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Abstract. Let H be a linear unbounded operator in a separable Hilbert space. It is assumed the resolvent
of H is a compact operator and H − H∗ is a Schatten - von Neumann operator. Various integro-differential
operators satisfy these conditions. Under certain assumptions it is shown that H is similar to a normal
operator and a sharp bound for the condition number is suggested.

We also discuss applications of that bound to spectrum perturbations and operator functions.

1. Introduction and Statement of the Main Result

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√

(., .) and unit operator
I. Two operators A and Ã acting in H are said to be similar if there exists a boundedly invertible bounded
operator T such that Ã = T−1AT. The constant κT = ‖T−1

‖‖T‖ is called the condition number. The
condition number is important in applications. We refer the reader to [5], where condition number estimates
are suggested for combined potential boundary integral operators in acoustic scattering and [23], where
condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity
of various operators to normal and selfadjoint ones were considered by many mathematicians, cf. [1, 4, 7],
[14, 15], [17]-[21], and references given therein. In many cases, the condition number must be numerically
calculated, e.g. [2, 20]. The interesting generalizations of condition numbers of bounded linear operators
in Banach spaces were explored in the paper [13].

In the present paper we consider a class of unbounded operators in a Hilbert space with Schatten -
von Neumann Hermitian components. Numerous integro-differential operators belong to that class. We
suggest a sharp bound for the condition numbers of the considered operators. It generalizes and improves
the bound for the condition numbers of operators with Hilbert-Schmidt Hermitian components from [11].
We also discuss applications of the obtained bound to spectrum perturbations and norm estimates for
operator functions.

Introduce the notations. For a linear operator A in H, Dom(A) is the domain, A∗ is the adjoint of A;
σ(A) denotes the spectrum of A and A−1 is the inverse to A; Rλ(A)= (A − Iλ)−1 (λ < σ(A)) is the resolvent;
AI := (A−A∗)/2i; λk(A) (k = 1, 2, ...) are the eigenvalues of A taken with their multiplicities and enumerated
as |λ j(A)| ≤ |λ j+1(A)|, and ρ(A, λ) = infk |λ − λk(A)|. By SNr (1 ≤ r < ∞) we denote the Schatten - von
Neumann ideal of compact operators K with the finite norm Nr(K) := [Trace(KK∗)r/2]1/r.
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Everywhere below H is an invertible operator in H, with the following properties: Dom(H) = Dom(H∗),
and there are an r ∈ [1,∞) and an integer p ≥ 1, such that

H−1
∈ SNr and HI ∈ SN2p. (1.1)

Note that instead of the condition H−1
∈ SNr, in our reasonings below, one can require the condition

(H − aI)−1
∈ SNr for some point a < σ(H). Since H−1 is compact, σ(H) is purely discrete. It is assumed that

all the eigenvalues λ j(H) of H are different. For a fixed integer m put

δm(H) = inf
j=1,2,...; j,m

|λ j(H) − λm(H)|.

It is further supposed that

ζq(H) :=

 ∞∑
j=1

1
δq

j (H)


1/q

< ∞ (
1
q

+
1
2p

= 1) (1.2)

for an integer p ≥ 1. Hence it follows that

δ̂(H) := inf
m
δm(H) = inf

j,k; j,k=1,2,...
|λ j(H) − λk(H)| > 0. (1.3)

Denote also

up(H) :=
√

2ζq(H)
p−1∑
m=0

∞∑
k=0

βkp+m
p Nkp+m+1

2p (HI)

δ̂kp+m(H)
√

k!
,

where

βp := 2
(
1 +

2p
e2/3ln2

)
. (1.4)

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible operator T and a normal operator
D acting in H, such that

THx = DTx (x ∈ Dom(H)). (1.5)

Moreover,
κT := ‖T−1

‖‖T‖ ≤ e2up(H) (1.6)

The proof of this theorem is divided into a series of lemmas which are presented in the next three sections.
The theorem is sharp: if H is selfadjoint, then up(H) = 0 and we obtain κT = 1.

As it is shown below, one can replace (1.6) by the inequality

κT ≤ e2ûp(H), (1.7)

where

ûp(H) :=
√

2e ζq(H)
p−1∑
m=0

βm
p Nm+1

2p (HI)

δ̂m(A)
exp

[
(βpN2p(HI))2p

2δ̂2p(A)

]
.

In addition, below we show that in our considerations instead of βp defined by (1.4) in the case

p = 2m−1, m = 2, 3, ..., one can take β̂p = 2(1 + ctg(
π
4p

)) and β̂1 =
√

2 (1.8)

instead of β1.
To illustrate Theorem 1.1, consider the operator H = S + K, where K ∈ SN2p and S is a positive definite

selfadjoint operator with a discrete spectrum, whose eigenvalues are different and

λ j+1(S) − λ j(S) ≥ b0 jα (b0 = const > 0;α > 1/q = (2p − 1)/(2p); j = 1, 2, ...) (1.9)
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Since S is selfadjoint we have
sup

k
inf

j
|λk(H) − λ j(S)| ≤ ‖K‖,

cf. [16]. Thus, if
2‖K‖ < inf

j
(λ j+1(S) − λ j(S)), (1.10)

then δ̂(H) ≥ inf j(λ j+1(S) − λ j(S) − 2‖K‖) and (1.2) holds with

ζq(H) ≤ ζq(S,K), where ζq(S,K) := [
∞∑
j=1

(λ j+1(S) − λ j(S) − 2‖K‖)−q]1/q < ∞.

Example 1.2. Consider in L2(0, 1) the spectral problem

u(4)(x) + (Ku)(x) = λu(x) (λ ∈ C, 0 < x < 1); u(0) = u(1) = u′′(0) = u′′(1) = 0,

where K ∈ SN2p, p ≥ 1 for an arbitrary p ≥ 1. So H is defined by H = d4/dx4 + K with

Dom (H) = {v ∈ L2(0, 1) : v(4)
∈ L2(0, 1), v(0) = v(1) = v′′(0) = v′′(1) = 0}.

Take S = d4/dx4 with Dom (S) = Dom (H). Then λ j(S) = π4 j4 ( j = 1, 2, ...) and λ j+1(S) − λ j(S) ≥ 4π4 j3. If
‖K‖ < 2π4, then δ̂(H) ≥ 4π4

− 2‖K‖ and

ζq
q(H) ≤

∞∑
j=1

(4π4 j3 − 2‖K‖)−q < ∞.

Now one can directly apply Theorem 1.1.

2. Auxiliary Results

Let B0 be a bounded linear operator in H having a finite chain of invariant projections Pk (k = 1, ...,n;
n < ∞):

0 ⊂ P1H ⊂ P2H ⊂ ... ⊂ PnH = H (2.1)

and
PkB0Pk = B0Pk (k = 1, ...,n). (2.2)

That is, B0 maps PkH into PkH for each k. Put

∆Pk = Pk − Pk−1 (P0 = 0) and Ak = ∆PkB0∆Pk.

It is assumed that the spectra σ(Ak) of Ak in ∆PkH satisfy the condition

σ(Ak) ∩ σ(A j) = ∅ ( j , k; j, k = 1, ...,n). (2.3)

Lemma 2.1. One has
σ(B0) = ∪n

k=1σ(Ak).

For the proof see [11].
Under conditions (2.1), (2.2) put

Qk = I − Pk,Bk = QkB0Qk and Ck = ∆PkB0Qk.

Since B j is a a block triangular operator matrix, according to the previous lemma we have

σ(B j) = ∪n
k= j+1σ(Ak) ( j = 0, ...,n).

Under this condition, according to the Rosenblum theorem from [22], the equation

A jX j − X jB j = −C j ( j = 1, ...,n − 1) (2.4)

has a unique solution (see also [6, Section I.3] and [3]). We need also the following result proved in [11].
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Lemma 2.2. Let condition (2.3) hold and X j be a solution to (2.4). Then

(I − Xn−1)(I − Xn−2) · · · (I − X1) B0 (I + X1)(I + X2) · · · (I + Xn−1) =

A1 + A2 + ... + An. (2.5)

Take
T̂n = (I + X1)(I + X2) · · · (I + Xn−1). (2.6)

It is simple to see that the inverse to I + X j is the operator I − X j. Thus,

T̂−1
n = (I − Xn−1)(I − Xn−2) · · · (I − X1) (2.7)

and (2.5) can be written as
T̂−1

n B0T̂n = dia1 (Ak)n
k=1. (2.8)

By the inequalities between the arithmetic and geometric means we get

‖T̂n‖ ≤

n−1∏
k=1

(1 + ‖Xk‖) ≤

1 +
1

n − 1

n−1∑
k=1

‖Xk‖


n−1

(2.9)

and

‖T̂−1
n ‖ ≤

1 +
1

n − 1

n−1∑
k=1

‖Xk‖


n−1

. (2.10)

Furthermore, we need the following result

Theorem 2.3. Let M be a linear operator in H, such that Dom (M) = Dom (M∗) and MI = (M −M∗)/2i ∈ SN2p for
some integer p ≥ 1. Then

‖Rλ(M)‖ ≤
p−1∑
m=0

∞∑
k=0

(βpN2p(MI))kp+m

ρpk+m+1(M, λ)
√

k!
(λ < σ(M)). (2.11)

Moreover, one has

‖Rλ(M)‖ ≤
√

e
p−1∑
m=0

(βpN2p(MI))m

ρm+1(M, λ)
exp

[
(βpN2p(MI))2p

2ρ2p(M, λ)

]
(λ < σ(M)). (2.12)

For the proof in the case p > 1 see [8, Theorem 7.9.1]. The case p = 1 is proved in [8, Theorem 7.7.1]. Besides,
βp can be replaced by β̂p according to (1.8).

3. The Finite Dimensional Case

In this section we apply Lemma 2.3 to an n × n-matrix A whose eigenvalues are different and are
enumerated in the increasing way of their absolute values. We define

δ̂(A) := min
j,k=1,...,n; k, j

|λ j(A) − λk(A)| > 0. (3.1)

Hence, there is an invertible matrix Tn ∈ Cn×n and a normal matrix Dn ∈ Cn×n, such that

T−1
n ATn = Dn. (3.2)

Furthermore, for a fixed m ≤ n put

δ j(A) = inf
m=1,2,...,n; m, j

|λ j(A) − λm(A)| .



M. Gil’ / Filomat 30:13 (2016), 3415–3425 3419

Let {ek} be the Schur basis (the orthogonal normal basis of the triangular representation) of matrix A:

A =


a11 a12 a13 ... a1n
0 a22 a23 ... a2n
. . . ... .
0 0 0 ... ann


with a j j = λ j(A). Take P j =

∑ j
k=1(., ek)ek. B0 = A, ∆Pk = (., ek)ek,

Q j =

n∑
k= j+1

(., ek)ek,Ak = ∆PkA∆Pk = λk(A)∆Pk,

B j = Q jAQ j =


a j+1, j+1 a j+1, j+2 ... a j+1,n

0 a j+2, j+2 ... a j+2,n
. . . ...
0 0 . ann

 ,
C j = ∆P jAQ j =

(
a j, j+1 a j, j+2 ... a j,n

)
and

Dn = dia1(λk(A)). (3.4)

In addition,

A =

(
λ1(A) C1

0 B1

)
,B1 =

(
λ2(A) C2

0 B2

)
, ...,B j =

(
λ j+1(A) C j+1

0 B j+1

)
( j < n). So B j is an upper-triangular (n − j) × (n − j)-matrix. Equation (2.4) takes the form

λ j(A)X j − X jB j = −C j.

Since X j = X jQ j, we can write X j(λ j(A)Q j − B j) = C j. Therefore

X j = C j (λ j(A)Q j − B j)−1. (3.5)

The inverse operator is understood in the sense of subspace Q jCn. Hence,

‖X j‖ ≤ ‖C j‖‖(λ j(A)Q j − B j)−1
‖.

Besides, due to (2.11)

‖(λ j(A)Q j − B j)−1
‖ ≤

p−1∑
m=0

∞∑
k=0

(βpN2p(B jI)kp+m

δkp+m+1
j (A)

√
k!
,

where B jI is the imaginary Hermitian component of B j.
But N2p(B jI) = N2p(Q jAIQ j) ≤ N2p(AI) ( j ≥ 1). So

‖(λ j(A)Q j − B j)−1
‖ ≤

τ(A)
δ j(A)

where

τ(A) =

p−1∑
m=0

∞∑
k=0

(βpN2p(AI))kp+m

δ̂kp+m(A)
√

k!
.

Consequently,

‖X j‖ ≤ τ(A)
‖C j‖

δ j(A)
.
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Take Tn = T̂n as in (2.6) with Xk defined by (3.5). Besides (2.9) and (2.10) imply

‖Tn‖ ≤

1 +
1

n − 1

n−1∑
j=1

‖X j||


n−1

≤

1 +
τ(A)

(n − 1)

n−1∑
j=1

‖C j‖

δ j(A)


n−1

(3.6)

and

‖T−1
n ‖ ≤

1 +
τ(A)

(n − 1)

n−1∑
j=1

‖C j‖

δ j(A)


n−1

. (3.7)

But by the Hólder inequality,

n−1∑
j=1

‖C j‖

δ j(A)
≤

n−1∑
j=1

‖C j‖
2p


1/2p

ζq(A) (1/(2p) + 1/q = 1), (3.8)

where

ζq(A) :=

n−1∑
k=1

1
δq

k(A)


1/q

.

In addition,

‖C j‖
2
≤

n∑
k= j+1

|a jk|
2, j < n; Cn = 0,

and

4‖AIe j‖
2 = ‖(A − A∗)e j‖

2 = |a j j − a j j|
2 + 2

n∑
k= j+1

|a jk|
2
≥ 2‖C j‖

2; j < n.

Thus, ‖C j‖ ≤
√

2‖AIe j‖, j ≤ n and therefore

n−1∑
j=1

‖C j‖
2p
≤ 2p

n−1∑
j=1

‖AIe j‖
2p.

But from Lemmas II.4.1 and II.3.4 [12], it follows that

n−1∑
j=1

‖AIe j‖
2p
≤ N2p

2p(AI).

Therefore relations (3.6)-(3.8) with the notation

ψn,p(A) =

1 +
τ(A)

√
2N2p(AI)ζq(A)
n − 1

n−1

imply ‖Tn‖ ≤ ψn,p(A) and ‖T−1
n ‖ ≤ ψn,p(A).

We thus have proved the following.

Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator Tn, such that (3.2) holds with
κTn := ‖T−1

n ‖‖Tn‖ ≤ ψ2
n,p(A).
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According to (2.12) one can replace τ(A) by

τ̂(A) :=
√

e
p−1∑
m=0

(βpN2p(AI))m

δ̂m(A)
exp

[
(βpN2p(AI))2p

2δ̂2p(A)

]
and therefore

κTn ≤ ψ̂
2
n,p(A), (3.9)

where

ψ̂n,p(A) =

1 +
τ̂(A)

√
2N2p(AI)ζq(A)
n − 1

n−1

.

The previous lemma and (3.9) improve the bound from [9, 10] for the condition numbers of matrices with
large n.

4. Proof of Theorem 1.1

Recall the Keldysh theorem, cf. [12, Theorem V. 8.1].

Theorem 4.1. Let A = S(I + K), where S = S∗ ∈ SNr for some r ∈ [1,∞) and K is compact. In addition, let from
A f = 0 ( f ∈ H) it follows that f = 0. Then A has a complete system of root vectors.

We need the following result.

Lemma 4.2. Under the hypothesis of Theorem 1.1, operator H−1 has a complete system of root vectors.

Proof. We can write H = HR + iHI with the notation HR = (H + H∗)/2. For any real c with −c < σ(H) ∪ σ(HR)
we have

(H + cI)−1 = (I + i(HR + cI)−1HI)−1(HR + cI)−1.

But (I + i(HR + cI)−1HI)−1
− I = K0 , where K0 = −i(HR + cI)−1HI(I + i(HR + cI)−1HI)−1 is compact. So

(H + cI)−1 = (HR + cI)−1(I + K0). (4.1)

Due to (1.1) (H + cI)−1 = H−1(I + cH−1)−1
∈ SNr. Hence

(HR + cI)−1 = (I + i(HR + cI)−1HI)(H + cI)−1
∈ SNr

and therefore by (4.1) and the Keldysh theorem operator (H + cI)−1 has a complete system of roots vectors.
Since (H + cI)−1 and H−1 commute, H−1 has a complete system of roots vectors, as claimed. �

From the previous lemma it follows that there is an orthonormal (Schur) basis {êk}
∞

k=1, in which H−1 is
represented by a triangular matrix (see [12, Lemma I.4.1]). Denote P̂k =

∑k
j=1(., ê j)ê j. Then

H−1P̂k = P̂kH−1P̂k (k = 1, 2, ...).

Besides,
∆P̂kH−1∆P̂k = λ−1

k (H)∆P̂k (∆P̂k = P̂k − P̂k−1, k = 1, 2, ...; P̂0 = 0). (4.2)

Put

D =

∞∑
k=1

λk∆P̂k (∆P̂k = P̂k − P̂k−1, k = 1, 2, ...) and V = H −D.

We have
HP̂k f = P̂kHP̂k f (k = 1, 2, ...; f ∈ Dom(H)). (4.3)
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Indeed, H−1P̂k is an invertible k× k matrix, and therefore, H−1P̂kH is dense in P̂kH. Since ∆P̂ jP̂k = 0 for j > k,
we have 0 = ∆P̂ jHH−1P̂k = ∆P̂ jHP̂kH−1P̂k. Hence ∆P̂ jH f = 0 for any f ∈ P̂kH. This implies (4.3).

Furthermore, put Hn = HPn. Due to (4.3) we have

‖Hn f −H f ‖ → 0 ( f ∈ Dom(H)) as n→∞. (4.4)

From Lemma 3.1 and (4.4) with A = Hn it follows that in P̂nH there is a invertible operator Tn such that
TnHn = P̂nDTn and

‖Tn‖ ≤ ψn,p(Hn) := (1 +
τ(Hn)

√
2N2p(HnI)ζq(Hn)

n − 1
)n−1

where

τ(Hn) =

p−1∑
m=0

∞∑
k=0

(βpN2p(HnI))kp+m

δ̂kp+m(Hn)
√

k!
.

It is clear, that
τ(Hn)

√

2N2p(HnI)ζq(Hn) ≤ τ(H)
√

2N2p(HI)ζq(H) = up(H)

and therefore

‖Tn‖ ≤ (1 +
up(H)
n − 1

)n−1
≤ eup(H).

Similarly, ‖T−1
n ‖ ≤ eup(H).

So there is a weakly convergent subsequence Tn j whose limit we denote by T. It is simple to check
that Tn = PnT. Since projections Pn converge strongly, subsequence {Tn j } converges strongly. Thus
Tn j Hn j f → TH f strongly and, therefore P̂n j DTn j f = Tn j Hn j f → TH f strongly. Letting n j → ∞ hence
we arrive at the required result. �

Inequality (1.7) follows from (3.9) according to the above arguments.

5. Operators with Hilbert - Schmidt Components

In this section in the case p = 1 we slightly improve Theorem 1.1. Besides, the misprint in the main
result from [11] is corrected.

Denote

1(H) :=
√

2[N2
2(HI) −

∞∑
k=1

|Im λk(H)|2 ]1/2
≤

√

2N2(HI),

and

τ2(H) :=
∞∑

k=0

1k+1(H)
√

k!δ̂k(H)
.

Theorem 5.1. Let conditions (1.1) and (1.2) be fulfilled with p = 1. Then there are an invertible operator T and a
normal operator D acting in H, such that (1.5) holds. Moreover,

κT ≤ e2ζ2(H)τ2(H). (5.1)

Proof. Let A be an n × n-matrix whose eigenvalues are different. Define δ̂(A), δm(A) and ζ2(A) as in Section
3. We have

1(A) :=
√

2[N2
2(AI) −

n∑
k=1

|Im λk(A)|2 ]1/2.

Put

τ2(A) :=
n−2∑
k=0

1k+1(A)
√

k!δ̂k(A)
and γn(A) :=

(
1 +

ζ2(A)τ2(A)
n − 1

)2(n−1)

.
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Due to Lemma 3.1 from [11], there are an invertible matrix Mn ∈ Cn×n and a normal matrix Dn ∈ Cn×n, such
that M−1

n AMn = Dn. and
‖M−1

n ‖‖Mn‖ ≤ γn(A). (5.2)

Now take Hn and P̂n as in the proof of Theorem 1.1 from which it follows follows that in P̂nH there is a
invertible operator Tn such that TnHn = P̂nDTn. Besides, according to (5.2)

‖T−1
n ‖‖Tn‖ ≤

(
1 +

ζ2(Hn)τ2(Hn)
n − 1

)2(n−1)

with

τ2(Hn) =

n−2∑
k=0

1k+1(Hn)
√

k!δ̂k(Hn).

It is simple to see that ζ2(Hn) ≤ ζ2(H), τ2(Hn) ≤ τ2(H) and thus

‖T−1
n ‖‖Tn‖ ≤ e2ζ2(H)τ2(H).

Hence taking into account (4.4) and that a subsequence of {Tn} strongly converges (see the proof of Theorem
1.1), we arrive at the required result. �

6. Applications of Theorem 1.1

Rewrite (1.5) as Hx = T−1DTx. Let ∆Pk be the eigenprojections of the normal operator D and Ek =
T−1∆PkT. Then

Hx =

∞∑
k=1

λk(H)Ekx (x ∈ Dom(H)).

Let f (z) be a scalar function defined and bounded on the spectrum of H. Put

f (H) =

∞∑
k=1

f (λk(H))Ek

and
γp(H) = e2up(H).

Theorem 1.1 immediately implies.

Corollary 6.1. Let conditions (1.1) and (1.2) hold. Then ‖ f (H)‖ ≤ γp(H) supk | f (λk(H))|.

In particular, we have
‖e−Ht

‖ ≤ γp(H)e−β(H)t (t ≥ 0),

where β(H) = infk Re λk(H) and

‖Rλ(H)‖ ≤
γp(H)
ρ(H, λ)

(λ < σ(H)). (6.1)

Let A and Ã be linear operators. Then the quantity

svA(Ã) := sup
t∈σ(Ã)

inf
s∈σ(A)

|t − s|

is said to be the variation of Ã with respect to A.
Now let H̃ be a linear operator in Hwith Dom(H) = Dom(H̃) and

ξ := ‖H − H̃‖ < ∞. (6.2)

From (6.1) it follows that λ < σ(H̃), provided ξγp(H) < ρ(H, λ). So for any µ ∈ σ(H̃) we have ξγp(H) ≥
ρ(H, µ). This inequality implies our next result.
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Corollary 6.2. Let conditions (1.1), (1.2) and (6.2) hold. Then svH(H̃) ≤ ξγp(H).

Now consider unbounded perturbations. To this end put

H−ν =

∞∑
k=1

λ−νk (H)Ek (0 < ν ≤ 1).

Similarly Hν is defined. We have

‖HνRλ(H)‖ ≤
γ(H)

φν(H, λ)
(λ < σ(H)), (6.3)

where
φν(H, λ) = inf

k
|(λ − λk(H))λ−νk (H)|.

Now let H̃ be a linear operator in Hwith Dom(H) = Dom(H̃) and

ξν := ‖(H − H̃)H−ν‖ < ∞. (6.4)

Take into account that

Rλ(H) − Rλ(H̃) = Rλ(H)(H̃ −H)Rλ(H̃) = Rλ(H̃)(H̃ −H)H−νHνRλ(H).

Thus, λ < σ(H̃), provided the conditions (6.4) and ξνγp(H) < φν(H, λ) hold. So for any µ ∈ σ(H̃) we have

ξνγ(H) ≥ φν(H, µ). (6.5)

The quantity
ν − rsvH(H̃) := sup

t∈σ(H̃)
inf

s∈σ(H)
|(t − s)s−ν|

is said to be the ν− relative spectral variation of operator H̃ with respect to H. Now (6.5) implies.

Corollary 6.3. Let conditions (1.1), (1.2) and (6.4) hold. Then ν − rsvH(H̃) ≤ ξνγp(H).
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