N
&

Filomat 28:7 (2014), 1363-1380
DOI 10.2298/FIL.1407363H

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

N

>
;
Tty

%

T1pupor®

Common Fixed Point Results in Complex Valued Metric
Spaces with Application to Integral Equations

N. Hussain?, Akbar Azam®, Jamshaid Ahmad®?, Muhammad Arshad®

?Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
YDepartment of Mathematics COMSATS Institute of Information Technology, Chack Shahzad, Islamabad - 44000, Pakistan
¢Department of Mathematics, International Islamic University, H-10, Islamabad - 44000, Pakistan

Abstract. In this paper, common fixed point of six mappings satisfying a contractive condition involv-
ing rational inequality in the framework of complex valued metric space are obtained. Moreover, some

examples and applications to integral equations are given here to illustrate the usability of the obtained
results.

1. Introduction and Preliminaries

There exist a number of generalizations of metric spaces, and one of them is the cone metric space
initiated by Huang and Zhang [9]. They described the convergence in cone metric spaces, introduced the
notion of completeness and proved some fixed point theorems of contractive mappings on these spaces.
Then several authors [2, 4-8, 12, 14-16] obtained fixed points in different generalized metric spaces.

The problem of existence of common fixed points to a pair of nonlinear mappings is now a classical
theme. The applications to differential and integral equations made it more interesting. A considerable
importance has been attached to common fixed point theorems in ordered spaces [1, 11].

Azam et al.[3] introduced the concept of complex valued metric space and obtained the existence
and uniqueness of common fixed points involving rational expressions. Then Rouzkard et al. [17] and
Sintunavarat et al. [18] generalized the concept of Azam et al [3].

The aim of this paper is to extend and generalize common fixed point theorems for six self-maps of
Jankovic et al. [13] from cone metric space to complex valued metric space of contractive type mappings
involving rational inequality. We will illustrate this fact by proving the existence of nonnegative integrable
solutions for an implicit integral equation in complex valued metric spaces.

Consistent with Azam, Fisher and Khan [3], the following definitions and results will be needed in what
follows. Let C be the set of complex numbers and z;,z; € C. Define a partial order < on C as follows:

z1 3 zp if and only if Re (z1) < Re(z2), Im (z1) < Im(zp).
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It follows that
Z1 322

if one of the following conditions is satisfied:

() Re(z1) = Re(z2), Im(z1) <Im(z),
(i) Re(z1) < Re(z), Im(z1) =Im(zy),
(iii) Re (z1) < Re(zp), Im(z1) < Im(zy),
(iv)Re(z1) = Re(zp), Im(z1) =Im(zp).

In particular, we will write z; 5 z5 if z; # z, and one of (i), (ii) and (iii) is satisfied and we will write z; < z»
if only (iii) is satisfied. Note that

0 3 z1320 = |zl <z,

Z1 S 29,20 <zz3 = 21 < Z3.
Definition 1.1. Let X be a nonempty set. Suppose that the self-mapping d : X x X — C satisfies:

1. 0 3d(x,y), forallx,y € Xand d(x,y) = 0O if and only if x = y;
2. d(x,y)=d(y,x) forallx,y € X
3. d(x,y) sd(x,z) +d(z,y), forall x,y,z € X.

Then d is called a complex valued metric on X, and (X, d) is called a complex valued metric space. A
point x € X is called interior point of a set A C X whenever there exists 0 < 7 € C such that

B(x,r) ={ye X:d(x,y) <r} C A.
A point x € X is called a limit point of A whenever for every 0 <r € C,
Bx,r)N (AN {x}) # ¢.

A is called open whenever each element of A is an interior point of A. Moreover, a subset B C X is called
closed whenever each limit point of B belongs to B. The family

F={B(x,r):xe X,0<7}

is a sub-basis for a Hausdorff topology 7 on X.

Let x,, be a sequence in X and x € X. If for every c € C with 0 < ¢ there is 19 € IN such that for all
n > ny, d(x,,x) < ¢, then {x,} is said to be convergent, {x,} converges to x and x is the limit point of {x,}.
We denote this by lim,,_,. X, = x, or x, — x, as n — oo. If for every ¢ € C with 0 < ¢ there is ny € IN such
that for all n > ng, d(x,, X4+m) < ¢, then {x,} is called a Cauchy sequence in (X, d). If every Cauchy sequence
is convergent in (X, d), then (X, d) is called a complete complex valued metric space. Let X be a complete
complex valued metric space and T, f : X — X. The mappings T, f are said to be compatible if, for for
arbitrary {x,} C X such thatlim, . Tx, =lim,_« fx, =t € X, and for arbitrary c € C with 0 < ¢, there exists
np € N such that d(Tfx,, fTx,) < c, whenever n > ny. The mappings T, f are said to be weakly compatible
if they commute at their coincidence point (i. e. Tfx = fTx whenever Tx = fx). A point y € X is called
point of coincidence of T and f if there exists a point x € X such that y = Tx = fx.We require the following
lemmas:

Lemma 1.2. Let (X, d) be a complex valued metric space and let {x,} be a sequence in X. Then {x,} converges to x if
and only if |d(x,,x)] = 0asn — oo.

Lemma 1.3. Let (X, d) be a complex valued metric space and let {x,} be a sequence in X. Then {x,} is a Cauchy
sequence if and only if |d(x,, Xpim)| = 0as n — oo.
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Lemma 1.4. If the pair (f, g) of self-mappings on the complex valued metric space (X, d) is compatible, then it is
weakly compatible but the converse does not holds.

Proof. Let fu = gu for some u € X. We have to prove that fgu = gfu. Put x, = u for every n € IN. We have
fXxn, gxn — fu = gu. If c € C with 0 < c then since the pair (f,g) is compatible, so we have d(gfx,, fgx,) =
d(gfu, fgu) 3 cimplies that fgu = gfu as required. [J

2. Main Result

Hussain etal. [10] proved six mappings fixed point theorem for generalized (1), ¢) contractions. Recently
Jankovic et al. [13] proved a common fixed point theorem for six self-mappings satisfying generalized con-
traction in a cone metric space. Here we improve and generalize the result of Jankovic et al. to a complex
valued metric space involving a rational type inequality.

Theorem 2.1. Let (X,d) be a complete complex valued metric space and let A,B,S,T,L,M : X — X be a self-
mappings satisfying the conditions:

(comsy) d(Lx, My)) 3 AR(x, y) (1)
forallx,y € Xand A € [0,1),where

R(x,y) € {d(ABx,STy),d(ABx,Lx),d(STy, My), %(d(STy, Lx) + d(ABx, My)),
d(ABx, Lx)d(STy, My)
1+ d(ABx,STy)
(coms;y) L(X) c ST(X); M(X) c AB(X);
(cumsz) AB = BA; ST = TS;LB = BL; MT = TM;
(cums,) the pair (L, AB) is compatible and the pair (M, ST) is weakly compatible;

(cumss) either AB or L is continuous.
Then A, B, S, T, L and M have a unique common fixed point.

5

Proof. Let xg € X be arbitrary. From the condition (cvms,), there exist x1, x, € X such that Lxg = STx; = yo
and Mx; = ABx, = y;. We can construct successively the sequences {x,} and {y,} in X as follows:

Yon = STxop41 = Ly, and Yon+1 = ABxouin = Mxoy4q 2
forn=0,1,2,---. We prove that [d(y,+1, Yn)l < Md(Yn, Yn-1)|, forn =1,2,---. Now from (coms;), we get

A(You, Yons1) = A(Lxn, MX2p41) S AR(X24, X2n41), 3)
where
R(xon, x2n+1) €  {d(ABxoy, STx2441), A(ABx2y, LX2y,), d(STX2p41, MX2p41),

1
E(d(STx2n+lr Lx2,) + d(ABx2u, MXop41)),

A(ABx2y,, Lx2,)A(STx2041, MX2p41)

1+ d(ABxay,, STx2441) }

1
= |{d(Wan-1, Y2n), AY2n-1, You), AY2n, Yons1), E((d(yzn, Yon) + A(Y2n-1, Y2n+1)),

A(Y2n-1, Yoau)d(Y2n, Y2ns1)
1+ d(yan-1, Yon)

A(Y2n-1, Y2u)d(Y2n, Y2us1)
1+ d(yon-1, Yon)

1
= {d(Wan-1, Y2u), AY2n, You+1), zd(]/Zn—l/]/ZrH—l)/ . (4)
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By (3) and (4), we have possible four cases that are

ld(y2n, Yonr 1)l < Ald(Y2n-1, You)l,

and

ld(Y2n, Yone)l < AdWan, Yone)l < 1dW2n, Youar)l

which is a contradiction. And

A A A
Ao, Yous1) 3 Ed(y2n—1/y2n+1) 3 Ed(yZn—ll]/Zn) + Ed(]/an Yon+1)-

AsO0<A<1,so0

1
51

A
ld(Yon, Yons1)l < E|d(y2n71,y2n)| +5 A(Won, Yon+1)l,

which implies that

ld(Yon, Yau+1)l < Md(Yan-1, Yon)-

And

IA

|d(y2n/ y2n+1)|

Al

AWY2n-1, You)A(Y2n, Yon+1)
1+ d(y2n-1, Yon)

A ld(Y2n-1, Y2u)lld(Y2u, Yons1)l

1+ d(y2n—1/ y2n)|

since |1 + d(Y2n-1, Y2u)l > |d(Y2n-1, Y2u)l, SO We

ld(Yon, Yone)] < AdYon, Yone)| < 1dWY2n, Yone1)l

which is a contradiction. Thus

ld(Y2n, Yone)l < Ald(Wau-1, You)l.

Similarly from (coms,), we get

A(Yon+1, Yans2) = A(Mx2n41, Lx2n42) = d(Lx2n12, MX2n41) S AR(X2042, X2041),

where

R(x2p12, X0n41) €

€

€

{d(ABx2442, STx2441), A(ABX2n42, Lx2n42), A(STX2441, MX2441),

1
E(d(STXZnHr Lxopny2) + d(ABx2ui2, Mx2441)),

A(ABx2p12, Lx2p12)A(STx2041, MXy41)
1+ d(ABx2442, STX2441)

}

1
{dW2n+1, Yon), AY2n+1, Yone2), AY2n, Yons1), E(d(yzn, Yon+2) + A(Y2n+1, Youns1)),

AWon+1, Yons2)A(Y2n, Yons1)
1+ d(Yans1, Yon)

A(WY2n+1, Y2r+2)dYon, Yons1) |

1
d nrs Y2n+ /d n+1l, Y2n+ /_d nr Y2n+2),
{d(y2n, Yon+1), A(Y2n+1, Yon+2) > (Y2n, Y2n+2) e r——

By (9) and (10), we have possible four cases that are

ld(Yon+1, Yone2)l < MAWYon, Yons1)-

1366

(6)

©)

(11)
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and
ld(Yon+1, Yone2)l < AMdWYons1, Yone2)l < 1AW2n41, Yonao)l- (12)
which is a contradiction. And
A A A
A(Won+1, Yons2) 3 Ed(y2n,y2n+2) < Ed(yzn,yznﬂ) + Ed(y2n+1/y2n+2)-

AsO0<A<1,so0

IA

A 1
ld(Y2n+1, Yone)l §|d(y2n, Yous1)| + §|d(y2n+1, Yons2)|

Ald(yZM y2n+1)|-

IA

And

ld(Yon+1, Yore)AWY2n, Yon1)l
|1 + d(]/an y2n+1)|

|d(y2n+11 y2n+2)| <A

since |1 + d(y2n, Y2n+1)| > d(Y20, Y2n+1)|, sO we have

ld(Y2ne1, Yone2)l < Ad(Wans1, Yons2)l < 1AY2041, Yons2)l (13)

which is a contradiction. Thus

ld(Y2n+1, Yone2)l < Ald(Wan, Yone1)l. (14)
It follows that
AW, Yns)l < Ad(Yne1, )l < - - < A"d(yo, y1)l. (15)

Using (15) and triangle inequality, for m > n, we have:

|d(yn/ ]/n+1)| + |d(yn+1/ ]/n+2)| +eoo+ Id(ym—l/ }/m)|
A"+ A 4 Al (yo, 1)

(Y1, Ym)|

INIA

An
[1 _/\] ld(vo, y1)l = 0 as n — oo.

By lemmas 1.2 and 1.3, it follows that {y,} is a Cauchy sequence. Since X is complete, so there exists some
z € X such that y, — z as n — oo. For its subsequences we also have Mxy,+1 — 2, STx2u41 — 2, Lxpy, — 2
and ABxy, — z. From the condition (cvmss), we have two cases.

Case 01. If AB is continuous.
As AB is continuous, then ABABx,, — ABz and ABLx;, — ABz, as n — 0. Also, since the pair (L, AB) is
compatible, this implies that LABx,, — ABz. Indeed

d(LABx,,, ABz) 5 d(LABx,,,, ABLx>,) + d(ABLXx>,,, ABz).
Now
|d(LABxy,,, ABz)| < |d(LABx,,,, ABLx5,)| + |d(ABLx3,, ABz)] — 0 as n — oo.
(a) We first prove that ABz = z. We suppose on the contrary that ABz # z. Then d(ABz, z) > 0. Now from the

triangular inequality, we get

d(ABz,z) 3 d(ABz, LABxy,) + d(LABxy,, Mxp,41) + Ad(Mx2,41, 2)- (16)
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Applying the condition (comss) to x = ABxy,, Y = Xon41, We get
d(LABx2n, Mx2y+1) 3 AR(ABX24, X2141),
where
R(ABxon, xon+1) € {d(ABABxan, STx2n41), d(ABABX2y, LABX2y), d(STX2p41, MXon+1),

1
E(d(STXZnH/ LABxy,) + d(ABABx2, MX24141)),

A(ABABxy,, LABX2,)d(STx2y41, MX2441) |
1+ d(ABABin, STinH) ’

Now, we have the following five cases:

(i)

A(LABx2y, Mx2441) 3 Ad(ABABx2,, STx2441)
< Ad(ABABx;,, ABz) + Ad(ABz,z) + Ad(z, STx2,41),

from (16), we get

|d(ABz,z)] < ﬁld(ABz,LABxZH)H%ld(ABAszn,ABz)I

1
1 ld(Mx2441, 2).

A
+m|d(ZISTX2n+1)| + =

Taking the limit as n — oo, we get
|d(ABz,z)| < 0.
That is [d(ABz, z)| = 0, a contradiction. Thus by lemma 1.2, we get ABz = z.
(ii)

d(LABXQn, Mx2n+1) /\d(ABABXQn, LAszn)

Ad(ABABx,,,, ABz) + Ad(ABz, LABx»,),

A

using (16), we get
|d(ABz,z)] < (14 A)ld(ABz, LABxp,)| + Ald(ABABx2,, ABz)| + Ald(Mx2,.41, 2)|.

Now taking the limit as n — oo, we get
|d(ABz,z)| < 0.

That is [d(ABz, z)| = 0, a contradiction. Thus by lemma 1.2, we get ABz = z.
(iii)

d(LABx2y, MX2,11) Ad(STx241, MX2p41)

3
< Ad(STxp441,2) + Ad(z, Mxou41),
from (16), we get
|d(ABz,z)] < |d(ABz, LABxy,)| + (1 + A)ld(Mx2p11, 2)| + Ald(ST X241, 2)].
Now taking the limit as n — oo and since the pair (L, AB) is compatible, so we get

|[d(ABz,z)| < 0.

That is [d(ABz, z)| = 0, a contradiction. Thus by lemma 1.2, we get ABz = z.
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(iv)
A(LABx2,, MX2y41) 3 %(d(STXZrHl/LABxZn) + d(ABABx2,, MX2,41)),
dA(LABxp,, Mx2,11) 3 %((d(SsznH,z) + d(z, ABz) + d(ABz, LABx3,))
+%(d(ABABx2n,ABz) + d(ABz, z) + d(z, Mx2,,11))
S J(@(STxap,2) + e, Msy11)) + 5 (d(ABABxay, AB2)

+d(ABz, LABxy,)) + Ad(ABz, 2).
From (16), we get

1 A
ld(ABz,z)} < mWABZ, LABxy,)| + m(Kd(Ssznﬂ,Zﬂ +1d(z, Mx2,41)1)
A 1
+—2(1 — A)(ld(ABAsz,,,ABz)I + |d(ABz, LABxy,)|) + ) |d(Mx2,41,2)|.
That is [d(ABz, z)| = 0, a contradiction. Thus ABz = z.

)
A(ABABx,, LABx2,)d(STx2441, MX24141)
1+ d(ABAsz,,, STx2n+1) !

d(LABx2, Mx2,41) 3 A

from (16), we get

|[d(ABABx2,,, LABX2, )lA(STx 2441, MX241)|

A(AB < |d(ABz, LABxy,)| + A
4(ABz,2)l < |d(ABz LABxz,)| + 11+ d(ABABXay, STXs1)|

+ |d(Mx2441, 2)1.

Now taking the limit as n — oo, we get
|d(ABz,z)| < 0.

That is [d(ABz, z)| = 0, a contradiction. Thus ABz = z. Hence, in all cases ABz = z.
(b) Now we prove that Lz = z. We suppose on the contrary that Lz # z. Then d(Lz,z) > 0. From the
triangular inequality, we get

d(Lz,z) < d(Lz, MX2n41) + d(M2X2n41, 2). (17)
Applying the condition (iii) to x = z, y = Xx2,4+1, We get

d(Lz, Mxzns1) S AR(ABx2n, X2n41),
where

1
R(Z, X2n+1) € {d(ABZ, STX2n+1), d(ABZ, LZ), d(STx2n+1,Mx2,,+1), E(d(STxZVle LZ) + d(ABZ, Mx2n+1)),

d(ABZ/ Lz)d(STx2n+1/ Mx2n+1)
1+ d(ABZ, STX2n+1)

We have the following five cases: (i)

3

d(Lz, Mx2,11) < Ad(ABz, STx2,41) = Ad(z, STx2441).
from (17), we get
ld(Lz, z)| < Ald(z, STx2p41)| + [d(Mx2,41,2),



N. Hussain et al. / Filomat 28:7 (2014), 1363-1380
Now taking the limit as n — oo, we get
|d(Lz,z)| < 0.
That is [d(Lz, z)| = 0, a contradiction. Thus Lz = z.
(i)
d(Lz, Mx2,41) S Ad(ABz,Lz) = Ad(z, Lz),
from (17), we get

ld(Lz,2)| < Ald(z, L2)| + |d(Mx241, 2)|
1
1-1
Which implies that |[d(Lz, z)| < 0, a contradiction. Thus Lz = z.
(iii)
d(Lz, Mxp,11)

IN

|d(Mx2n+1/Z)| — 0asn — oo.

Ad(STx2n41, MX2p11)
Ad(STXQnH, Z) + Ad(Z, MXQ,,H),

A A

from (17), we get
ld(Lz, 2)| < (1 + M)ld(Mx2u11, 2)| + Ald(STx2041,2)] = 0 as n — co.

Which implies that |[d(Lz, z)| = 0, a contradiction. Thus Lz = z.
(iv)

d(LZ/ Mx2n+1) 3 %(d(STerle LZ) + d(ABZ/ M-x2n+1))
A A
d(Lz, Mxzn41) 3 E((d(STXZnH,Z) +d(z,Lz)) + Ed(zr Mxz41),
from (17), we get
A A
d(Lz,z) 3 E((d(STXZHH/Z) +d(z,Lz)) + (E + 1)d(z, Mx2p41).
Which implies that

(12,21 < 50 Txzar,2) + (e, L) + (5 + Dz, Mzl

Now taking the limit as n — oo, we get |d(Lz, z)| = 0, a contradiction. Thus Lz = z.

(v)

d(ABZ/ Lz)d(STx2n+ll Mx2n+1)

<
d(Lz, Mx2,41) S A 1+ d(ABz,STx3,41) '

from (17), we get

|d(ABz, L2)||d(STx2n+1, MX24+1)|
|1 + d(ABZ, STX2n+1)|

ld(Lz, z) < A + |d(Mx2n11, 2)l,

Taking the limit as n — oo, we get

|d(Lz,z)| = 0, a contradiction.

1370
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Thus Lz = z. Thus in all cases we have Lz = z.

(c) Now we prove that Bz = z. We suppose on the contrary that Bz # z. Then d(Bz, z) > 0. Now using
the triangular inequality, we get

d(Bz,z) = d(BLz,z) = d(LBz,z) < d(LBz, Mx2,11) + d(Mx2,41,2), (18)
From (1), we get

d(LBz, Mx2,11) S AR(Bz, Xon+1),
where

R(Bz,x2,41) € {d(ABBz,STx2,11),d(ABBz, LBz), d(STx2,+1, Mx2,11),
d(ABBZ, LBZ)d(STX2n+1, Mx2n+1)
1+ d(ABBZ, STX2n+1)

R(Bz,x2,41) € {d(BABz,STx2,11),d(BABz, BLz),d(STx2,+1, Mx2,11),
d(BABZ, BLZ)d(STXz,H_l, Mx2n+1)
1+ d(BABz, STx2,,41)
R(Bz,x2n+1) € {d(Bz, STx2441),d(Bz, Bz), d(STx2141, MX2p11),
(Bz, Bz)d(STx2141, Mx211)
1+ d(BZ, STx2n+1)

(ST x2101,L2) + d(ABz, Mrsys0),

}

1
E(d(STXZnH/ Lz) + d(ABz, Mx2,11)), }

1 d
E(d(STXZrHl/Z) + d(z, Mx2,41)), 1 ).

Now, we have the following five cases:
)
d(LBZ, Mx2n+1) /\d(BZ, STX2n+1)

Ad(Bz, z) + Ad(z, STX2,41),

A A

from (18), we get
ld(Bz,z)] < Ald(Bz,z)| + Ald(z, STx2n41)| + |d(Mx2,41, 2)|

A
|d(Bz, 2)| -1

IA

A
TG STxzn)l + d(Mx2p41, 2)I-

Taking limit as n — oo in the above inequality, we get |[d(Bz, z)| = 0, a contradiction. Thus Bz = z.

(ii)

d(LBz, Mxy,4+1) S Ad(Bz, Bz),
from (18), we get

|d(Bz, 2)| < |d(Mx2n41,2)|-

Taking limit as n — oo in the above inequality, we get |d(Bz, z)| = 0, a contradiction. Thus Bz = z.
(iii)
d(LBz, Mx2,,41) A(STxp41, MX2p11)

Ad(STx241,2) + Ad(z, Mx211)

A A

from (18), we get
|d(Bz, z)| < Ald(STx2n41,2)| + Ald(z, Mxop1)| + 1d(Mx2n41, 2)|-

Taking limit as n — oo in the above inequality, we get |d(Bz, z)| = 0, a contradiction. Thus Bz = z.
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(iv)
A

d(LBz, Mx211) 3 E(d(STx2n+er) +d(z, Mxan+1)),

from (18), we get
A A

d(LBz,z) 3 Ed(STx2n+er) + (E + 1)d(Mx2441,2),

which implies that
A A
|d(LBz, z)| < E'd(STx2n+er)| + (E + Dld(Mx2p41, 2)|-

Taking limit as n — oo in the above inequality, we get |d(Bz, z)| = 0, a contradiction. Thus Bz = z.

9

d(BZ/ Bz)d(STx2n+1/ Mx2n+1)
1+ d(BZ, STXZ,H_l)

d(LBZ/ Mx2n+1) =

from (18), we get

|d(Bz, B2)||d(STx2n41, MX2n41)
11+ d(Bz, STx2u11)l
|d(Mx2n+1/ Z)l/

|d(Bz, 2)|

IA

+1d(Mx2n41, 2)]

IA

Taking limit as # — oo in the above inequality, we get |d(Bz, z)| = 0, a contradiction. Thus Bz = z. Thus in all
cases we have Bz = z.

(d) As L(X) c ST(X), so there exists v € X such that z = Lz = STw. First, we shall show that STv = Mv.
For this we have

d(STv, Mv) = d(Lz, Mv) < AR(z,v), 19)
where

R(z,v) € {d(ABz,STU),d(ABz,Lz),d(STv,Mv),%(d(STU,Lz)+d(ABz,Mv)),

d(ABz, Lz)d(STv, Mv) .
1+ d(ABz,STv)

R(z,v) € {d(z,z),d(z,z),d(STv,MU),%(d(z,z)+d(z,Mv)),

d(z,z)d(STv, Mv)
1+4d(z,2)

}.
This implies that
R(z,v) € {0,d(STv, Mv), %d(STv, Muo)}. (20)
From (19) and (20), it follows that
|d(STv, Mv)| = 0.
That is STv = Mv = z. As the pair (M, ST) is weakly compatible, so we have STMv = MSTv. Thus
STz = Mz.
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(e) Now we prove that Mz = z. Now we have
d(z, Mz) = d(Lz, Mz) 5 AR(z,z), (21)
where

R(z,z) € {d(ABz, STz),d(ABz,Lz),d(STz,Mz),%(d(STz,Lz)+d(ABz,Mz)),

d(ABz, Lz)d(STz, Mz)
1+ d(ABz,STz)

¥
d(z, z)d(Mz, Mz)
1+d(z, Mz) }
R(z,z) € {0,d(z, Mz)}. (22)
From (21) and (22), we get

R(z,z) € {d(z, M=z),d(z, z), d(Mz, Mz), %(d(Mz, z) + d(z, Mz)),

ld(z, Mz)| = 0,
that is
Mz =z.
(f) Now we prove that Tz = z. Now we have
d(z,Tz) = d(Lz, TMz) = d(Lz, MTz).
From (coms;), we get
d(z, Tz) = d(Lz, MTz) 5 AR(z, Tz), (23)
where

R(z,Tz) € {d(ABz,STTz),d(ABz,Lz),d(STTz,MTz),%(d(STTz,Lz)+d(ABz,MTz)),

d(ABz, Lz)d(STz, Mz)
1+ d(ABz,STTz)

}

1
R(z,Tz) € {d(z,TSTz),d(z,z),d(TSTz, TMz), E(d(TSTz, Lz) + d(ABz, TMz)),

d(z,2)d(TSTz, TMz)

1+d(z, TSTz) }

d(z,z)d(Tz, Tz) |
1+d(z, Tz)
R(z,Tz) € {0,d(z, Tz)}, (24)
from (23) and (24), we get

R(z,Tz) € {d(z, Tz),d(z,z),d(Tz, Tz), %(d(Tz, z) + d(z, Tz)),

ld(z, Tz)| = 0,
that is

Tz =z
Since

STz =z,
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it follows that
Sz =z
Thus if AB is continuous then we proved that
Az=Bz=S5z=Tz=Lz=Mz =z
Hence, the six self mappings have a common fixed point in the case when AB is continuous.

Case 02. If L is continuous.
As L is continuous, then [2x,,, — Lz and LABx,,, — Lz, as n — co. As the pair (L, AB) is compatible, we
have ABLx,, — Lz, as n — oo. Indeed

d(ABLx,,Lz) S d(ABLx2,, LABx2,) + d(LABx2,, Lz),
Now

|d(ABLxy,, L2)| < |d(ABLx5,, LABx2,)| + |d(LABxy,,Lz)] — 0, as n — oo.

(a) First we prove that Lz = z. By triangular inequality, we get

d(Lz,2) 5 d(Lz, L?x,) + d(L*x2, MX2y41) + d(MX241, 2). (25)
Now putting x = Lx,, and y = xp,41, in (coms;), we get

d(L*x2n, MxX2n41) 3 AR(LX2p, X2n41),
where

R(Lxzn, Xou41) €  {d(ABLx2, STx2141), d(ABLx24, L*X24), d(ST X041, Mg 11),

1
E(d(STx2n+1/ szzn) + d(ABLxZVl/ MerHl))/

A(ABLx2y,, LLX2,)d(STX2441, MX2441)
1+ d(ABszH, STX2n+1)

Now, we have the following five cases:

(i)

5

d(L*x2n, Mx2,11) 3 Ad(ABLxay, STX241)
< Ad(ABLxp,,Lz) + Ad(Lz,z) + Ad(z, STxp,41),

from (25), we get

d(Lz,z) < d(Lz,L*x2,) + Ad(ABLx2y,, Lz) + Ad(Lz, z) + Ad(z, STx2p41) + d(MxXops1, 2).
Now

ld(Lz, z)| < |d(Lz, L*x2,)| + A|d(ABLx2,, L2)| + Ald(Lz, 2)| + Ald(z, STx2n41)| + [d(Mxo41, 2)l,
which implies that

1
1-A

1

ld(Lz,z)| < -1

|d(Lz, L2x5,)] +

A A
71 (ABLx2y, L2)| + 7 1d(z, STx2041)] + d(Mx2p41, 2)|-

1=
Taking limit as n — oo in the above inequality, we get

|d(Lz, z)| = 0.
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Thus Lz = z.
(i)
A(L*Xon, Mxop41) < Ad(ABLx2,, LX)
< Ad(ABLxyy, Lz) + Ad(Lz, L?x2,),
from (25), we get

d(Lz,z) < d(Lz, L*x3,) + Ad(ABLxy,, Lz) + Ad(Lz, L*x5,) + d(Mx,41, 2).
Now
\d(Lz, 2)| < |d(Lz, L*x24)| + Ald(ABLx2y, Lz)| + Ald(Lz, L?X2,)| + [d(Mx2p41, 2)]-

Taking limit as n — oo in the above inequality, we get

|d(Lz, z)| = 0.
Thus Lz = z.
(iii)
d(L*x2n, Mx2ne1) S Ad(STXpu41, MX2141)
3 Ad(STxau41,2) + Ad(z, Mxzn41),
from (25), we get

d(Lz,z) 3 d(Lz,L?xp) + Ad(STx2441,2) + Ad(z, Mxous1) + d(Mx2411, 2)
3 d(Lz, L*x24) + Ad(STx2n41, 2) + (1 + A)d(z, Mxope1)-

Now
ld(Lz, z)| < |d(Lz, L*x2,)| + Ald(STx2n41, 2)| + (1 + A)ld(z, Mxzp11)l.

Taking limit as n — oo in the above inequality, we get

|d(Lz, z)| = 0.
Thus Lz = z.
(iv)

A
d(L*x2n, Mxgy41) 3 E(d(STx2n+1/L2x2n) + d(ABLx2,, Mx2,+1))

d(L?x20, MX2y11) 3 %(d(STXZnH/Z) +d(z,Lz) + d(Lz, L*x5,))
+ 2 d(ABLy, L2) + d(L2,2) + dl, Mraus),
from (25), we get

d(Lz,z) < d(Lz,L%x2,) + (d(STx2n+1,z) +d(z, Lz) + d(Lz, L*x,))

+§(d(ABLin, Lz) +d(Lz, z) + d(z, Mx2141)) + d(Mx241, 2)

1 9 A A
d(Lz,z) = md(Lz,L Xoy) + md(STXZnH/Z) + 20 = )d(Lz L? X21)

A

+q gy H(ABL L) +

A
2= /\)d(z , Mx2,41) 131 d(MX2n+1,Z)



N. Hussain et al. / Filomat 28:7 (2014), 1363-1380 1376

This implies that

A
|d(STx2n11, 2)| + mW(LZ, Lx2,,)|

dz2) < — iz, L) +
1-A

LA _A

21- 1) 21-2)

Taking limit as n — oo in the above inequality, we get

2(1- 1)

1
|d(ABLxn, L2)| + Iz, Mxzwea)l + 37— [d(Mx2na1, 2)]-

|d(Lz,z)] <0, a contradiction.

Thus |d(Lz, z)| = 0 implies Lz = z.
v)

A(ABLx2y,, LLx2,)d(STx2441, MX2n41)

2
<
d(L"x20, Mx2p11) S A 1+ d(ABLxy, STxpy) ,

from (25), we get

d(ABLx2,, LLx2,)d(STx24141, MX21141)
1+ d(ABLin, STx2n+])

d(Lz,z) < d(Lz, L*x2,) + A +d(Mxan+11,2),

Now

|d(ABLx2,, LLx2 )IA(ST X041, MX2p41)|

d(Lz, 2)| < ld(Lz, Lx)| + A
Az 2l = e A A B L, ST

+ |d(Mx2441, 2)l.

Taking limit as 7 — oo in the above inequality, we get
|d(Lz, z)| = 0.

Thus Lz = z. Now, using steps (d),(e) and (f), and continuing the step (f) give us
Mz=5Sz=Tz=z

(b) As M(X) c AB(X), so there exists w € X such that
z = Mz = ABw.

We shall show that
Lw = ABw = z.

For this we have
d(Lw, ABw) = d(Lw, Mz) 3 AR(w, 2),

where

R(w,z) € {d(ABw,STz),d(ABw,Lw),d(5Tz, Mz), %(d(STz, Lw)

d(ABw, Lw)d(5Tz, Mz)
1+ d(ABw, STz)

+d(ABw, Mz)),
that is

R(w,z) € {0, %(d(z, Lw)},
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which implies that
d(Lw, ABw) = d(Lw, Mz) = d(Lw, z) < %(d(z, Lw)i.eLw = ABw = z.

Which implies that
Lw = ABw = z.
As the pair (L, AB) is compatible, so it must be weakly compatible, we have
Lz = ABz.

Further, Bz = z follows from step (c). Thus, Az = Bz = Lz = z and we obtain that z is the common fixed point
of six mappings in this case too. Now we prove the uniqueness of these six mappings. Let z* be another
common fixed point of A, B, S, T, L and M; then

Az =Bz =52 =Tz =Lz =Mz" =7".
Putting x = z, y = z" in (coms;), we get

d(z,z") = d(Lz, Mz")) S AR(z,z"), (26)
where

R(z,z") € {d(ABz,STz"),d(ABz,Lz),d(STz", Mz"), %(d(STz*, Lz)

d(ABz, Lz)d(STz*, Mz")
1+ d(ABz, STz")

R(z,z%) € {0,d(z,2")}. (27)
From (26) and (27), we get

+d(ABz, Mz")),

ld(z,z")| = 0.
Which implies that z = z*. Thus z is the unique common fixed point of A,B,S,T,Land M. O
In Theorem 2.1, put B = T = Ix, the identity mapping on X, to obtain the following result:

Corollary 2.2. Let (X, d) be a complete complex valued metric space and let A,S,L,M : X — X be a self-mappings
satisfying the conditions:

(cumse) d(Lx, My)) 3 AR(x, y)
forall x,y € Xand A € [0, 1),where

d(Ax, Lx)d(Sy, My)
1+ d(Ax, Sy)

R(x,y) € {d(Ax, Sy), d(Ax, Lx), d(Sy, My), %{d(Ax, My) +d(Sy, Lx)}, b
(comsy) L(X) € S(X); M(X) € A(X);

(cumsg) the pair (L, A) is compatible and the pair (M, S) is weakly compatible;

(comsy) either A or L is continuous.

Then A, S, L and M have a unique common fixed point.

PuttingL=M =Fand A = B =S =T = Ix in Theorem 2.1, we get the following corollary.
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Corollary 2.3. Let (X, d) be a complete complex valued metric space and let F : X — X be a self-mappings satisfying
the conditions:

(comsyg) d(Fx, Fy)) 3 AR(x, y)
forall x,y € Xand A € [0, 1),where

1 d(x, Fx)d(y, Fy)

R(x, y) € {d(x, y),d(x, Fx),d(y, Fy), z{d(x,Py) +d(y, Fx)}, T+d(x,y) J.

Then F has a unique fixed point.
By setting L, M = Fand A, B, S, T = g in Theorem 2.1, following example illustrates of our main result.

Example 2.4. Let X ={(1,2),(2,3),(3,4),(4,5),(5,6)} and define a mappingd : X x X — C as

4 .
d(z1,22) = §Ix1 = x| + 2ily1 — v

where z1 = x1 + iy1, 22 = X2 + iy, then (X, d) is a complete complex valued metric space. Set L=M =F,A =B =
S =T = g and define the self mappings F and g on X (with z = x + iy) as

Fz=|x-yl+2ix—ylforallze X
and

_ x+iy  forz=(1,2)
I2 =\ 20x -yl + 3ilx — yl for z € {(2,3), (3,4), 4,5), (5, 6)).

By a routine calculation, one can easily verify that F and g satisfy the contraction condition (1). Notice that the point
(1,2) € X a unique common fixed point of F and g.

The following example illustrates our corollary 2.3.
Example 2.5. Consider
Xi1-{z€C:-1<Rez<1,Imz=0}

X, ={zeC:-1<Imz<1,Rez =0}

and let X = X4 U X,. Then withz = x +1iy. Set L=M = Fand A = B = S = T = I (identity mapping). Define
F: X — Xas follows

Lx ifzeX
-l 2
bz {y ifze X

If d,, is usual metric on X then F is not contractive as dy(Fz1,Fzp) = |y1 — y2| = du(z1,22) YV 21,22 € Xa.
Therefore, the Banach contraction theorem is not valid to find the unique fixed point 0 of F. To apply the Theorem 2.1,
consider a complex valued metricd : X X X — C as follows

51— xof + Flx1 — xal, ifz1,20 € Xa
Hyr — vl + 1 — val, ifz1,20 € X3
(X1 + %1/2) + i(§x1 + %]/2), ifz1 € X1,22 € Xo
G +3x0) +iGy +3x)  ifz € Xp2 € Xy

d(z1,22) =

where z1 = x1 + 1y1,220 = X2 + iys € X. Then (X, d) is a complete complex valued metric space. By a routine
calculation, one can easily verify that F satisfies the contraction condition (1). Notice that the point 0 € X remains
fixed under F is indeed unique.
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3. Application

Fixed point theorems for operators in ordered Banach spaces are widely investigated and have found
various applications in differential and integral equations (see [1, 11] and references therein).

Theorem 3.1. Let X = C([a,b],R"), a > 0and d : X X X — C be defined as follows:

d(x,y) = gh?ﬁ”x (t) - y(t)” VI + a2eitan”'a.

Consider the Urysohn integral equations

b
x(t) = f Ki(t,s,x(s))ds + g(t), (28)

b
x(t) = f Ka(t, s, x(s))ds + h(t), (29)
wheret € [a,b] CR, x,9,h € X.

Suppose that Ky, K5 : [a,b] X [a,b] X R" — R" are such that F,, Gy € X for each x € X, where,

b b
Fe(t) = f Ki(t, s, x(s))ds, Gy (t) = f Ky (t, s, x(s))ds for all t € [a, b].
If there exists 0 < h < 1 such that for every x,y € X

|[Ex (8) = Gy (8) + g(t) = h(p)||_ V1 +a2e™ " < hR(x, y)(1),

where,

Rx, y)() e {A(x, y) (1), B(x, ) (1), C (v, y) (B), D (x,y) (B), E(x, y) (O},

A(X,y)(t) = “X(t) t)” 1+612 ltan a
B, )®) = |Fe®+g® - x| V1+a2ee,
Cly® = |G, ) +ht) -y V1+a2eie

G (t)+h(t)_x(t) Fx(t)-l‘ (f)—x(t) meitan‘la
by - 1 L+ -0+ 00 -0l,)

x - h _ ' .
E(y)® = [Ex &) + g(t) = x(t)|| |Gy () + () - yt)| . e

1+ {Q%A (x,y) (B
then the system of integral equations (28) have a unique common solution.
Proof. Define L, M : X — X by
Lx=F,+g, Mx=G,+h
Then

d(Lx, My) = trr}aﬁ ”Px (t) = Gy (t) + g(t) - h(t)” VI + a2eitan” a
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d(x,y) =maxA(x,y) (),
tefa,b]
d (x,Lx) = maxB (x, y) (f),
te[a,b]
d (y, My) = maxC (x, y) (1)
te[a,b]

d(x,Ly) + d (y, Mx)

2 — g}aalziD (X, y) (t)
d(x, Lx)d(y, My) = ma)iE (xy)®.

1+dx,vy) telab

It is easily seen that d(Lx, My) < hR(x, y), where

R, ) € s, L), My, 31005,y + Lo, "5

1+dx,y)

for every x,y € X. By Theorem 2.1, the Urysohn integral equations (28) and (29) have a unique common
solution. [J
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