Ax = {(Ax)n}, the A-transform of x exists and is in Y; where (Ax)n =

∑
k

ankxk.

For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. By
A ∈ (X : Y), we mean the characterizations of matrices from X to Y i.e., A : X → Y. A sequence x is said
to be A-summable to l if Ax converges to l which is called as the A-limit of x. For a sequence space X, the
matrix domain XA of an infinite matrix A is defined as

XA = {x = (xk) ∈ ω : Ax ∈ X}. (1)

Let (qk) be a sequence of positive numbers and let us write, Qn =
n∑

k=0
qk for n∈N. Then the matrix

Rq = (rq
nk) of the Riesz mean (R, qn) is given by

rq
nk =

 qk
Qn
, if 0 ≤ k ≤ n,

0, if k > n.

The Riesz mean (R, qn) is regular if and only if Qn →∞ as n→∞ [17].

Recently, Neyaz and Hamid [18] introduced the sequence space rq(u, p) as

rq(u, p) =

x = (xk) ∈ ω :
∑

k

∣∣∣∣∣∣∣∣ 1
Qk

k∑
j=0

ukq jx j

∣∣∣∣∣∣∣∣
pk

< ∞

 , (0 < pk ≤ H < ∞).

Kizmaz [8] defined the difference sequence spaces Z(4) as follows

Z(4) = {x = (xk) ∈ ω : (4xk) ∈ Z},

where Z ∈ {l∞, c, c0} and 4xk = xk − xk−1.

Altay and Başar [2] defined the sequence space of p-bounded variation bvp which is defined as

bvp =

x = (xk) ∈ ω :
∑

k

|xk − xk−1|
p < ∞

 , 1 ≤ p < ∞.

With the notation of (1), the space bvp can be re-defined as

bvp = (lp)4, 1 ≤ p < ∞

where, 4 denotes the matrix 4 = (4nk) and is defined as

4nk =

(−1)n−k, if n − 1 ≤ k ≤ n,
0, if k < n − 1 or k > n.
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Neyaz and Hamid [19] introduced the space rq(4p
u) as :

rq(4p
u) =

x = (xk) ∈ ω :
∑

k

∣∣∣∣∣∣∣∣ 1
Qk

k∑
j=0

ukq j4x j

∣∣∣∣∣∣∣∣
pk

< ∞

 ,
where (0 < pk ≤ H < ∞).

In [3] the generalized difference matrix B = (bnk) is defined as :

bnk =


r, if k = n,
s, if k = n − 1
0, if 0 ≤ k < n − 1 or k > n,

for all n, k ∈N, r, s ∈ R − {0}. The matrix B can be reduced to difference matrix 4 incase r = 1, s = −1.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation
method has been studied by several authors viz., [1, 4–7, 13, 16, 18, 19].

2. The Riesz Sequence Space rq
B

(u, p) of Non-Absolute Type

In this section, we define the Riesz sequence space rq
B(u, p), and prove that the space rq

B(u, p) is a complete
paranormed linear space and show it is linearly isomorphic to the space l(p).

Define the sequence y = (yk), which will be frequently used, by the Rq
uB-transform of a sequence x = (xk),

i.e.,

yk(q) =
1

Qk


k−1∑
j=0

uk(q j.r + q j+1.s)x j + ukqk.r.xk

 , (k ∈ N). (2)

Following Başar and Altay [1], Mursaleen et al [14, 15], Neyaz and Hamid [18, 19], Başarir and Öztürk
[4], we define the sequence space rq

B(u, p) as the set of all sequences such that Rq
uB transform of it is in the

space l(p), that is,

rq
B(u, p) =

{
x = (xk) ∈ ω : yk(q) ∈ l(p)

}
.

Note that if we take r = 1 and s = −1, the sequence spaces rq
B(u, p) reduces to rq(∆p

u), introduced by Neyaz
and Hamid [19]. Also, if (uk) = e = (1, 1, ...), the sequence spaces rq

B(u, p) reduces to rq
B(p) Başarir [3].

With the notation of (1) that

rq
B(u, p) = {l(p)}Rq

u
.

Now, we prove the following theorem which is essential in the text.
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Theorem 2.1. rq
B(u, p) is a complete linear metric space paranormed by hB, defined as

hB(x) =

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

 k−1∑
j=0

uk(q j.r + q j+1.s)x j + qkuk.rxk


∣∣∣∣∣∣∣∣
pk

1
M

,

where supk pk = H and M = max{1,H}.

Proof. The linearity of rq
B(u, p) with respect to the co-ordinatewise addition and scalar multiplication

follows from the inequalities which are satisfied for z, x ∈ rq
B(u, p) [11]∑

k

∣∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(q j.r + q j+1.s)(x j + z j) + qk.r.uk(xk + zk)

∣∣∣∣∣∣pk


1
M

≤

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(q j.r + q j+1.s)x j + qk.r.ukxk

∣∣∣∣∣∣∣∣
pk

1
M

+

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(q j.r + q j+1.s)z j + qk.r.ukzk

∣∣∣∣∣∣∣∣
pk

1
M

(3)

and for any α ∈ R [12]

|α|pk ≤ max(1, |α|M). (4)

It is clear that, hB(θ) = 0 and hB(x) = hB(−x) for all x ∈ rq
B(u, p). Again the inequality (3) and (4), yield the

subadditivity of hB and

hB(αx) ≤ max(1, |α|)hB(x).

Let {xn
} be any sequence of points of the space rq

B(u, p) such that hB(xn
− x)→ 0 and (αn) is a sequence of

scalars such that αn → α. Then, since the inequality,

hB(xn) ≤ hB(x) + hB(xn
− x)

holds by subadditivity of hB, {hB(xn)} is bounded and we thus have

hB(αnxn
− αx) =

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(q j.r + q j+1.s)(αnxn
j − αx j) + ukqk.r(αnxn

k − αxk)

∣∣∣∣∣∣∣∣
pk

1
M

≤ |αn − α|
1
M hB(xn) + |α|

1
M hB(xn

− x)

which tends to zero as n → ∞. That is to say, that the scalar multiplication is continuous. Hence, hB is
paranorm on the space rq

B(u, p).

It remains to prove the completeness of the space rq
B(u, p). Let {x j

} be any Cauchy sequence in the space
rq

B(u, p), where xi = {xi
0, x

i
1, ...}. Then, for a given ε > 0 there exists a positive integer n0(ε) such that
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hB(xi
− x j) < ε (5)

for all i, j ≥ n0(ε). Using definition of hB and for each fixed k ∈N that

∣∣∣(Rq
uBxi)k − (Rq

uBx j)k

∣∣∣ ≤ ∑
k

∣∣∣(Rq
uBxi)k − (Rq

uBx j)k

∣∣∣pk


1
M

< ε

for i, j ≥ n0(ε), which leads us to the fact that {(Rq
uBx0)k, (R

q
uBx1)k, . . . } is a Cauchy sequence of real numbers

for every fixed k ∈ N. Since R is complete, it converges, say, (Rq
uBxi)k → ((Rq

uBx)k as i → ∞. Using these
infinitely many limits (Rq

uBx)0, (R
q
uBx)1, . . . , we define the sequence {(Rq

uBx)0, (R
q
uBx)1, ...}. From (5) for each

m ∈ N and i, j ≥ n0(ε),

m∑
k=0

∣∣∣(Rq
uBxi)k − (Rq

uBx j)k

∣∣∣pk
≤ hB(xi

− x j)M < εM. (6)

Take any i, j ≥ n0(ε). First, let j→∞ in (6) and then m→∞ , we obtain

hB(xi
− x) ≤ ε.

Finally, taking ε = 1 in (6) and letting i ≥ n0(1). we have by Minkowski’s inequality for each m ∈N that m∑
k=0

∣∣∣(Rq
uBx)k

∣∣∣pk


1
M

≤ hB(xi
− x) + hB(xi) ≤ 1 + hB(xi)

which implies that x ∈ rq
B(u, p). Since hB(x− xi) ≤ ε for all i ≥ n0(ε), it follows that xi

→ x as i→∞, hence we
have shown that rq

B(u, p) is complete, hence the proof .

If we take r = 1, s = −1 in the theorem 2.1, then we have the following result which was proved by
Neyaz and Hamid [19].

Corollary 2.2. rq(4p
u) is a complete linear metric space paranormed by h4, defined as

h4(x) =

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

 k−1∑
j=0

uk(q j − q j+1)x j + qkukxk


∣∣∣∣∣∣∣∣
pk

1
M

,

where supk pk = Hand M = max{1,H}.

Note that one can easily see the absolute property does not hold on the spaces rq
B(u, p) , that is

hB(x) , hB(|x|) for atleast one sequence in the space rq
B(u, p) and this says that rq

B(u, p) is a sequence space of
non-absolute type.

Theorem 2.3. The sequence space rq
B(u, p) of non-absolute type is linearly isomorphic to the space l(p),

where 0 < pk ≤ H < ∞.
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Proof. To prove the theorem, we should show the existence of a linear bijection between the spaces
rq

B(u, p) and l(p), where 0 < pk ≤ H < ∞. With the notation of (2), define the transformation T from rq
B(u, p)

to l(p) by x → y = Tx. The linearity of T is trivial. Further, it is obvious that x = θ whenever Tx = θ and
hence T is injective.

Let y ∈ l(p) and define the sequence x = (xk) by

xk =

k−1∑
n=0

(−1)k−n
(

sk−n−1

rk−nqn+1
+

sk−n

rk−n+1qn

)
Qnu−1

k yn +
Qku−1

k yk

r.qk

Then,

hB(x) =

∑
k

∣∣∣∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(q j.r + q j+1.s)x j + ukqk.r.xk

∣∣∣∣∣∣∣∣
pk

1
M

=

∑
k

∣∣∣∣∣∣∣∣
k∑

j=0

δkjy j

∣∣∣∣∣∣∣∣
pk

1
M

=

∑
k

∣∣∣yk

∣∣∣pk


1
M

= h1(y) < ∞,

where,

δkj =

1, if k = j,
0, if k , j.

Thus, we have x ∈ rq
B(u, p). Consequently, T is surjective and is paranorm preserving. Hence, T is a

linear bijection and this says us that the spaces rq
B(u, p) and l(p) are linearly isomorphic, hence the proof.

3. Duals and Basis of rq
B

(u, p)

In this section, we compute α-, β- and γ-duals of rq
B(u, p) and construct its basis.

Theorem 3.1. (i) Let 1 < pk ≤ H < ∞ for every k ∈N. Define the sets D1(u, p) and D2(u, p) as follows

D1(u, p) = ⋃
B>1

a = (ak) ∈ ω : sup
K∈F

∑
k

∣∣∣∣∣∣∣∑n∈K
[
Ou(n, k)anQk +

an

r.qn
u−1

n Qn

]
B−1

∣∣∣∣∣∣∣
p′k

< ∞


and
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D2(u, p) = ⋃
B>1

a = (ak) ∈ ω :
∑

k

∣∣∣∣∣∣∣

 ak

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ai

 Qk

 B−1

∣∣∣∣∣∣∣
p′k

< ∞

 ,
where

Ou(n, k) = (−1)k−n
(

sk−n−1

rk−nqn+1
+

sk−n

rk−n+1qn

)
u−1

k .

Then, [
rq

B(u, p)
]α

= D1(u, p),
[
rq

B(u, p)
]β

= D2(u, p) ∩ cs, and
[
rq

B(u, p)
]β

= D2(u, p).

(ii) Let 0 < pk ≤ 1 for every k ∈N. Define the sets D3(u, p) and D4(u, p) as follows

D3(u, p) = a = (ak) ∈ ω : sup
K∈F

sup
k

∣∣∣∣∣∣∣∑n∈K
[
Ou(n, k)anQk +

an

r.qn
u−1

n Qn

]
B−1

∣∣∣∣∣∣∣
pk

< ∞


and

D4(u, p) =

a = (ak) ∈ ω : sup
k

∣∣∣∣∣∣∣

 ak

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ai

 Qk


∣∣∣∣∣∣∣
pk

< ∞

 .
Then, [

rq
B(u, p)

]α
= D3(u, p),

[
rq

B(u, p)
]β

= D4(u, p) ∩ cs, and
[
rq

B(u, p)
]γ

= D4(u, p).

For the proof of the Theorem 3.1, we need following lemmas.

Lemma 3.2. [7] (i) Let 1 < pk ≤ H < ∞. Then A∈ (l(p) : l1) if and only if there exists an integer B > 1 such
that

sup
K∈F

∑
k∈N

∣∣∣∣∣∣∣∑n∈K ankB−1

∣∣∣∣∣∣∣
p′k

< ∞.

(ii) Let 0 < pk ≤ 1. Then A∈ (l(p) : l1) if and only if

sup
K∈F

sup
k∈N

∣∣∣∣∣∣∣∑n∈K ankB−1

∣∣∣∣∣∣∣
pk

< ∞.

Lemma 3.3. [9] (i) Let 1 < pk ≤ H < ∞. Then, A∈ (l(p) : l∞) if and only if there exists an integer B > 1
such that
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sup
n

∑
k

|ankB−1
|
p′k < ∞. (7)

(ii) Let 0 < pk ≤ 1 for every k ∈N . Then A ∈ (l(p) : l∞) if and only if

sup
n,k∈N

|ank|
pk < ∞. (8)

Lemma 3.4. [9] Let 0 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (l(p) : c) if and only if (7) and (8) hold
along with

lim
n

ank = βk f or k ∈N. (9)

Proof of Theorem 3.1. We consider the case 1 < pk ≤ H < ∞ for every k ∈N. Let us take any a = (an) ∈ ω.
From (2) we can easily see that

anxn =

n−1∑
k=0

Ou(n, k)anQkyk +
anQnyn

r.qn
u−1

k =

n∑
k=0

cnkyk = (Cy)n, (10)

where n ∈N and C = (cnk) is defined by

cnk =



Ou(n, k)anQk, if 0 ≤ k ≤ n − 1,

anQn

r.qn
u−1

k , if k = n,

0, if k > n,

where k,n ∈ N. Thus, we deduce from (10) with Lemma 3.2 that ax = (anxn) ∈ l1 whenever x = (xn) ∈ rq
B(u, p)

if and only if Cy ∈ l1 whenever y ∈ l(p). This shows that
[
rq

B(u, p)
]α

= D1(u, p).

Further, consider the equation

n∑
k=0

anxn =

n∑
k=0

 ak

r.qk
u−1

k + Ou(n, k)
n∑

i=k+1

ai

 Qkyk = (Dy)n, (11)

where n ∈N and D = (dnk) is defined by

dnk =


(

ak

r.qk
u−1

k + Ou(n, k)
n∑

i=k+1
ai

)
Qk, if 0 ≤ k ≤ n,

0, if k > n,
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for all k,n ∈N. Thus we deduce from (11) with Lemma 3.3 that ax = (anxn) ∈ cs whenever x = (xn) ∈ rq
B(u, p)

if and only if Dy ∈ c whenever y ∈ l(p). Therefore, we derive from (11) that

∑
k

∣∣∣∣∣∣∣

 ak

r.qk
u−1

k + Ou(n, k)
n∑

i=k+1

ai

 u−1
k Qk

 B−1

∣∣∣∣∣∣∣
p′k

< ∞, (12)

and lim
n

dnk exists and hence shows that
[
rq

B(u, p)
]β

= D2(u, p) ∩ cs.

As proved above, from Lemma 3.4 together with (12) that ax = (akxk) ∈ bs whenever x = (xn) ∈ rq
B(u, p) if

and only if Dy ∈ l∞ whenever y = (yk) ∈ l(p). Therefore, we again obtain the condition (12) which means
that

[
rq

B(u, p)
]γ

= D2(u, p) and this completes the proof.

Theorem 3.5. Define the sequence b(k)(q) = {b(k)
n (q)} of the elements of the space rq

B(u, p) for every fixed
k ∈N by

b(k)
n (q) =


Qk
r.qk

u−1
k + Ou(n, k)Qk, if 0 ≤ n ≤ k,

0, if n > k.

Then, the sequence {b(k)(q)} is a basis for the space rq
B(u, p) and for any x ∈ rq

B(u, p) has a unique repre-
sentation of the form

x =
∑

k

λk(q)b(k)(q) (13)

where, λk(q) = (Rq
uBx)k for all k ∈N and 0 < pk ≤ H < ∞.

Proof. It is clear that {b(k)(q)} ⊂ rq
B(u, p), since

Rq
uBb(k)(q) = e(k)

∈ l(p) f or k ∈ N (14)

and 0 < pk ≤ H < ∞, where e(k) is the sequence whose only non-zero term is 1 in kth place for each k ∈ N.

Let x ∈ rq
B(u, p) be given. For every non-negative integer m, we put

x[m] =

m∑
k=0

λk(q)b(k)(q). (15)

Then, by applying Rq
uB to (15) and using (14), we obtain
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Rq
uBx[m] =

m∑
k=0

λk(q)Rq
uBb(k)(q) =

m∑
k=0

(Rq
uBx)ke(k)

and

(
Rq

uB
(
x − x[m]

))
i
=


0, if 0 ≤ i ≤ m

(Rq
uBx)i, if i > m

where i,m ∈N. Given ε > 0, there exists an integer m0 such that ∞∑
i=m

|(Rq
uBx)i|

pk


1
M

<
ε
2
,

for all m ≥ m0. Hence,

hB

(
x − x[m]

)
=

 ∞∑
i=m

|(Rq
uBx)i|

pk


1
M

≤

 ∞∑
i=m0

|(Rq
uBx)i|

pk


1
M

<
ε
2
< ε

for all m ≥ m0, which proves that x ∈ rq
B(u, p) is represented as (14).

Let us show the uniqueness of the representation for x ∈ rq
B(u, p) given by (13). Suppose, on the contrary;

that there exists a representation x =
∑

k µk(q)bk(q). Since the linear transformation T from rq
B(u, p) to l(p)

used in the Theorem 3 is continuous we have

(Rq
uBx)n =

∑
k

µk(q)
(
Rq

uBbk(q)
)

n

=
∑

k

µk(q)e(k)
n = µn(q)

for n ∈ N, which contradicts the fact that (Rq
uB)n = λn(q) for all n ∈ N. Hence, the representation (13) is

unique. This completes the proof.

4. Matrix Mappings on the Space rq
B

(u, p)

In this section, we characterize the matrix mappings from the space rq
B(u, p) to the space l∞.

Theorem 4.1. (i) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈
(
rq

B(u, p)) : l∞
)

if and only if there exists
an integer B > 1 such that
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C(B) = sup
n

∑
k

∣∣∣∣∣∣∣

 ank

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ani

 Qk

 B−1

∣∣∣∣∣∣∣
p′k

< ∞ (16)

and {ank}k∈N ∈ cs for each n ∈N.

(ii) Let 0 < pk ≤ 1 for every k ∈N. Then A ∈
(
rq

B(u, p) : l∞
)

if and only if

sup
k

∣∣∣∣∣∣∣

 ank

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ani

 Qk

 B−1

∣∣∣∣∣∣∣
pk

< ∞ (17)

and {ank}k∈N ∈ cs for each n ∈N.

Proof. We will prove (i) and (ii) can be proved in a similar fashion. So, let A ∈
(
rq

B(u, p) : l∞
)

and
1 < pk ≤ H < ∞ for every k ∈N. Then Ax exists for x ∈ rq

B(u, p) and implies that {ank}k∈N ∈ {r
q
B(u, p)}β for each

n ∈N. Hence necessity of (16) holds.
Conversely, suppose that the necessities (16) hold and x ∈ rq

B(u, p), since {ank}k∈N ∈ {r
q
B(u, p)}β for every

fixed n ∈ N, so the A-transform of x exists. Consider the following equality obtained by using the relation
(11) that

m∑
k=0

ankxk =

m∑
k


 ank

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ani

 Qk

 yk. (18)

Taking into account the assumptions we derive from (18) as m→∞ that

∑
k

ankxk =
∑

k


 ank

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ani

 Qk

 yk. (19)

Now, by combining (19) and the following inequality which holds for any B > 0 and any complex numbers
a, b

|ab| ≤ B
(∣∣∣aB−1

∣∣∣p′ + |b|p)
with p−1+p′−1 = 1 [10, 16], one can easily see that

sup
n∈N

∣∣∣∣∣∣∣∑k

ankxk

∣∣∣∣∣∣∣ ≤ sup
n∈N

∑
k

∣∣∣∣∣∣∣

 ank

r.ukqk
+ Ou(n, k)

n∑
i=k+1

ani


 Qk

∣∣∣∣∣∣∣ |yk|

≤ B
[
C(B) + hB

1 (y)
]
< ∞.

This shows that Ax ∈ l∞ whenever x ∈ rq
B(u, p).

This completes the proof.
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