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Abstract. This article introduces convex sets in finite-dimensional normed linear spaces equipped with a
proximal relator. A proximal relator is a nonvoid family of proximity relationsRδ (called a proximal relator)
on a nonempty set. A normed linear space endowed with Rδ is an extension of the Száz relator space. This
leads to a basis for the study of the nearness of convex sets in proximal linear spaces.

1. Introduction

This article introduces convex sets [9, 13] in finite-dimensional normed linear spaces equipped with
a proximal relator (briefly, proximal linear spaces). A proximal relator is a nonvoid family of proximity
relations Rδ (called a proximal relator) on a nonempty set. This form of relator is an extension of a Száz
relator [10–12]. For simplicity, we consider only two proximity relations, namely, the Efremovic̆ proximity
δ [4] and the proximity δS between convex sets in defining Rδ [7, 8]. The assumption made here is that each
proximal linear space is a topological space that provides the structure needed to define proximity relations.
The proximity relation δS defines a nearness relation between convex sets useful in many applications.

2. Preliminaries

Let E be a finite-dimensional real normed linear space, A ⊂ E. The Hausdorff distance D(x,A) is defined
by D(x,A) = in f

{∥∥∥x − y
∥∥∥ : y ∈ A

}
and

∥∥∥x − y
∥∥∥ is the distance between vectors x and y. The C̆ech closure [1]

of A (denoted by cA) is defined by cA = {x ∈ V : D(x,A) = 0}. The sets A and B are proximal (near) (denoted
A δ B) if and only if cA ∩ cB , ∅.

A subset S in E is convex, provided S is the set of all points in E that are nearest to a point z in S [5, 9].
Let Sz (called Klee-Phelphs convex set) be the set of all points in E having z ∈ S as the nearest point in S,
defined by

Sz =

x ∈ E : ‖x − z‖ = in f
y∈S

∥∥∥x − y
∥∥∥ .
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In effect, Sz is a convex cone with vertex z. This leads to the following useful Lemma.

Lemma 2.1. (Phelps [9, §4]) If E is an inner product space and z ∈ S ⊂ E, then Sz is convex.

Let S ⊂ E, x, y ∈ S, and Sx,Sy are nonempty Klee-Phelps nearest point sets. From Lemma 2.1, Sx,Sy are
convex sets. Next, consider the proximity relation δS between convex sets. Sets Sx,Sy are proximal (denoted
by Sx δS Sy) if and only if ‖a − b‖ = 0 for some a ∈ clSx, b ∈ clSy. That is, convex sets Sx,Sy are near, provided
the convex set Sx has at least one point a that matches some point b in Sy. In effect, Sx,Sy are proximal if
and only if cl(Sx) ∩ cl(Sy) , ∅.

In general, a subset K ⊂ E that contains every segment whose endpoints belong to K is convex [6].
Convex sets A,B are near, provided A and B have at least one common point. Convex sets A,B are remote
(denoted by A δS B), provided ‖a − b‖ , 0 for all a ∈ A, b ∈ B.

3. Main Results

In a real normed linear space endowed with a proximal relator Rδ (briefly, proximal linear space), we
obtain the following results.

Theorem 3.1. Let (E, ‖·‖ ,Rδ) be a proximal linear space, Sx,Sy ⊂ E. Then
1o z ∈ Sx ∩ Sy implies Sx δS Sy.
2o Let Sx,Sy be convex sets in E. Sx δ Sy, if and only if, Sx δS Sy.
3o Let A,B be convex sets in E. A δ B, if and only if, A δS B.
4o Let A,B,C be convex sets in E. (A ∪ B) δ C implies (A ∪ B) δS C.
5o clA δ clB implies clA δS clB.

Proof.
2o: A δS B, i.e., ‖a − b‖ = 0 for some a ∈ A, b ∈ B⇔ a ∈ clA ∩ clB⇔ A δ B.
2o
⇒ 1o.

3o: (A ∪ B) δ C provided cl(A ∪ B) ∩ clC , ∅. Consequently, there is at least one point z ∈ cl(A ∪ B) ∩ clC
such that

∥∥∥z − y
∥∥∥ = 0 for some z ∈ cl(A ∪ B), y ∈ clC. Hence, (A ∪ B) δS C.

3o
⇒ 4o.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ S ⊂ E, x · y = x1y1 + · · ·+ xnyn (dot product), ‖x‖ =
√

x2
1 + · · · + x2

n (norm
of x). The angle θ between x and y is defined by

θ = cos−1

 x · y

‖x‖
∥∥∥y

∥∥∥
 .

Each θ ∈ R. Let Sθ be the set of angles between points in E that are nearest to the angle θ ∈ S, i.e.,

Sθ =

θ′ ∈ R : ‖θ′ − θ‖ = in f
y∈Sθ

∥∥∥θ′ − y
∥∥∥ .

Theorem 3.2. Let U,V be finite-dimensional proximal linear spaces, A ⊂ U,B ⊂ V. Let Aθ,Bθ∠ be sets of angles
nearest θ, θ∠ between points in U,V, respectively. Then∥∥∥x − y

∥∥∥ = 0 for some x ∈ Aθ, y ∈ Bθ∠ if and only if Aθ δS Bθ∠ .

Proof. From Lemma 2.1, Aθ,Bθ∠ are convex sets. Aθ δ Bθ∠ ⇔ Aθ δS Bθ∠ (from Theorem 3.1) if and only if∥∥∥x − y
∥∥∥ = 0 for some x ∈ Aθ, y ∈ Bθ∠ .
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Remark 3.3. Since no assumption is made about the dimensions of the proximal linear spaces in Theorem 3.2,
this means that subsets in spaces with unequal dimensions can be compared. Let x, y ∈ U, x′, y′ ∈ V and let
θ(x, y), θ(x′, y′) be angles between points in U,V, respectively. Further, let A ⊂ U,B ⊂ V. By adding the condition
that 0 <

∥∥∥x − y
∥∥∥ < ε and 0 <

∥∥∥x′ − y′
∥∥∥ < ε and finding Aθ(x,y) δS Bθ(x′,y′), it is then possible to identify subsets with

similar shapes in proximal linear spaces. In effect, we thereby obtain a means of classifying shapes in such spaces. �

In a proximal real linear space E, the neighbourhood of a point x ∈ X (denoted by Nx,ε), for ε > 0, is defined
by

Nx,ε =
{
y ∈ X :

∥∥∥x − y
∥∥∥ < ε} .

Let A ⊂ E be a convex set. The interior of a set A (denoted by int(A)) and boundary of A (denoted by
bdy(A)) in E are defined by

int(A) =
{
x ∈ X : Nx,ε ⊆ A

}
.

bdy(A) = cl(A) \ int(A).

A set A has a natural strong inclusion in a set B associated with δ [2, 3] (denoted by A �δ B), provided
A ⊂ int(cl(intB)), i.e., A δ (X \ cl(intB)) (A is far from the complement of cl(intB)). This leads to the following
results.

Theorem 3.4. Let E be a proximal linear space and let A,B ⊂ E be convex sets. Then
1o A �δ B⇒ A δS B.
2o Let Sx,Sy be convex sets in E. Sx �δ Sy ⇒ Sx δS Sy.
3o clA �δ clB ⇔ clA δS clB.
4o Let Sx,Sy be convex sets in E. clSx �δ clSy ⇔ clSx δS clSy.

Proof.
1o: A �δ B⇔ x ∈ int(cl(intB)) for each x ∈ A⇔ A δS B.
1o
⇒ 2o.

3o: Symmetric with the proof of 1o.
3o
⇒ 4o.

Theorem 3.5. Let E be a proximal linear space, A ⊂ X. Then A ⊆ cl(A).

Proof. Let x ∈ (X \ A) such that x = a for some a ∈ clA. Consequently, x ∈ clA. Hence, A ⊆ clA.

Theorem 3.6. Let E be a proximal linear space, A ⊂ X. Then
10 A ⊆ int(A) ⊂ cl(A).
20 bdy(A) ⊆ cl(A).

Proof. Immediate from the definition of int(A), bdy(A), cl(A).

Theorem 3.7. Let E be a proximal linear space, A ⊂ X. Then int(A) ∪ bdy(A) ⊆ cl(A).

Proof. Immediate Theorem 3.6.

Theorem 3.8. Let E be a proximal linear space, A ⊂ E. Then cl(A) = int(A) ∪ bdy(A).

Proof.

A ⊆ cl(A)[Theorem 3.5]⇒ int(A) ∪ bdy(A) ⊆ cl(A)[Theorem 3.7]
⇒ bdy(A) ⊂ cl(A), from Theorem 3.6, and

int(A) ⊂ cl(A), from Theorem 3.6
⇒ cl(A) ⊆ int(A) ∪ bdy(A).
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If E be a proximal linear space, members of the families

E = {A ⊂ E : int(A) , ∅} and
D = {A ⊂ E : cl(A) = E}

are called fat and dense collections of subsets of E, respectively. Let cxE, cxD denote fat and dense collections
of convex subsets of E. Extensions of E,D (denoted by extE, extD) are introduced in Theorem 3.9.

Theorem 3.9. Let E be a proximal linear space. Let Sx,Sy ⊂ E be convex sets. Then
10 extE = {A ⊂ E : ∀B ∈ D, int(A) δ cl(B)}.
20 extD = {A ⊂ E : ∀B ∈ extE, clA δ clB}.
30 cxE =

{
Sx ⊂ E : ∀Sy ∈ D, int(Sx) δ cl(Sy)

}
.

40 cxD =
{
Sx ⊂ E : ∀Sy ∈ extE, cl(Sx) δ cl(Sy)

}
.

Proof.
1o: Let A ∈ extE,B ∈ D. Then clB = E. Consequently, int(A) ∩ clB , ∅. Hence, int(A) δ int(B).
2o: Symmetric with the proof of 1o.
1o
⇒ 3o.

2o
⇒ 4o.

Theorem 3.10. Let E be a proximal linear space. Then
10 A ∈ cxE,B ∈ D ⇒ int(A) δS cl(B).
20 A ∈ cxD,B ∈ extE ⇒ cl(A) δS cl(B).

Proof.
1o: Let A ∈ extE,B ∈ D. Consequently, int(A) δ cl(B) from Theorem 3.9. Hence, int(A) δS cl(B) from
Theorem 3.1.
2o: Symmetric with the proof of 1o.
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[11] Á Száz, An extension of Kelley’s closed relation theorem to relator spaces, FILOMAT 14 (2000), 49–71.
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