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An Inequality for Similarity Condition Numbers of Unbounded
Operators with Schatten - von Neumann Hermitian Components
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Abstract. Let H be a linear unbounded operator in a separable Hilbert space. It is assumed the resolvent
of H is a compact operator and H — H* is a Schatten - von Neumann operator. Various integro-differential
operators satisfy these conditions. Under certain assumptions it is shown that H is similar to a normal
operator and a sharp bound for the condition number is suggested.

We also discuss applications of that bound to spectrum perturbations and operator functions.

1. Introduction and Statement of the Main Result

Let $ be a separable Hilbert space with a scalar product (.,.), the norm ||.|| = \/m and unit operator
I. Two operators A and A acting in $ are said to be similar if there exists a boundedly invertible bounded
operator T such that A = T7'AT. The constant k7 = |[|[T"Y|IT|| is called the condition number. The
condition number is important in applications. We refer the reader to [5], where condition number estimates
are suggested for combined potential boundary integral operators in acoustic scattering and [23], where
condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity
of various operators to normal and selfadjoint ones were considered by many mathematicians, cf. [1, 4, 7],
[14, 15], [17]-[21], and references given therein. In many cases, the condition number must be numerically
calculated, e.g. [2, 20]. The interesting generalizations of condition numbers of bounded linear operators
in Banach spaces were explored in the paper [13].

In the present paper we consider a class of unbounded operators in a Hilbert space with Schatten -
von Neumann Hermitian components. Numerous integro-differential operators belong to that class. We
suggest a sharp bound for the condition numbers of the considered operators. It generalizes and improves
the bound for the condition numbers of operators with Hilbert-Schmidt Hermitian components from [11].
We also discuss applications of the obtained bound to spectrum perturbations and norm estimates for
operator functions.

Introduce the notations. For a linear operator A in , Dom(A) is the domain, A" is the adjoint of A;
0(A) denotes the spectrum of A and A~ is the inverse to A; Ri(A)= (A — IA)™! (A ¢ 9(A)) is the resolvent;
Ap:=(A-A")/2i; M(A) (k =1,2,...) are the eigenvalues of A taken with their multiplicities and enumerated
as |Aj(A)l < [Aj41(A)], and p(A, A) = infi [ = Ak(A)l. By SN, (1 < r < o) we denote the Schatten - von
Neumann ideal of compact operators K with the finite norm N, (K) := [Trace(KK*)"/2]'/".
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Everywhere below H is an invertible operator in £, with the following properties: Dom(H) = Dom(H"),
and there are an r € [1, o) and an integer p > 1, such that

H™' € SN, and Hj € SNy, (1.1)

Note that instead of the condition H™! € SN,, in our reasonings below, one can require the condition
(H —al)~! € SN, for some point a ¢ o(H). Since H™! is compact, o(H) is purely discrete. It is assumed that
all the eigenvalues A j(H) of H are different. For a fixed integer m put

om(H) = inf |A(H) = An(H)
=1,2,...; j#m

It is further supposed that

oo g
1 1 1
C(H) = —_— 0o (—+—=1 1.2
o(H) [;‘5‘;04) G+ =D (1.2)
for an integer p > 1. Hence it follows that
5(H) :=inf8,(H) = inf  |A;(H) — Ak(H)| > 0. (1.3)
m k=12,

Denote also i L )
-1 oo ﬁ p+mN p+m+ (HI)
p 2
up(H) = V2L (H) Y ) et
e Skpem(H) V!

where

[ 2(1 + Z_p)' (1.4)

e23In2

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible operator T and a normal operator
D acting in 9, such that
THx = DTx (x € Dom(H)). (1.5)

Moreover,
er = [ITHIT) < (1.6)

The proof of this theorem is divided into a series of lemmas which are presented in the next three sections.
The theorem is sharp: if H is selfadjoint, then u,(H) = 0 and we obtain xr = 1.
As it is shown below, one can replace (1.6) by the inequality

wr < i), (1.7)

where

A = ByNG, I (H) (BpNap(H)))?
ity (H) := V2e Cy(H) ) i [ 2 ]

m=0
In addition, below we show that in our considerations instead of 8, defined by (1.4) in the case
m—1 P TC A
p=2"",m=2,3,.., one can take ff, = 2(1 + ctg(4—p)) and p; = V2 (1.8)

instead of f;.
To illustrate Theorem 1.1, consider the operator H = S + K, where K € SN, and S is a positive definite
selfadjoint operator with a discrete spectrum, whose eigenvalues are different and

Aj1(8) = A(S) = boj* (bo = const > 0;a>1/q=2p-1)/(2p);j=1,2,...) (1.9
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Since S is selfadjoint we have
sup ir],lfIAk(H) = A <K,
k

cf. [16]. Thus, if
2|IK| < iI],lf(/\j+1(5) = Ai(S)), (1.10)

then 8(H) > inf;(A;:1(S) — A;(S) — 2/IKI) and (1.2) holds with

Cq(H) < §y(5, K), where (4(S, K) := [Z()\m(s) = 4j(8) = 2IIKI)™"7 < co.
j=1

Example 1.2. Consider in L*(0, 1) the spectral problem
u®(x) + (Ku)(x) = Au(x) (A€C,0<x<1); u0)=u()=u"0)=u"1)=0,
where K € SN, p > 1 for an arbitrary p > 1. So H is defined by H = d*/dx* + K with
Dom (H) = {v € L*(0,1) : v € L*(0,1), 0(0) = o(1) = v”(0) = 0"’ (1) = 0}.

Take S = d*/dx* with Dom (S) = Dom (H). Then Aj(S) = n*j* (j = 1,2,...) and A1(S) — A{(S) > 4n*j°. If
IK|| < 27*, then §(H) > 4n* — 2||K]| and

Ci(H) < )" (@ = 2K < .
j=1
Now one can directly apply Theorem 1.1.

2. Auxiliary Results

Let By be a bounded linear operator in $ having a finite chain of invariant projections Px (k = 1,...,1;
n < oo):
0CcPi9CPHC..CP,H=9 (2.1)

and
PkBOPk = BOPk (k = 1,...,1’[). (22)

That is, By maps P9 into P9 for each k. Put
APy = Py — Py (Pp = 0) and Ay = AP¢BoAPy.
It is assumed that the spectra o(A) of Ay in AP.$ satisfy the condition
oA No(A) =0 (j£k jk=1,..n). (2.3)

Lemma 2.1. One has
0(Bo) = U_10(Ap).

For the proof see [11].
Under conditions (2.1), (2.2) put

Qx = I = Py, By = QxBoQx and Cy = APBoQx.
Since Bj is a a block triangular operator matrix, according to the previous lemma we have
0(Bj) = Ui_j,10(A) (j=0,...,n).
Under this condition, according to the Rosenblum theorem from [22], the equation
AXi-=XBj=-C; (j=1,..,n-1) (2.4)

has a unique solution (see also [6, Section 1.3] and [3]). We need also the following result proved in [11].
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Lemma 2.2. Let condition (2.3) hold and X; be a solution to (2.4). Then

(I = Xp-1)(I = Xp2) -+ (I = X1) Bo (I + X0)(I + X3) - -+ (I + Xy1) =

Al +Ar+ ...+ A, (2.5)
Take
Th=0+ X))+ Xo)---(I+ Xp1). (2.6)
It is simple to see that the inverse to [ + X jis the operator [ — X j- Thus,
T = (= Xp)(I = Xy2) - (I = X1) 27)
and (2.5) can be written as
T,'BoT, = diag (A0, (2.8)
By the inequalities between the arithmetic and geometric means we get
n—=1 1 n—-1 n-1
Il < [T+ ixn < 1+ — 3 Il (29)
k=1 k=1
and
1 -1 n-1
MN%H;j;WM (2.10)

Furthermore, we need the following result

Theorem 2.3. Let M be a linear operator in $, such that Dom (M) = Dom (M*) and M; = (M — M")/2i € SN, for
some integer p > 1. Then

p-1 kp+m
(BpNap(M)))?
Ry(M)|| < A M)). 2.11
N T =

Moreover, one has

p-1 " X
||R/\(M)|| < ‘/EZ (.BPNZp(MI)) ox [(ﬁpsz(Ml)) P
m=0

P (M, A) 207 (M, A) ] (A ¢ a(M)). (2.12)

For the proof in the case p > 1 see [8, Theorem 7.9.1]. The case p = 1is proved in [8, Theorem 7.7.1]. Besides,
By can be replaced by f, according to (1.8).
3. The Finite Dimensional Case

In this section we apply Lemma 2.3 to an n X n-matrix A whose eigenvalues are different and are
enumerated in the increasing way of their absolute values. We define

S(A) = min_[A;i(A) — A(A)] > 0. (3.1)
jk=1,..n; k#j

Hence, there is an invertible matrix T,, € C"™" and a normal matrix D,, € C'*", such that
T,'AT, = D,. (3.2)
Furthermore, for a fixed m < n put

5j(A)= inf A [(A) - An(A)l.

m=1,2,...,n; m#j
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Let {ex} be the Schur basis (the orthogonal normal basis of the triangular representation) of matrix A:

a1 a2 43 ... Ay

0 a a e a
A= 22 23 2n
0 0 0 ... au

witha;; = 1j(A). Take P; = ¥.)_ (., e)ex. Bo = A, APy = (., ex)ey,

Qj= Z (- ex)er, Ax = APLAAP, = A(A)APy,

k=j+1
Aj+1,j+1 Aj+1,j+2 - Aj+ln
0 Ajr2,j+2 - Aj+2n
Bj = QiAQ; = o ] /
0 0 . O

C]- = AP]'AQ]' Z( Ajjr1 Ajj+2 o Ajn )

and
D, = diag(Ar(A)).

[ M@A) G _[ 2 & _ [ A4 Cia

In addition,

(j < n). So Bj is an upper-triangular (n — j) X (n — j)-matrix. Equation (2.4) takes the form
/\j(A)X]' - XjB]' = —C]'.
Since X; = X;Q;, we can write X;(1;(A)Q; — Bj) = C;. Therefore
Xj = C]‘ (/\]‘(A)Qj - Bj)_l.
The inverse operator is understood in the sense of subspace Q;C". Hence,
X1l < ICIA;(A)Q; = By~ Il

Besides, due to (2.11)

p-1 o kp+m
(BpNap(Bjr)"™™
I(A(A)Q; = B)~!Il < z z
J = kp+m+1 A) /

where B is the imaginary Hermitian component of B;.
But No,(Bj1) = N2,y (QjA1Q)) < Nop(Ap) (j = 1). So

- T(A)
“/\A . —B: 1”S
where .
p-1 = kp+m
(ﬁpsz(Al)) P
(A) 1;);0‘ 6kp+m )
Consequently,
C.
1) < () 1!

6;(A)’

3419

(3.4)

3.5
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Take T,, = T, as in (2.6) with X; defined by (3.5). Besides (2.9) and (2.10) imply

1 -1 n—-1 [4) -1 n—-1
ITall < |1 = < (n 0
]:1 ]:1
and
n—-1

_ 7(A) =
||T,f||s[1 =) Z

But by the Hélder inequality,

1/2p

Z ICIPP | o) (/2p)+1/g=1),

H

n—

—.
1l
—_

where

Cq(/q) =

In addition,
n

ICHIE < Y lagP,j<n; Cu=0,
k=j+1

and

n
AAefl? = 1A = AMejI? = laj; —a* +2 Z lajl? = 2IICHI%; j < n.

k=j+1
Thus, ||Cjl| < \/EIIAIEJ'H,]' < n and therefore
n—1 n—1
ICHP <27 )" lAse I
j=1 =1

But from Lemmas I1.4.1 and 11.3.4 [12], it follows that

,_.

n—

1Al < N3 (A,

I\
—_

j

Therefore relations (3.6)-(3.8) with the notation

(A VAN (AN A
Y p(A) = (1 + —

imply [ Tull < Pup(A) and [T, M1 < ¢ p(A).
We thus have proved the following.

3420

(3.6)

(3.7)

(3.8)

Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator T,, such that (3.2) holds with

kr, = 1T Tl < 97 ,(A).
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According to (2.12) one can replace 7(A) by
v Z BNy (A" [(ﬁpl\(zp(AI))zf’]
5m(A) 20%(A)

and therefore .
x1, < P75 ,(A), (3.9)

where

n—1

i = [1 L ﬁszmI)cq(A)]"'l
n,p -

The previous lemma and (3.9) improve the bound from [9, 10] for the condition numbers of matrices with
large n.
4. Proof of Theorem 1.1

Recall the Keldysh theorem, cf. [12, Theorem V. 8.1].

Theorem 4.1. Let A = S(I + K), where S = S* € SN, for some r € [1,00) and K is compact. In addition, let from
Af =0(f € 9) it follows that f = 0. Then A has a complete system of root vectors.

We need the following result.
Lemma 4.2. Under the hypothesis of Theorem 1.1, operator H™* has a complete system of root vectors.

Proof. We can write H = Hy + iH; with the notation Hr = (H + H*)/2. For any real ¢ with —c ¢ o(H) U o(HR)
we have
(H+cD)™ = +i(Hg +c)'H) Y(Hg + D)7

But (I + i(Hg + cI)"'H;)™' — I = Ko , where Ky = —i(Hg + cI)"'Hy(I + i(Hg + cI)"'Hj)~! is compact. So
(H+cD)™ = (Hg + )71 (I + Ky). 4.1)
Due to (1.1) (H +cI)™' = H'(I + cH™ )™ € SN,. Hence
(Hg +c)™' = (I +i(Hg + c)'H))(H + c])™! € SN,

and therefore by (4.1) and the Keldysh theorem operator (H + cI)™! has a complete system of roots vectors.
Since (H + cI)~! and H™! commute, H™! has a complete system of roots vectors, as claimed. O

From the previous lemma it follows that there is an orthonormal (Schur) basis {&/;? ,, in which H!

represented by a triangular matrix (see [12, Lemma 1.4.1]). Denote by = Z j=1('/ ¢;)¢j. Then

H'P, =P H'P, (k=1,2,..).

Besides,
APLHT' AP, = AN H)AP (APy = Py — Pry, k=1,2,..;00 = 0). 4.2)
Put -
D= Z MAP, (APy =P~ Prq, k=1,2,..)and V = H - D.
k=1
We have

HPyf = PyHPyf (k=1,2,...; f € Dom(H)). (4.3)
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Indeed, H™ 1P, is an invertible k X k matrix, and therefore, H1P;$ is dense in P;$. Since Apjpk =0forj>k
we have 0 = AP;HH'Py = AP;HP H'Py. Hence AP;Hf = 0 for any f € PH. This implies (4.3).
Furthermore, put H, = HP,. Due to (4.3) we have

IH.f —Hfll = 0 (f € Dom(H)) as n — oo. (4.4)

From Lemma 3.1 and (4.4) with A = H,, it follows that in P,$ there is a invertible operator T, such that
T,H, = P,DT, and
T(Hn) \/ENZp(HnI)Cq(Hn)

n-1

ITull < Ynp(Hy) == (1 + y1

where )
p-1 No,(H, kp+m
T(Hn) _ Z (ﬁp 2p( I)
== S, )‘/_
It is clear, that
T(Hy) V2Nay (Hur) Gy () < T(H) V2Noy (H)) Gy (H) = 1, (H)
and therefore

H
ITull < @+ — i ))” P<en®.
Similarly, ||T;}|| < e,
So there is a weakly convergent subsequence T,,;, whose limit we denote by T. It is simple to check
that T, = P,T. Since projections P, converge strongly, subsequence {T),} converges strongly. Thus

TwHy f — THf strongly and, therefore PnfDTn]. f = TwHy f — THf strongly. Letting n; — oo hence
we arrive at the required result. O

Inequality (1.7) follows from (3.9) according to the above arguments.

5. Operators with Hilbert - Schmidt Components

In this section in the case p = 1 we slightly improve Theorem 1.1. Besides, the misprint in the main
result from [11] is corrected.

Denote o
g(H) = V2IN3(H) = ) lim A(EDP 172 < V2N (H)),
k=1
and 5 e
wa(H) = Z o

VKIS (H)

Theorem 5.1. Let conditions (1.1) and (1.2) be fulfilled with p = 1. Then there are an invertible operator T and a
normal operator D acting in $, such that (1.5) holds. Moreover,

Ky < 2ednH) (5.1)

Proof. Let A be an n X n-matrix whose eigenvalues are different. Define 5(A), 6,4(A) and (»(A) as in Section
3. We have

g(4) = V2INJ(A) = ) lm AA)R 12
k=1

Put ,
n-. gk+1 (A)

) :
T L k)

C(A)T A\
2D)

and y,(A) == (1 + =3
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Due to Lemma 3.1 from [11], there are an invertible matrix M,, € C"" and a normal matrix D, € C"™", such
that M;'AM,, = D,,. and

IV Ml < yu(A). (5.2)
Now take H, and P, as in the proof of :Fheorem 1.1 from which it follows follows that in P, $ there is a
invertible operator T, such that T,H, = P,DT,. Besides, according to (5.2)

cz(Hn)rz(Hn))z(”‘”

I3 T < (1 +

with ,

n- gk+1(Hn)
= VKISk(H,).
It is simple to see that (,(H,) < ((H), 12(Hy) < 12(H) and thus

To(Hy) =

T IT )| < @200,

Hence taking into account (4.4) and that a subsequence of {T},} strongly converges (see the proof of Theorem
1.1), we arrive at the required result. O

6. Applications of Theorem 1.1

Rewrite (1.5) as Hx = T '!DTx. Let AP be the eigenprojections of the normal operator D and Ej =
T 'AP,T. Then

Hx = Z A(H)Exx (x € Dom(H)).
k=1
Let f(z) be a scalar function defined and bounded on the spectrum of H. Put

fH) =) fOKH)E
k=1

and
Vp(H) — eZup(H)'

Theorem 1.1 immediately implies.
Corollary 6.1. Let conditions (1.1) and (1.2) hold. Then ||f(H)|| < y,(H) sup, | f(Ax(H))|.
In particular, we have

le™ 11 <y, (H)e P (¢ > 0),
where B(H) = infy Re Ax(H) and
Vp(H)
p(H, 7)

Let A and A be linear operators. Then the quantity

IRA(HDII < (A ¢ a(H)). (6.1)

sva(A) := sup inf |t—s]
tea(A) sea(A)

is said to be t~he variation of A with respect to A.
Now let H be a linear operator in $ with Dom(H) = Dom(H) and

&= |H-H| < . (6.2)

From (6.1) it follows that A ¢ o(H), provided &y,(H) < p(H, A). So for any u € o(H) we have &y,(H) >
p(H, ). This inequality implies our next result.
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Corollary 6.2. Let conditions (1.1), (1.2) and (6.2) hold. Then svy(H) < Eyp(H).

Now consider unbounded perturbations. To this end put
H"= Z A(H)E: (0<v<1).
k=1

Similarly H” is defined. We have

y(H)

I RAEDI <

(A ¢ o(H)), (6.3)

where
ov(H,A) = irklfl(/\ = A(H)AL(H)L.

Now let H be a linear operator in $ with Dom(H) = Dom(H) and
& = II(H - -)H™|| < 0. (6.4)
Take into account that
Ru(H) = Ry(H) = Ry(H)(H — H)R1(H) = Ry(H)(H — H)H™"H" R, (H).
Thus, A ¢ o(H), provided the conditions (6.4) and &vyp(H) < ¢y(H, A) hold. So for any u € o(H) we have

vy(H) 2 ¢v(H, ). (6:5)
The quantity

v—rsvy(H) := sup inf |(t—s)s™"|
teo(H) s€o

is said to be the v— relative spectral variation of operator H with respect to H. Now (6.5) implies.

Corollary 6.3. Let conditions (1.1), (1.2) and (6.4) hold. Then v — rsvy(H) < &vyp(H).
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