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Abstract. In this paper, we introduce a new class of generalized bi-quasi-variational inequalities for quasi-
pseudo-monotone type II operators in non-compact settings of locally convex Hausdorff topological vector
spaces and show the existence results of solutions for generalized bi-quasi-variational inequalities. Our
results improve, extend and generalized the corresponding results given by some authors.

1. Introduction

In 1985, Border [3] introduced the concept of escaping sequences in the book: “Fixed Point Theorems
with Applications to Economics and Game Theory”. Using this concept of escaping sequences, we obtain
our results on generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II operators
in non-compact settings. But the main tools that we apply in obtaining our results are Chowdhury and
Tan’s result on generalized bi-quasi-variational inequalities for quasi-pseudo-monotone type II operators
on compact sets [14]. As applications, we show the existence theorem on generalized bi-complementarity
problem for quasi-pseudo-monotone type II operators in non-compact settings.

The generalized bi-quasi-variational inequality problem was first introduced by Shih and Tan [19] in
1989. The following is the definition due to Shih and Tan [19].

Definition 1.1. Let E and F be vector spaces over Φ, 〈·, ·〉 : F × E → Φ be a bilinear functional and be X a
nonempty subset of E. If S : X→ 2X and M,T : X→ 2F are set-valued mappings, then the generalized bi-quasi
variational inequality problem for the triple (S,M,T) is to find ŷ ∈ X satisfying the following properties:

(1) ŷ ∈ S(ŷ);
(2) infw∈T(ŷ) Re〈 f − w, ŷ − x〉 ≤ 0 for all x ∈ S(ŷ) and f ∈M(ŷ).

In this definition, for any nonempty set X, 2X denote the class or family of all nonempty subsets of X.
Also, we use F (X) to denote the family of all nonempty finite subsets of X. Moreover, throughout this
paper, Φ denotes either the real field R or the complex field C.
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When T is single-valued, a generalized bi-quasi variational inequality problem reduces to a bi-quasi
variational inequality problem. Note that the generalized bi-quasi variational inequality problem include
the following generally known variational type inequality problems:

Suppose that E is a topological vector space, F = E∗ (: the vector space of all continuous linear functionals
on E) and 〈·, ·〉 is the usual duality pairing between E∗ and E. Then we have the following:

(1) if T ≡ 0, then a generalized bi-quasi-variational inequality problem for (S,M, 0) becomes a general-
ized quasi-variational inequality problem. Chan and Pang [6] first studied generalized bi-quasi-variational
inequality problems in finite dimensional case and Shih and Tan [20] first studied them in infinite dimen-
sional case;

(2) if T ≡ 0 and M is single-valued, then a generalized bi-quasi-variational inequality problem for
(S,M, 0) becomes a quasi-variational inequality problem which was introduced by Bensoussan and Lions
[2];

(3) if S(x) ≡ X for each x ∈ X and M ≡ 0, a generalized bi-quasi-variational inequality problem becomes
a generalized variational inequality problem which was studied by Browder [5] and Yen [21] among many
others.

The following definition of generalized bi-quasi-variational inequality problem is a slight modification
of Definition 1.1.

Definition 1.2. Let E and F be vector spaces over Φ, 〈·, ·〉 : F×E→ Φ be a bilinear functional and X be a non
empty subset of E. If S : X → 2X and M,T : X → 2F are set-valued mappings, then the generalized bi-quasi
variational inequality problem for the triple (S,M,T) is:

(1) to find a point ŷ ∈ X and a point ŵ ∈ T(ŷ) such that

ŷ ∈ S(ŷ), Re〈 f − ŵ, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ) and f ∈M(ŷ) or

(2) to find a point ŷ ∈ X, a point ŵ ∈ T(ŷ) and a point f̂ ∈M(ŷ) such that

ŷ ∈ S(ŷ), Re〈 f̂ − ŵ, ŷ − x〉 ≤ 0

for all x ∈ S(ŷ).

In this paper, we obtain our main results on generalized bi-quasi-variational inequalities in non-compact
settings using Chowdhury and Tan’s following definition of quasi-pseudo-monotone type II and strongly
quasi-pseudo-monotone type II operators given in [13]:

Definition 1.3. Let E be a topological vector space, X be a nonempty subset of E and F be a topological
vector space over Φ. Let 〈·, ·〉 : F × E→ Φ be a bilinear functional. Let h : X→ R be a mapping, M : X→ 2F

and T : X→ 2F be set-valued mappings.
(1) Then T is said to be an h-quasi-pseudo-monotone (resp., strongly h-quasi-pseudo-monotone) type II operator

if, for each y ∈ X and every net {yα}α∈Γ in X converging to y (resp., weakly to y) with

lim sup
α

[ inf
f∈M(yα)

inf
u∈T(yα)

Re〈 f − u, yα − y〉 + h(yα) − h(y)] ≤ 0,

we have
lim supα[inf f∈M(yα) infu∈T(yα) Re〈 f − u, yα − x〉 + h(yα) − h(x)]
≥ inf f∈M(y) infw∈T(y) Re〈 f − w, y − x〉 + h(y) − h(x)

for all x ∈ X;
(2) T is said to be a quasi-pseudo-monotone (resp., strongly quasi-pseudo-monotone) type II operator if T is an

h-quasi-pseudo-monotone (resp., strongly h-quasi-pseudo-monotone) type II operator with h ≡ 0.



M. S.R. Chowdhury, Y. J. Cho / Filomat 30:7 (2016), 1801–1810 1803

Note that an h-quasi-pseudo-monotone type II operator is an extension of the following h-pseudo-
monotone type II operator (resp., strongly h-pseudo-monotone type II operator) defined in [10] or to an
h-demi (resp., strong h-demi) operator defined in [11]) with slight modifications.

Definition 1.4. Let X be a nonempty subset of a topological vector space E and T : X→ 2E∗ be a set-valued
mapping. If h : X→ R, then T is said to be

(1) an h-pseudo-monotone type II operator (resp., a strongly h-pseudo-monotone type II) operator if, for each
y ∈ X and every net {yα}α∈Γ in X converging to y (resp., weakly to y) with

lim sup
α

[ inf
u∈T(y)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0,

we have
lim supα[infu∈T(x) Re〈u, yα − x〉 + h(yα) − h(x)]
≥ infu∈T(x) Re〈u, y − x〉 + h(y) − h(x)

for all x ∈ X;
(2) a pseudo-monotone type II operator (resp., strongly pseudo-monotone type II operator) if T is an h-pseudo-

monotone type II operator (resp., strongly h-pseudo-monotone type II operator) with h ≡ 0.

Note that, in [11], the above operator was called an h-demi or demi (resp., a strong h-demi or a strong
demi) operator. Later, these operators were re-named as pseudo-monotone type II operators in [10].

The quasi-pseudo-monotone type II operators given in Definition 1.3 [14] above is an extension of
pseudo-monotone type II operators [10, 11]. We use these operators to obtain some general theorems on
solutions for a new class of generalized bi-quasi-variational inequalities of quasi-pseudo-monotone type II
operators defined in non compact settings in topological vector spaces.

2. Preliminaries

Let E be a topological vector space over Φ, F be a vector space over Φ and 〈·, ·〉 : F × E→ Φ be a bilinear
functional. For each x0 ∈ E, each nonempty subset A of E and ε > 0, let

W(x0; ε) := {y ∈ F : |〈y, x0〉| < ε}

and
U(A; ε) := {y ∈ F : sup

x∈A
|〈y, x〉| < ε}.

Let σ〈F,E〉 be the (weak) topology on F generated by the family {W(x; ε) : x ∈ E and ε > 0} as a subbase
for the neighbourhood system at 0 and δ〈F,E〉 be the (strong) topology on F generated by the family
{U(A; ε) : A is a nonempty bounded subset of E and ε > 0} as a base for the neighbourhood system at 0.

We note then that F, when equipped with the (weak) topology σ〈F,E〉 or the (strong) topology δ〈F,E〉,
becomes a locally convex topological vector space which is not necessarily Hausdorff. But, if the bilinear
functional 〈·, ·〉 : F × E→ Φ separates points in F, i.e., for each y ∈ F with y , 0, there exists x ∈ E such that
〈y, x〉 , 0, then F also becomes Hausdorff.

Furthermore, for any net {yα}α∈Γ in F and y ∈ F, we have the following:
(1) yα → y in σ〈F,E〉 if and only if 〈yα, x〉 → 〈y, x〉 for each x ∈ E;
(2) yα → y in δ〈F,E〉 if and only if 〈yα, x〉 → 〈y, x〉 uniformly for x ∈ A for each nonempty bounded

subset A of E.
If X and Y are topological spaces and T : X → 2Y, then the graph of T is defined to be the set

G(T) := {(x, y) ∈ X × Y : y ∈ T(x)}. If X and Y are sets and f maps X into Y, the graph of f is the set of all
points (x, f (x)) in the cartesian product X × Y. If X and Y are topological spaces, then X × Y is given the
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usual product topology (the smallest topology that contains all sets U × V with U and V open in X and Y,
respectively), and, if f : X→ Y is continuous and Y is Hausdorff, then the graph G of f is closed.

Let X be a non-empty subset of a topological vector space E. Then X is called a cone in E if X is
convex and λX ⊂ X for all λ ≥ 0. If X is a cone in E and 〈·, ·〉 : F × E → Φ is a bilinear functional, then
X̂ = {w ∈ F : Re〈w, x〉 ≥ 0 for all x ∈ X} is also a cone in F, which is called the dual cone of X (with respect to
the bilinear functional 〈·, ·〉).

Let X be a convex set in a topological vector space E. Then f : X→ R is called
(1) lower semi-continuous if, for all λ ∈ R, {x ∈ X| f (x) ≤ λ} is closed in X;
(2) upper semi-continuous if − f is lower semi-continuous, i.e., for all λ ∈ R, {x ∈ X : f (x) ≥ λ} is closed in

X.

Let X and Y be topological spaces and T : X → 2Y be a set-valued mapping. Then T is said to be upper
(resp., lower) semi-continuous at x0 ∈ X if, for each open set G in Y with T(x0) ⊂ G (resp., T(x0) ∩G , ∅), there
exists an open neighborhood U of x0 in X such that T(x) ⊂ G (resp., T(x) ∩G , ∅) for all x ∈ U. Moreover, T
is said to be continuous at the point x0 ∈ X if T is both upper semi-continuous and lower semi-continuous
at x0 ∈ X. T is said to be continuous on X if T is continuous at each point x0 of X.

Let X be a convex set in a vector space E. Then a mapping f : X → R is convex if, for all x, y ∈ X and
0 ≤ λ ≤ 1,

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

The following definition was given by Border [3]:

Definition 2.1. (Escaping Sequences) Let X be a topological space such that X =
∞⋃

n=1
Cn, where {Cn}

∞

n=1 is an

increasing sequence of nonempty compact subsets of X. Then a sequence {xn}
∞

n=1 is said to be escaping from
X relative to {Cn}

∞

n=1 if, for each n ∈N, there exists m ∈N such that xk < Cn for all k ≥ m.

In this paper, we obtain some general theorems on solutions for a new class of generalized bi-quasi-
variational inequality problems for quasi-pseudo-monotone type II operators defined in non-compact
settings in topological vector spaces.

To obtain these results on GBQVI for quasi-pseudo-monotone type II operators in non-compact settings,
we use the concept of escaping sequences introduced by Border [3] with applications of Chowdhury and
Tan’s result [Theorem 2.2 below] on generalized bi-quasi-variational inequality problems for quasi-pseudo-
monotone type II operators on compact sets ([14]).

First, we state the following result of Chowdhury and Tan in [14] (Theorem 3.1):

Theorem 2.2. Let E be a locally convex Hausdorff topological vector space over Φ, X be a nonempty compact convex
subset of E and F be a Hausdorff topological vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a continuous bilinear
functional. Suppose that

(a) S : X→ 2X is upper semi-continuous such that each S(x) is closed and convex;
(b) h : X→ R is convex and continuous;
(c) T : X→ 2F is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-monotone type II) operator

and is upper semi-continuous such that each T(x) is compact (resp., weakly compact) and convex and T(X) is strongly
bounded, i.e., bounded in the strong topology of F;

(d) M : X→ 2F is an upper semi-continuous mapping such that each M(x) is weakly compact and convex;
(e) the set Σ = {y ∈ X : supx∈S(y)(inf f∈M(y) infu∈T(y) Re〈 f − u, y − x〉 + h(y) − h(x)) > 0} is open in X.

Then there exists a point ŷ ∈ X such that
(1) ŷ ∈ S(ŷ);
(2) there exist a point f̂ ∈M(ŷ) and a point ŵ ∈ T(ŷ) with Re〈 f̂ − ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).
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Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally convex and, if T ≡ 0, then the continuity
assumption on 〈·, ·〉 can be weakened to the assumption that, for each f ∈ F, the mapping x 7→ 〈 f , x〉 is continuous
(resp., weakly continuous) on X.

Applying Theorem 2.1, Chowdhury and Tan obtained the following result in [14] (Theorem 3.2):

Theorem 2.3. Let E be a locally convex Hausdorff topological vector space over Φ, X be a nonempty compact convex
subset of E and F be a vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates
points in F and, for each f ∈ F, the mapping x 7→ 〈 f , x〉 is continuous on E. Equip F with the strong topology δ〈F,E〉.
Suppose that

(a) S : X→ 2X is a continuous map such that each S(x) is closed and convex;
(b) h : X→ R is convex and continuous;
(c) T : X→ 2F is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-monotone type II) operator

and is an upper semi-continuous mapping such that each T(x) is strongly, i.e., δ〈F,E〉-compact and convex (resp.,
weakly, i.e., σ〈F,E〉-compact and convex);

(d) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly, i.e., σ〈F,E〉-compact and
convex and, also, for each y ∈ Σ = {y ∈ X : supx∈S(y)[inf f∈M(y) infu∈T(y) Re〈 f − u, y − x〉 + h(y) − h(x)] > 0}, there
exists a point x in S(y) with inf f∈M(y) infu∈T(y) Re〈 f − u, y − x〉 + h(y) − h(x) > 0.
Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ);
(2) there exist a point f̂ ∈M(ŷ) and a point ŵ ∈ T(ŷ) with

Re〈 f̂ − ŵ, ŷ − x〉 ≤ h(x) − h(ŷ)

for all x ∈ S(ŷ).
Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally convex.

For the proof of Theorem 2.3, we refer to [14].

3. Existence Theorems for Generalized Bi-Quasi-Variational Inequalities of Quasi-Pseudo-Monotone
Type II Operators

In this section, we obtain our main results for existence theorems on non-compact generalized bi-quasi-
variational inequalities of quasi-pseudo-monotone type II operators. To obtain these results, we mainly use
the concept of escaping sequences given in Definition 2.1 and apply Theorem 2.2.

Now, we establish our main result as follows:

Theorem 3.1. Let E be a locally convex Hausdorff topological vector space over Φ, X a non-empty (convex) subset of

E such that X =
∞⋃

n=1
Cn, where {Cn}

∞

n=1 is an increasing sequence of non-empty compact convex subsets of X and let F

be a vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates points in F and for
each f ∈ F, the mapping x 7→ 〈 f , x〉 is continuous on X. Equip F with the strong topology δ〈F,E〉. Suppose that

(a) S : X → 2X is a continuous map such that, for each x ∈ X, S(x) is a closed and convex subset of X and, for
each n ∈N, S(x) ⊂ Cn for all x ∈ Cn;

(b) h : X→ R is convex and continuous;
(c) T : X→ 2F is an h-quasi-pseudo-monotone type II (resp., strongly h-quasi-pseudo-monotone type II) operator

and is an upper semi-continuous map such that each T(x) is strongly, i.e., δ〈F,E〉-compact and convex (resp., weakly,
i.e., σ〈F,E〉-compact and convex);
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(d) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly, i.e., σ〈F,E〉-compact and
convex; also for each y ∈ Σ = {y ∈ X : supx∈S(y)[inf f∈M(y) infu∈T(y) Re〈 f − u, y− x〉+ h(y)− h(x)] > 0}, there exists a
point x in S(y) with inf f∈M(y) infu∈T(y) Re〈 f − u, y − x〉 + h(y) − h(x) > 0;

(e) for each sequence {yn}
∞

n=1 in X, with yn ∈ Cn for each n ∈ N, which is escaping from X relative to {Cn}
∞

n=1,
either there exists n0 ∈N such that yn0 < S(yn0 ) or there exist n0 ∈N and xn0 ∈ S(yn0 ) such that

min
f∈M(yn0 )

min
w∈T(yn0 )

Re〈 f − w, yn0 − xn0〉 + h(yn0 ) − h(xn0 ) > 0 (Ω)

holds.
Then there exists a point ŷ ∈ X such that

(1) ŷ ∈ S(ŷ);
(2) there exist a point f̂ ∈M(ŷ) and a point ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ − x〉 ≤ h(x) − h(ŷ)

for all x ∈ S(ŷ).
Moreover, if S(x) = X for all x ∈ X, E is not required to be locally convex.

Proof. Let us fix an arbitrary n ∈N. We note that Cn is a nonempty compact and convex subset of E. Let us
define the mappings Sn : Cn → 2Cn , hn : Cn → R and Mn, Tn : Cn → 2F by

Sn(x) = S(x), hn(x) = h(x), Mn(x) = M(x), Tn(x) = T(x),

respectively, for all x ∈ Cn, i.e.,

Sn = S|Cn , hn = h|Cn , Mn = M|Cn , Tn = T|Cn ,

respectively. Then, by Theorem 2.2, there exist a point ŷn ∈ Cn, a point f̂n ∈ M(ŷn) = Mn(ŷn) and a point
ŵn ∈ T(ŷn) = Tn(ŷn) such that

(1)’ ŷn ∈ Sn(ŷn);
(2)’ Re〈 f̂n − ŵn, ŷn − x〉 ≤ h(x) − h(ŷn) for all x ∈ Sn(ŷn).

Note that {ŷn}
∞

n=1 is a sequence in X =
∞⋃

n=1
Cn with ŷn ∈ Cn for each n ∈N.

We consider two cases as follows:
Case 1: {ŷn}

∞

n=1 is escaping from X relative to {Cn}
∞

n=1. Then, by the hypothesis (e), there exists n0 ∈ N
such that ŷn0 < S(ŷn0 ) = Sn0 (ŷn0 ), which contradicts (1)’ or there exist n0 ∈N and xn0 ∈ S(ŷn0 ) = Sn0 (ŷn0 ) such
that

min
f∈M(ŷn0 )

min
w∈T(ŷn0 )

Re〈 f − w, ŷn0 − xn0〉 + h(ŷn0 ) − h(xn0 ) > 0,

which contradicts (2)’.
Case 2: {ŷn}

∞

n=1 is not escaping from X relative to {Cn}
∞

n=1. Then there exist n1 ∈ N and a subsequence
{ŷn j }

∞

j=1 of {ŷn}
∞

n=1 such that ŷn j ∈ Cn1 for all j = 1, 2, · · · . Since Cn1 is compact, there exist a subnet {ẑα}α∈Γ of
{ŷn j }

∞

j=1 and ŷ ∈ Cn1 ⊂ X such that ẑα → ŷ. For each α ∈ Γ, let ẑα = ŷnα , where nα → ∞. Then, according to

our choice of ŷnα in Cnα , there exist a point f̂nα ∈Mnα (ŷnα ) = M(ŷnα ) and a point ŵnα ∈ Tnα (ŷnα ) = T(ŷnα ) such
that

(1)” ŷnα ∈ Snα (ŷnα ) = S(ŷnα );
(2)” Re〈 f̂nα − ŵnα , ŷnα − x〉 + h(ŷnα ) − h(x) ≤ 0 for all x ∈ Snα (ŷnα ) = S(ŷnα ).
Since nα → ∞, there exists α1 ∈ Γ such that nα ≥ n1 for all α ≥ α1. Thus Cn1 ⊂ Cnα for all α ≥ α1. From

(1)”, we have (ŷnα , ŷnα ) ∈ G(S) for all α ∈ Γ. Since S is upper semicontinuous with closed values, G(S) is
closed in X × X and so it follows that ŷ ∈ S(ŷ).
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Moreover, since { f̂nα }α≥α1 and {ŵnα }α≥α1 are nets in the compact sets∪x∈Cn1
M(x) and∪x∈Cn1

T(x), respectively,
without loss of generality, we may assume that the nets { f̂nα }α∈Γ and {ŵnα }α∈Γ converge to a point f̂ ∈
∪x∈Cn1

M(x) and a ŵ ∈ ∪x∈Cn1
T(x), respectively. Note that M has a closed graph. Also, since T has a closed

graph on Cn1 , f̂ ∈M(ŷ) and ŵ ∈ T(ŷ).
Let x ∈ S(ŷ) be arbitrarily fixed. Let n2 ≥ n1 be such that x ∈ Cn2 . Since S is lower semi-continuous at ŷ,

without loss of generality, we may assume that, for each α ∈ Γ, there exists xnα ∈ S(ŷnα ) such that xnα → x.
By (2)”, we have

Re〈 f̂nα − ŵnα , ŷnα − xnα〉 + h(ŷnα ) − h(xnα ) ≤ 0

for all α ∈ Γ. Note that f̂nα − ŵnα → f̂ − ŵ in δ〈F,E〉 and {ŷnα − xnα }α∈Γ is a net in the compact (and hence
bounded) set Cn2 − ∪y∈Cn2

S(y). Thus, for each ε > 0, there exists α2 ≥ α1 such that

|Re〈 f̂nα − ŵnα − f̂ − ŵ, ŷnα − xnα〉| < ε/2

for all α ≥ α2. Since 〈 f̂ − ŵ, ŷnα − xnα〉 → 〈 f̂ − ŵ, ŷ − x〉, there exists α3 ≥ α2 such that

|Re〈 f̂ − ŵ, ŷnα − xnα〉 − Re〈 f̂ − ŵ, ŷ − x〉| < ε/2

for all α ≥ α3. Thus it follows that, for α ≥ α3,

|Re〈 f̂nα − ŵnα , ŷnα − xnα〉 − Re〈 f̂ − ŵ, ŷ − x〉|
≤ |Re〈 f̂nα − ŵnα − f̂ − ŵ, ŷnα − xnα〉| + |Re〈 f̂ − ŵ, ŷnα − xnα − (ŷ − x)〉|
< ε/2 + ε/2 = ε.

Thus we have
lim
α

Re〈 f̂nα − ŵnα , ŷnα − xnα〉 = Re〈 f̂ − ŵ, ŷ − x〉.

Since h is continuous, we have

Re〈 f̂ − ŵ, ŷ − x〉 + h(ŷ) − h(x)
= limα[Re〈 f̂nα − ŵnα , ŷnα − xnα〉 + h(ŷnα ) − h(xnα )]
≤ 0.

This completes the proof.

Corollary 3.2. Let (E, ‖ · ‖) be a reflexive Banach space, X be a nonempty closed convex subset of E and F be a vector
space over Φ. Let 〈·, ·〉 : F × E→ Φ be a bilinear functional such that 〈·, ·〉 separates points in F and, for each f ∈ F,
the mapping x 7→ 〈 f , x〉 is continuous on X. Equip F with the strong topology δ〈F,E〉. Suppose that

(a) S : X→ 2X is a weakly continuous mapping such that, for each x ∈ X, S(x) is a closed and convex subset of X;
(b) h : X→ R is convex and (weakly) continuous;
(c) T : X→ 2F is a strongly h-quasi-pseudo-monotone type II operator and is weakly upper semi-continuous such

that each T(x) is σ〈F,E〉-compact and convex;
(d) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly, i.e., σ〈F,E〉-compact and

convex and, for each y ∈ Σ, there exists a point x in S(y) with inf f∈M(y) infw∈T(y) Re〈 f − w, y − x〉 + h(y) − h(x) > 0,
where

Σ = {y ∈ X : sup
x∈S(y)

[ inf
f∈M(y)

[ inf
w∈T(y)

Re〈 f − w, y − x〉 + h(y) − h(x)] > 0}.

Suppose, further, that
(e) there exists an increasing sequence {rn}

∞

n=1 of positive numbers with rn → ∞ such that S(x) ⊂ Cn for each
x ∈ Cn and each n ∈N where Cn = {x ∈ X : ‖x‖ ≤ rn};

(f) for each sequence {yn}
∞

n=1 in X, with ‖yn‖ → ∞, either there exists n0 ∈N such that yn0 < S(yn0 ) or there exist
n0 ∈N and xn0 ∈ S(yn0 ) such that (Ω) holds.
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Then there exist a point ŷ ∈ X such that
(1) ŷ ∈ S(ŷ);
(2) there exist a point f̂ ∈M(ŷ) and a point ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ − x〉 ≤ h(x) − h(ŷ)

for all x ∈ S(ŷ).

Proof. In proving this corollary, we follow the similar method of proof of Corollary 1 in [12]. We equip E
with the weak topology. Then Cn is weakly compact convex for each n ∈ N such that X = ∪∞n=1Cn. Now, if
{yn}

∞

n=1 is a sequence in X with yn ∈ Cn for each n = 1, 2, · · · , which is escaping from X relative to {Cn}
∞

n=1,
then ‖yn‖ → ∞. By (b), either there exists n0 ∈N such that yn0 < S(yn0 ) or there exist n0 ∈N and xn0 ∈ S(yn0 )
such that (Ω) holds. Thus all the hypotheses of Theorem 3.1 are satisfied and so the conclusion follows.
This completes the proof.

By taking M ≡ 0 and replacing T by −T in Theorem 3.1, we obtain the following result:

Corollary 3.3. Let E be a locally convex Hausdorff topological vector space over Φ, X be a nonempty (convex) subset
of E such that X = ∪∞n=1Cn, where {Cn}

∞

n=1 is an increasing sequence of nonempty compact convex subsets of X, and
F be a vector space over Φ. Let 〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates points in F and,
for each f ∈ F, the mapping x 7→ 〈 f , x〉 be continuous on X. Equip F with the strong topology δ〈F,E〉. Suppose that
(a)–(c) and (e) of Theorem 3.1 hold.
Then there exist a point ŷ ∈ X and a point ŵ ∈ T(ŷ) such that

(1) ŷ ∈ S(ŷ);
(2) Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ S(ŷ).
Moreover, if S(x) = X for all x ∈ X, then E is not required to be locally convex.

4. Existence Theorems for Generalized Bi-Complementarity Problems for Quasi-Pseudo-Monotone
Type II Operators

In this section, as an application of Theorem 3.1, we obtain the existence theorem on generalized
bi-complementarity problem for quasi-pseudo-monotone type II operators in non-compact settings.

By modifying the proof of the result observed by Fang (for example, see [6], pp. 213, and [18], pp. 59),
the following result was obtained in Chowdhury [15], Lemma 4.4.10. Note that E is not required to be
Hausdorff.

Lemma 4.1. Let X be a cone in a topological vector space E over Φ and F be a vector space over Φ. Let 〈·, ·〉 : F×E→ Φ
be a bilinear functional. Let M, T : X→ 2F be two mappings. Then the following are equivalent:

(1) There exist ŷ ∈ X, f̂ ∈M(ŷ) and ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ − x〉 ≤ 0

for all x ∈ X.
(2) There exist ŷ ∈ X, f̂ ∈M(ŷ) and ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ〉 = 0, f̂ − ŵ ∈ X̂.

When X is a cone in E, by applying Lemma 4.1 and Theorem 3.1 with h ≡ 0 and S(x) = X for all x ∈ X,
we have immediately the following existence theorem for a generalized bi-complementarity problem of
quasi-pseudo-monotone type II operators:
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Theorem 4.2. Let E be a Hausdorff topological vector space over Φ, X be a cone in E such that X = ∪∞n=1Cn, where
{Cn}

∞

n=1 is an increasing sequence of nonempty compact convex subsets of X, and F be a vector space over Φ. Let
〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates points in F and, for each f ∈ F, the mapping
x 7→ 〈 f , x〉 is continuous on X. Equip F with the strong topology δ〈F,E〉. Suppose that

(a) T : X → 2F is a quasi-pseudo-monotone type II (resp., strongly quasi-pseudo-monotone type II) operator
and is upper semi-continuous such that each T(x) is strongly, i.e., δ〈F,E〉-compact and convex (resp., weakly, i.e.,
σ〈F,E〉-compact and convex);

(b) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly, i.e., σ〈F,E〉-compact and
convex and, for each y ∈ Σ, there exists a point x in X with inf f∈M(y) infw∈T(y) Re〈 f − w, y − x〉 > 0, where

Σ = {y ∈ X : sup
x∈X

[ inf
f∈M(y)

[ inf
w∈T(y)

Re〈 f − w, y − x〉] > 0};

(c) for each sequence {yn}
∞

n=1 in X with yn ∈ Cn for each n ∈ N, which is escaping from X relative to {Cn}
∞

n=1,
there exist n0 ∈N and xn0 ∈ X such that

min
f∈M(yn0 )

min
w∈T(yn0 )

Re〈 f − w, yn0 − xn0〉 > 0. (Ω′)

Then there exist a point ŷ ∈ X, a point f̂ ∈M(ŷ) and a point ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ〉 = 0, f̂ − ŵ ∈ X̂.

Corollary 4.3. Let (E, ‖ · ‖) be a reflexive Banach space, X be a closed cone in E and F be a vector space over Φ. Let
〈·, ·〉 : F × E → Φ be a bilinear functional such that 〈·, ·〉 separates points in F and, for each f ∈ F, the mapping
x 7→ 〈 f , x〉 is continuous on X. Equip F with the strong topology δ〈F,E〉. Suppose that

(a) T : X → 2F is a strongly quasi-pseudo-monotone type II operator and is weakly upper semi-continuous such
that each T(x) is σ〈F,E〉-compact and convex;

(b) M : X → 2F is an upper semi-continuous mapping such that each M(x) is weakly, i.e., σ〈F,E〉-compact and
convex and, for each y ∈ Σ, there exists a point x in X with inf f∈M(y) infw∈T(y) Re〈 f − w, y − x〉 > 0, where

Σ = {y ∈ X : sup
x∈X

[ inf
f∈M(y)

[ inf
w∈T(y)

Re〈 f − w, y − x〉] > 0}.

Suppose, further, that
(c) there exists an increasing sequence {rn}

∞

n=1 of positive numbers with rn →∞ and Cn = {x ∈ X : ‖x‖ ≤ rn} for
each n ∈N;

(d) for each sequence {yn}
∞

n=1 in X, with ‖yn‖ → ∞, there exist n0 ∈N and xn0 ∈ X such that

min
f∈M(yn0 )

min
w∈T(yn0 )

Re〈 f − w, yn0 − xn0〉 > 0.

Then there exist ŷ ∈ X, f̂ ∈M(ŷ) and ŵ ∈ T(ŷ) such that

Re〈 f̂ − ŵ, ŷ〉 = 0, f̂ − ŵ ∈ X̂.

Proof. In proving this corollary, we follow the similar method of proof of Corollary 3 in [15]. We equip E
with the weak topology. Then Cn is weakly compact convex for each n ∈ N such that X = ∪∞n=1Cn. Now, if
{yn}

∞

n=1 is a sequence in X with yn ∈ Cn for each n = 1, 2, · · · , which is escaping from X relative to {Cn}
∞

n=1,
then ‖yn‖ → ∞. Hence, by the hypothesis, there exists n0 ∈N and xn0 ∈ X such that (Ω′) holds. Thus all the
hypotheses of Theorem 4.2 are satisfied and so the conclusion follows. This completes the proof.
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Remark 4.4.

(1) Theorems 3.1 of this paper is a further extension of the results obtained in [19] into generalized
bi-quasi-variational inequalities of quasi-pseudo-monotone type II operators and strongly quasi-
pseudo-monotone type II operators on non-compact sets.

(2) In 1989, Shih and Tan [19] obtained results on generalized bi-quasi-variational inequalities in locally
convex topological vector spaces and their results were obtained on compact sets where the set-valued
mappings were either lower semi-continuous or upper semi-continuous.

(3) For more details on variational inequalities and quasi-variational inequalities, completely generalized
multi-valued co-variational inequalities, generalized nonlinear vector quasi-variational-like inequal-
ities with set-valued mappings and others, refer to [1], [16] and [17].
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