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Some Properties of ET-Projective Tensors Obtained
from Weyl Projective Tensor

Mica S. Stankovié?, Milan Lj. Zlatanovié?, Nenad O. Vesi¢?

®Faculty of Science and Mathematics, University of Nis, Serbia

Abstract. Vanishing of linearly independent curvature tensors of a non-symmetric affine connection space
as functions of vanished curvature tensor of the associated space of this one are analyzed in the first part
of this paper. Projective curvature tensors of a non-symmetric affine connection space are expressed as
functions of the affine connection coefficients and Weyl projective tensor of the corresponding associated
affine connection space in the second part of this paper.

1. Introduction

Many authors have been interested in non-symmetric affine connection spaces theory research. Einstein
was the first one who used non-symmetric affine connection spaces in his research area (see [2—4]). In
the Unified Field Theory (UFT) instead of Riemannian space, he involves non-symmetric affine connection
coefficients F;k which are independent of metric tensor g;;.

While at Riemannian space connection coefficients are expressed in terms of g; ir functional connections
of these quantities are determined with the following equations in Einstein’s works about UFT:

Gijn = i = U3 p; = L 7ip = 0. (1)

After Einstein, a lot of authors have developed theory of non-symmetric affine connection spaces. Some

of them are M. Prvanovi¢ [17], R. S. Mishra [15], S. M. Min¢i¢ [7-14], Lj. S. Velimirovi¢ [1, 13] and many
others.

Definition 1.1. An N-dimensional manifold M endowed with affine connection coefficients Lj.k = Lj.k(x),x eM,is
an N-dimensional affine connection space.

Affine connection coefficients L;.k of this space satisfy the following equation

T kT i
L].,k, =x; x].,xk,ij + Xx; Xirgerr )
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s ox
where e.g. X, = ErE
X

Based on eventually non-symmetry of affine connection coefficients Lj.k by indices j and k, the symmetric
part and the non-symmetric one (a half of a torsion tensor Tj,k) of these connection coefficients respectively
are defined as

A A A AN
Uo=5(L+ 1) and 1, =3 (1,-1) = 57 3)

It is evident it holds the equality
Lo=0i 40 =1 + 1T 4
o= Bt L =Ly + 3 The @

Definition 1.2. An N-dimensional space Ay with T;.k = 0 is an affine connection space without torsion and a

space GAn where it exist indices iy, jo, ko such that T;?)ko # 0 is an affine connection space with torsion.

Remark 1.3. An affine connection space Ay without torsion is a symmetric affine connection space. An affine
connection space GAy with torsion is a non-symmetric affine connection space.

1.1. Affine connection space without torsion

An affine connection on an N-dimensional manifold M is a mapping V which maps any pair (X, Y) of
vector fields to a vector field F = VxY such that (see [6])

Vx(Y + Z) =VxY +VxZ;
Vx(fY) = fVxZ + (Xf)Y; (5)
fo.,_gyz = fVXZ + gVyZ,

for any vector fields X, Y, Z and any differentiable functions f, g on M.
Remark 1.4. In our case, operator V is partial derivative operator.

Let Ay be an N-dimensional space, and let ¢ : [4,b] — Ay be a curve on it. A vector field along ¢ is
a function that assigns to each point of £ a tangent vector to the space at that point. That is, a vector field
along ¢ is a smooth function v : [, b] — RN with the property that v(t) € Ty An for any t € [a, D].

Let £ be a curve on an affine connection space Ay. We say that a vector field X is parallel along a curve
¢ if X satisfies the condition

vxYvx=o, ©)

for any t, where A = A(t) = Z(t).
The definition below is the definition of parallel transport.

Definition 1.5. [6] Let xg = {(ty) and x1 = {(t1) be points on the given curve £ = {(t). A vector Xy from the tangent
space Ty, Ay in xq is a result of the parallel transport along € from the point xq to the point x1 if along €, there exists
a parallel vector field X(t) for which X(to) = Xo and X(t1) = X;.

The following definition is the one of a geodesic line.
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Definition 1.6. [6] A curve € in space Ay is geodesic when its tangent vector field remains in tangent distribution
of € during parallel transport along the curve.

Special diffeomorphisms are of interest for research in symmetric affine connection spaces and non-
symmetric ones.

Definition 1.7. [6] Let Ay and Ay be symmetric affine connection spaces. A diffeomorphism f : Ax — Ay is said
to be a geodesic mapping of Ay onto Ay if any geodesic curve in Ay it maps onto a geodesic curve in Ay.

An invariant geometrical object under a geodesic mapping f : Ay — Ay is a Weyl projective tensor

Wi =R+ R + 2 6RM+ o Ruj, ?)

jmn jmn N2 17 [m

where by [+, -] it is denoted an anti-symmetrization without division. A symmetrization without division is
going to be denoted by (-, ). A magnitude

R =[i i [P i P (8)

jmn jmn jnm jmpn jn P

is Riemann-Christoffel curvature tensor and R, = Rﬁmp is Ricci tensor.

Definition 1.8. [6] An N-dimensional affine connection space Ay with vanished Riemann-Christoffel curvature
tensor R’].mn is a flat space.

Definition 1.9. [6] An N-dimensional affine connection space Ay with vanished Ricci tensor R,y is a Ricci-flat
space.

Definition 1.10. An N-dimensional affine connection space Ay with vanished Weyl projective tensor is a projec-
tively flat space.

It is easy to conclude that a flat space M is a projectively flat one. On the contrary, Ricci-flat projective
flat space M is a flat space.

1.2. Affine connection space with torsion

S. Min¢i¢ and M. Stankovi¢ tried to generalize Weyl projective tensor in non-symmetric case. They did
not succeed in that. For this reason, they have started research into equitorsion mappings.

Definition 1.11. [8, 18] A mapping f : GAx — GAy is equitorsion (ET)-mapping if the torsion tensors of the
spaces GAy and GAy are equal.

Definition 1.12. A space Ay is an associated space to a space GAy if symmetric part L;L‘ of connection coefficients

in space GAy are used for connection coefficients in the space An.

Using non-symmetry of connection, S. Min¢i¢ (see [10]) involved four types of covariant differentiation
of tensors. Let X’”2 ’A . be a tensor in a non-symmetric affine connection space GAy with affine connection

coefficients L;. . Covarlant derivatives of this tensor are:

B
Xiliz...iA 1172 A + Z Lla ip. -i(vzf]PiaH-ulA Z XilmiA
j1j2~--j3|k ]1]2 -jB.k ]1]2-~-jB Jam™ " 1o Ja-1Pfa+1--]B (9)

a=1 pm a=1 Wl/u
mp Mje
Jam

PRI
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In the corresponding Ricci type identities, there are four curvature tensors [11]:

R =L —[i 4P L —IFL

1 jmn jmmn jnm jmpn jnpm’s
io_gi _7i Pori _gPyi
R = Lonjn = Lujon * LinjLonp = LiyjLomps (10)
io_7i i Porio o _gPqi po(ri _7i
RE = Ly = L+ Ly Loy = L Lo + L (L, — L),
i i _7i Porio_qPgi porio i
lfjmn = ij,n Ln].,m + L].anp Ln].me + Lmn(Lm L].p).
In these Ricci type identities appear fifteen magnitudes A. ~which are not tensors:
g jmn
A =L L+ L 1P L Al =LE —Li +LF LD~ L
1 jmn jmn jnm jmnp jnmmpr Sy jmn jmn njm jm—pn nj—pm’
io_7i  _7i Porio_qPgi i qi o _7i porio_gPqi
Linn = Limn ~ Lingm * Lnilopn = Lolopme - Ay = Loy = Loy + Ly Lonp — Ly Ly
io_7yi _gi pori _gPqi io_gi o _7i Porio_gPgi
Ig]’mn - Lmj,n Lnj,m * LmjLP” LnjLPm’ ﬁjmn - Lmj,n Ljn,m + LmjL"P LnijP’
i qi _gi pori _gPyi io_i _7i Porio_qPqi
éjmn - Lmj,n Lnj,m + ijL”P LjanP’ iqz]mn - Lmj,n Ljn,m + Lmlem LnijP’ (11)
io_7i  _7i Pori _gPqi io_gi o _7i Pori _gPqi
Igjmn - ij,n Lnj,m + ijLP” LnijP’ é]mn - Lmj,n Lnj,m + LmjL”P LnjLF’m’
io_7qi _7i Pori _gPqi io_gi o _7i pori _gPqi
Igjmn - ij,n Lnj,m + LmjL”P LjnLl’m’ ﬁjmn - Lmj,n Lnj,m + ijL”P LnijP’
i 7i _7i Porio_qPgi i 7i _7i Porio _qPgi
Iéjmn - ij,n Ljn,m + ijLP” LjanP’ éjmn - L]’m,n Lnj,m + ijL"P LnjLF’m’
io_7i _7i Porioo_qPgi
Igjmn - ij,n Ljn,m + LmjL}’m LjnLPm'
Derived curvature tensors of this space are:
pi 1 i o_1 i
1 jmn 2(1? + 3/ jmn 2(13 + Ig)jmn’
o= LA+ A =LA+ A)
o jmn 2(7 13)]mn 2(9 11)]mn’
o= LAr A)Y =LA+ A)Y
3jmn 2 ( 8 14)Jm” 2 (10 12)1"1"’
=l R+A+A)L =LR+A+A)
4jmn 6(3 11 13)J[m”1 6(3 12 14)J[m”]' (12)
= (A=AE A=Al —(A+A)
5]”171 1 7 jmn 13]71”’[ 7]mn 11 15 jnm
R =(A-A). —A. =-Al —(A+A).
6]7’”1’! 2 8 jmn 14]1’!11’! 8 jmn 12 15 jnm

Rl =(A+A) +A. =Al +(A-A)
7 jmn 3 7/jmn  qajnm g jmn 13 15 /nm
R. =(A+A). +A. =A +(A-A) .
g Jmn 4 glymn o oqgjnm qjmn 14 157/

Curvature tensors (10, 12) are generalizations of a curvature tensor Rj.mn (8) of a symmetric affine
connection space Ay. After non-symmetric affine connection coefficients Lj.k symmetrization, all of these

curvature tensors become equal to R;mn (curvature tensor of the associated space).

S. Min¢i¢ proved in the set (RE...,RL R .. R }of four curvature tensors and eight derived
1 jmn 4 jmn’ q jmn g jmn
ones of a non-symmetric affine connection space GAy it exist five linearly independent tensors in [12]. We

are going to use the following ones (see [18]) in further research:

Ki =R K =R K —Ri K _Ri K =}L(31~<11 +RE . (13)

1 jmn 1 jmn’ 5 jmn 1 jmn’ 3 jmn gjmn’ 4 jmn 3 jmn’ g jmn gjmn = jmn
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Definition 1.13. Space with K'
allr=1,...,5,is flat space.

=0,re{1,2,...,5), is the r-th flat space. A space which is the r-th flat one, for

yjmn

1.3. Invariants of ET-mappings

In a non-symmetric affine connection space GAy exist five linearly independent invariants under ET-
mappings caused from linearly independent curvature tensors and the corresponding torsion ones. These
invariants are

G = K + wi10Kpm) + 52570, Kt + 59307, Ko
1 ; ]
’ mL (Ov-DaTh+47;)
e — 74 _ St q
- (N-‘rl) (N - 1) ( (N-1) 6]Tqm 6mT]q)
1 p ; X
W= (VT (2 - 1)Ts)
P i TP _siTP ) .
’ (N+1)2 pq( (N- )6;Tm” +6i”Tjn 51"ij) ’
62;;’“” - Iz<;’“” - WCS;K[’“” N2- 16[mK]”] Rl Vo 16[mKn]] ;
(g;m" B K;’"" i N*lé Ko + 7= 16[mKJ”1 * e 16[mKVl]] (14)
—_— il _ si7i 2_ i
* (N+12(N - 1) mp((N 1)(5T &, T, +(N 1)Tjn)
e ——— i i fq 2 _ i
* NI SDM b (= (N =1)8iTg, + 8, T + (N> = 1T}, )
R, § A i |
(N +1)2(N —1) jp lm"an]
iP P P .
T O NT12 ’”q( (N = 15Ty ~ N6, T} _&nT]m) 7
’ (Z;;’”” - I4<§m" * Nﬁrlé K[’”" NZ- 16[mKJn] * e 16[mKn]] ;
’ 8]"1” = Ig;mn + N+1(S K[mn N2 16[mK]n] + o 1(5[”1[(”]] ‘

Theorem 1.14. [18] The magnitudes & ,&. & are ET-projective tensors, and the other ones &. &\ are

o jmn’ g jmn’ g jmn 1 jmn’ 3’ jmn

ET-projective parameters.

Definition 1.15. A non-symmetric affine connection space GAy with & =0,rell,2,...,5), is the r-th pro-
7 jmn

jectively flat space. A space which is the r-th projectively flat one, for all ¥ = 1,...,5, is projectively flat
space.

2. Flatness and projective flatness of affine connection spaces with torsion

Moffat’s results [16] are equations of motion of test particles and linear weak field approximation in Ricci
and Minkowski flat spaces. Corollary of these results are galaxy rotational velocity curves and effective
gravitational constant at infinity.

In this research, Moffat used flat and Ricci-flat spaces. We are going to connect flatness and projective
flatness of non-symmetric affine connection spaces.
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Firstly, we consider whether the r-th flat space is the r-th projectively flat one, r = 1,2,...,5, or not. If
it is not the case, we are going to analyze what is a necessary and sufficient condition which the r-th flat
space have to satisfy to be the r-th projectively flat one.

Next what we analyze in this paper is an expression of ET- projective tensors (‘ij?mn, r=1,...,5(14),ofa

space GAy as linear functions of the Weyl projective tensor W;mn of the associated space Ay.

The first question is whether flat non-symmetric affine connection spaces are the projectively flat ones or
not. In the following theorems the r-th flat and the r-th projective flat non-symmetric spaces, r = 1,2,...,5,
are connected.

Before we prove theorems which present connection of the r-th flatness and the r-th projective flatness
of a space GAy, we have to prove the following propositions.

Proposition 2.1. Connection coefficients L;,k satisfy the equation

1
p P — p P
L Ly + Lo L, = 210 Ly + 5T0, T, (15)

Proof. Based on the equation (4), the equalities
. 1 1 1
Lf Ly + Ly Ly = (L’;m + ZT’]”m)(Ll + Tlp) + (L” + 2T;])(L + T’n)

1 1 1 1 1 1
_ TP p P P p P P P
L]mL’ EL]mT’ ET]mL;p + 4T]mL;p + Lm]L;m + szjT;m + 2Tm]L;p + 4ijT;n

1
_ p P
2L]mL;p + sz]T;m,

are valid. O

Proposition 2.2. The equalities
1 1

1 P P 1 P P
R;mn = Ry + 3 T5Top = 7T o and R;W = Ry + 375, Top = T Tom (16)

hold, where R. =1L —[i [P i —[P[f

jmn jmn jnm jm TP jnpme

Proof. From the equation (11), we obtain

HW(

(A+A) ——(L -+ L —L”L’p)+ (L —Li 4+ IF I —L’”le)

jmn jmmn jnm jm mjn njm mj—pn
(3,15) | ; 1
= L’]mn - L;n . (L’]”ﬁ Ly + A—LT;’mT;p) - (Lfl L+ 4T7HT;W)
1 P 1 P
— R?mn + 4T]mT111P - A_LT]”T:”V’
~ 1 1
- — p P p P
1§ = 5(10 + )]mn L;mn - Lln]m (L]le + 4T]mT:1P) (L]nLIl”m + 4T]nT;’m)
1 P 1 P
= R;mn ZT]mT;p - A_LT]nT;m’
which proves this proposition. ]

Curvature pseudotensors é and ﬁ satisfy the equation

1
2(12 14);’”" L;”J” - L;" mt LZI]L;” + 4Tfn]Tllﬂn - Lp LGlp (17)

Let us consider the mentioned problems.
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Theorem 2.3. A first-flat space GAN is the first-projectively flat one if and only if it satisfies the condition

Lhy (N = 00T, + 8,71 ) + 1 (Né‘[mTZn F(N?— 1):r;',m) + (N = DL T,

, (18)
=L, (N - 1)8/Tg,, + 6, T )+ (N - DLy, (- 54T, + 8, T ).

qm m= jg njm

Proof. For a first-flat space the equation If?mn = 0 is valid, which implies 11<m" = Il<f;mp = 0. Then, it holds

i i 1 i
K + 37 15]1<[m,1 7 O Kin + 17 O = 0. (19)

From the equation (19) and the definition of (?E.WL (14), we get

& -1 g ((N 1) 6.7 +5fT7)

1 jmn (N+ 1)2(N_ 1) mp. joan n=jq
R S 7
(N +12(N-1) =
1 P i 2 i
NIRRT (N(S T+ (N7 = 1)T,,m)
N-1

(N +1)2(N-1) Loy
which is equal zero if and only if the equality (18) is satisfied. ]

Lhy (- (N =1)8/T5, -6, T7)

imP i TP iTP
7 (- - 18/ Thy, + 83, T, = 5,,ij)

Theorem 2.4. A second-flat space GAy is the second-projectively flat one.

Proof. For a second-flat space we have it holds Iz<;mn =0, 1ie.

Iz<”'" =0. (20)
The second equation in (14), immediately causes

1 (20)

N .
81 = Kl 6 K[mn] — 0L K; 1+ N2 1(Sl[m nlj = 0,

5 jmn 2]11111 N 1 72 N2 —1 [mpm
which proves this theorem. m|

Theorem 2.5. A third-flat space GAy is the third-projectively flat one if and only if it satisfies the condition

» ((N —1)oiT, + (N> = DT, )+ L (&' T +(N? - 1)T;im)
= 0yLyy T, + (N = DSL3, T, + 6, T1 L L” (1)
+ (N =1L, (N =1)siT], + N6, T+, T’” )

Proof. Analogously as in the proof of the Theorem 2.1, we have it holds

QR 1 p i 2 i
Gim = v TR =Ty b (N = DT~ 0T} + (V? - 1)T;,)
1 i i i
TN Lhy (= (N = 1) 8T8, + 8, T + (N> = 1)T},)
1
—LP 61 T’J
(N +1)2(N = 1) ¢ Tm"an]
N-1

- i. P _ i p _ i 77
(N+1)2(N 1) Pq( (N = 1)6;Tyn = N6, T, 5nT]m)
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which is equal zero if and only if it holds the equality (21). ]

Following the procedures used into the last three proofs, it is easy to prove next two theorems.
Theorem 2.6. A fourth-flat space GAy is the fourth-projectively flat one.

Theorem 2.7. A fifth-flat space GAN is the fifth-projectively flat one.

Based on the theorems presented above, we directly conclude the following corollary is valid.

Corollary 2.8. A flat space GA which satisfies the conditions (18) and (21) is a projectively flat one.

3. Functionally connected projective curvature tensors and parameters

Invariants of different geometrical mappings and their exact presentations are some of research subjects
which results are used in different applications (for example, see[5]). Expressions of projective curvature
tensors 81. . Eq- (14), of a non-symmetric affine connection space GAy as functions of Weyl projective

tensor W;mn, Eq. (7), of the corresponding associated space Ay are the main purposes of this part of our

research.
Theorem 3.1. A Weyl projective tensor W;.mn of an affine connection space Ay and parameter (‘{J?mn of the generalized
one GAV satisfy the equation

g =W + (Vl (22)

1 jmn jmn ]mn’

where

4
i i i p
(V]mn 2T][m ] + T}[mTPn] N+1 LIPTmn

4
P P P P q
(ZTW T) o Tmnqu) N L T

N 1
1 P ik P74 2 P P
] (25;";]”] 00T T &[m:rqn]TW) N (Né’[mT]p R iy )

4 i P 79 i TP
Y NI AN D) (Né[mL]qun] - &, L, ijq)

Proof. The equality

. 1 . . 1 ;
S = Ko * {705 * Rz =7 Okt + {7 =7 Ot
1 P q q P el
* TR (L@((N )8 T], + 8T ) + L (~ (N = 1) 8T, - 5§nT],q))
1 i q 2 i
FINFIRN =D (N Otn T * +(N7 1) T"’")
1

- - 2 71 P _ i P _ _ ; p
T INFI2N-D pq( (N = 1)?;T,, + (N = 15, T, — (N 1)5nT]m)

holds.
After the transformation of the definition of Iﬁmn, we obtain the following equation holds:
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; 1. 1. 1 1
i _ PRI i i P i P i
Il<jmn ijn + Eij;n - ETjn;m ZT]mT]n - ZT]nTPm

Based on the previous equation, we conclude Ricci tensor of the first type becomes

1 1
Il<mn = Ry + sznnp sznpn 4TfﬂnTZq 4Tf”‘7TZ"

which induces the succeeding equation:

1 1 1

If[mn] = Rpyn) +Tfmlp Tﬁwn + Tﬁpm +35 szTq
Further,
Nzl\i 15;’ an]+ﬁ5§m1<n]j N 5 R]n]+N21 & Rulj
N2—-1 (2 jmp ETfnn + AlleanTW B }ITZTZ”)
1 (ZT”]P B _TZP] + iTZ]TZq TﬁqTZ])
K10 (5T = 3T * 3T Th = 3T
_ﬁ ”(%Tfnﬁv ;TZIPJJF zlszﬂTZq zllTZqTZJ)
:NN Nz =10 N1 70 Rn + 575 151[7"5; (2 v+ 1T7,T,'3q)

_ 1 6i P _ N 6i P 1 6i TP
4N + 1) m7ja=pnl (N2 — 1) [ jpml - (N2 — 1) Im ™ nlpij”

Because of that, it holds
(?ljmn = W;mn + (VEmn’
which proves this theorem. a

Theorem 3.2. A Weyl projective tensor W}mn of an affine connection space An and parameter (Z)ljmn of the generalized

one GAy satisfy the equation

(g;mn = W;mn + (V;mn’ (23)
where
Vo= T _Z _§T T ——5l T! T" N L

]mn jlm=pnl — N 1 pq N 41 [m™jnl N 1 [m=pnl”~ jg
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Proof. Let we start with & . It holds
5 jmn

; N
Gm = Km* 53 151K[’””] g1 Ok N RO @4)
Directly from the equations (10, 13), we have it is valid the following equation:
1 1
12<1}mn = R;mn - ZT7mT;7n + 4T§7HT;Jm
This equation gives us
12<mn =Ry — 4Tf,mTZq + 4TfanZ,, and 12<[mn] = Ry — ZTf,mTZq
After submission of these results in (24), we obtain it is valid
; 1 N 1
(Z;l]mn = 3mn N+1 6;R[m” N2 — 61[111 N2 _ 161[mR"]j
1 P i 1 P i 1 il 74 1 i P74
- ZT;mTpn + 4T]nTpm TN+ 1)6]Tmnqu N+ 1)6 i L Tpg
1 1
—5’ T Th+ =0, T" T}, — ———0,T" Th,,
4N+1) " im p AN-T1) ™ Jr Pt AN-T) " P
which proves this theorem. O

Theorem 3.3. A Weyl projective tensor W;.mn of an affine connection space An and parameter é;;rnn of the generalized
one GAy satisfy the equation

8l]mn = W;mn + (V;mn’ (25)
where
. 4 .
(V;mn = 2Tl j(m;n) =T [mT;m] ZTf""TI N+1 mePT}”)
i P P P _*  sifyP _ 79 TP
e 15] (2Tmn,, LR T,,,,,qu) NT1P 5 (LWTM Ly Th, )

e (20T = ST Ty = 84T, T8 )+ s (NS T+ 0,70, )

N 1\ " jnlp Im” jn] [m™ nlq” pj (= jpnl * “lm” nlp;j
4 i TP i 7P 7 i P iTP
" (N+12(N-1) (6[*"L"JPT? 0 mLJan]q) (N +1)2 wi (Né Tm + oy T )
Proof. It holds
, A 1 . 1_. 1 1 1 ;
I3<;'mn = R;’mn + ET}W}H + ET;n;m - ZLT;”T;W A_LTZ’lT;m - ETfnnT;]

Now, we get it is valid
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1 1 1
K = Rind + Toup + 5 Topn = 5 Topin = 5

Based on the previous equations, we obtain it holds

P q
) T,

N . 1 N
o} K'n] 61 n]] 6 R]n]+

N2 -1 [m 3] N N2 — [m 6 R”]]

1
N2

1 1
i T A v I v N

N 10 (2 o~ g v g Ty T an TZJ)

1 Lov v g ylopma 1oy g
“NT 16,, (ZTJ'”P - ZT]mTW + 4T]qum - ET’WTPJ)
1 N i i 1 i P

+ 5 (NZ 67" jpn NZ 6"1 np;j N2 6" jpm - Nz 6 Tmp])
which combined with the definition of é}}mn, proves this theorem. ]

We are proving the following two theorems with using of procedures similarly to the ones applied in
the last three proves.

Theorem 3.4. A Weyl projective tensor W;.mn of an affine connection space Ay and parameter (Z’?mn of the generalized

one GAy satisfy the equation

(Z;l]mn = W;mn + (V;mn’ (26)
where
Vo= T T 2 sipr oL i T’7+ o TP T
g fmn = jon T pn) TN AP T N 4 I ] N —1 [ gn]”jp’
O

Theorem 3.5. A Weyl projective tensor W;.mn of an affine connection space An and parameter ‘?;mn of the generalized

one GAy satisfy the equation

(?jmn = ]mn + (VEmn’ (27)
where
Yoo oL s
5 jmn mntpji T N — 1 Umnlgpj

Corollary 3.6. Magnitudes (y;mn, r = 1,3 defined in Theorems 3.1 and 3.3 are parameters. Other ones "y;.mn, r=

2,4,5 are tensors.
Proof. Based on the equations (22-27), we have
8’]mn = W;mn+ (Vljmn, =1,...,4, and 81]mn = W;mn+ (V;mn

The proof of this corollary holds directly from the Theorem 1.14 proved in [18], i.e. it holds directly
from the tensor characters of S}W and the facts that difference of tensor and parameter is parameter and

difference of two tensors is a tensor. O
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4, Conclusion

Flatness and projective flatness of spaces Ay and GAy were analyzed in this paper. In the second
section it is proved that non-symmetric flat spaces GAy are projectively flat if they satisfy conditions (18)
and (21).

In the third section, ET-projective tensors in space GAy are presented as linear functions of Weyl
projective tensor in an associated space Ay.
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