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Abstract. H. Aktuğlu and H. Gezer [Central European J. Math. 7 (2009), 558–567] introduced the concepts
of lacunary equistatistical convergence, lacunary statistical pointwise convergence and lacunary statistical
uniform convergence for sequences of functions. In this paper, we apply the notion of lacunary equistatis-
tical convergence to prove a Korovkin type approximation theorem by using test functions 1, x

1−x , (
x

1−x )2.

1. Introduction and Preliminaries

The following concept of statistical convergence for sequences of real numbers was introduced by Fast [7].
LetN be the set of positive integers and K ⊆ N. Let Kn =

{
j : j ≤ n and j ∈ K

}
.Then the natural density of K

is defined by

δ(K) := lim
n→∞

|Kn|

n

if the limit exists, where |Kn| denotes the cardinality of the set Kn.
A sequence x = (x j) of real numbers is said to be statistically convergent to the number L if, for every ε > 0,
the set { j : j ∈N and |x j − L| ≥ ε} has natural density zero, that is, if, for each ε > 0, we have

lim
n

1
n

∣∣∣{ j : j ≤ n and |x j − L| ≥ ε}
∣∣∣ = 0.

By a lacunary sequence we means an increasing integer sequenceθ = {kr} such that k0 = 0 and hr = kr−kr−1 →

∞ as r→∞. Throughout this paper the intervals determined by θwill be denoted by Ir = (kr−1, kr], and the
ratio kr/kr−1 will be abbreviated by qr.
Fridy and Orhan [8] defined the notion of lacunary statistical convergence as follows:
Let θ be a lacunary sequence; the number sequence x is Sθ-convergent to L provided that for every ε > 0,

lim
r

1
hr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0. (1)
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In this case we write Sθ-limit x = L or xk → L(Sθ).
Note that after the paper of Gadjiev and Orhan [9], the concept of statistcal convergence and its general-
izations and variants have been used in proving several approximation theorems, e.g. [4], [5], [6], [18],
[19], [20], [21], [22] and [24]. Further, we refere to some useful papers on approximating positive linear
operators, e.g. [2], [15], [17] and [23].
The concept of equistatistical convergence was introduced by Balcerzak et al. [3] and was subsequently
applied for establishing approximation theorems in [1], [10], [11] and [12]. In [1], Aktuglu and Gezer
[1] generalized the idea of statistical convergence to lacunary equistatistical convergence. Recently, Y.
Kaya and N. Gönül [13] established some analogues of the Korovkin approximation theorem via lacunary
equistatistical convergence. In this paper, we prove such type of theorem via lacunary equistatistical
convergence by using the test functions 1, x

1−x and ( x
1−x )2.

Let C[a, b] be the linear space of all real-valued continuous functions f on [a, b]. We know that C[a, b] is a
Banach space with the norm given by

‖ f ‖C[a,b] := sup
x∈[a,b]

| f (x)| ( f ∈ C[a, b]).

Let f and fn (n ∈N) be real-valued functions defined on a subset X of the setN of positive integers.

Definition 1.1. A sequence ( fk) of real-valued functions is said to be lacunary equistatistically convergent to f on X
if, for every ε > 0, the sequence

(
Sr(ε, x)

)
r∈N

of real-valued functions converges uniformly to the zero function on X,
that is, if, for every ε > 0, we have

lim
r→∞
‖Sr(ε, x)‖C(X) = 0,

where

Sr(ε, x) :=
1
hr

∣∣∣{k : k ∈ Ir and | fk(x) − f (x)| ≥ ε}
∣∣∣

and C(X) denotes the space of all continuous functions on X. In this case, we write

fk f (θ-equistat).

Definition 1.2. A sequence ( fk) is said to be lacunary statistically pointwise convergent to f on X if, for every ε > 0
and for each x ∈ X, we have

lim
r

1
hr

∣∣∣{k : k ∈ Ir and | fk(x) − f (x) |≥ ε}
∣∣∣ = 0.

In this case, we write

fr −→ f (θ-stat).

Definition 1.3. A sequence ( fr) is said to be lacunary statistically uniformly convergent to f on X if (for every ε > 0),
we have

lim
r

1
hr

∣∣∣{k : k ∈ Ir and ‖ fk − f ‖C(X) ≥ ε}
∣∣∣ = 0.

In this case, we write

fr−−→−→ f (θ-stat)
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Definition 1.4. (see [12]). A sequence ( fr) of real-valued functions is said to be equistatistically convergent to f on
X if, for every ε > 0, the sequence

(
Pn,ε(x)

)
n∈N

of real-valued functions converges uniformly to the zero function on
X, that is, if (for every ε > 0) we have

lim
n→∞
‖Pn,ε(x)‖C(X) = 0,

where

Pn,ε(x) =
1
n

∣∣∣{k : k 5 n and | fk(x) − f (x)| ≥ ε}
∣∣∣ = 0.

In this case, we write

fk f (equistat).

The following implications of the above definitions and concepts are trivial.

fk−−→−→ f (θ-stat) =⇒ fk f (θ-equistat) =⇒ fk → f (θ-stat).

Furthermore, in general, the reverse implications do not hold true.

2. Main Result

Let I = [0,A], J = [0,B], A,B ∈ (0, 1) and K = I × J. We denote by CB(K) the space of all bounded and
continuous real valued functions on K. This space is a equipped with norm

‖ f ‖CB(K) := sup
x∈K
| f (x)|, f ∈ CB(K),

where x = (u, v), u ∈ I, v ∈ J. Let Hω(K) denote the space of all real valued functions f on K such that

| f (s) − f (x) |≤ ω( f ; δ),

where ω is the modulus of continuity, i.e.

ω( f ; δ) = sup
s,x∈K
{| f (s) − f (x)| : |s − x |≤ δ} (δ > 0).

It is to be noted that any function f ∈ Hω(K) is continuous and bounded on K, and a necessary and sufficient
condition for f ∈ Hω(K) is that

lim
δ→0

ω( f ; δ) = 0.

In [1], Aktuğlu and Gezer proved the Korovkin theorem for lacunary eqistatistiacal convergence by using
the test functions 1, x and x2; while we use here the test functions 1, x

1−x and ( x
1−x )2.

Let T be a linear operator which maps C[a, b] into itself. We say that T is positive if, for every non-negative
f ∈ C[a, b], we have

T( f , x) = 0 (x ∈ [a, b]).

We prove the following result:

Theorem 2.1. Let (Lr) be a sequence of positive linear operators from Hω(K) into CB(K).Then for all f ∈ Hω(K)

Lr( f ) f (θ-equistat) (2)
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if and only if

Lr(1i) 1i (θ-equistat) (i = 0, 1, 2). (3)

with

10(x) = 1, 11(x) =
x

1 − x
and 12(x) = (

x
1 − x

)2.

Proof. Since each of the functions 1i belongs to Hω(K), conditions (3) follow immediately. Let 1 ∈ Hω(K)
and x ∈ K be fixed. Then for ε > 0 there exist δ > 0 such that | f (s) − f (x) |< ε holds for all s ∈ K satisfying
|

s
1−s −

x
1−x | < δ. Let

K(δ) := {s ∈ K : |
s

1 − s
−

x
1 − x

|< δ}.

Hence

| f (s) − f (x) |=| f (s) − f (x) |χK(δ)(s) + | f (s) − f (x) |χK\K(δ)(s)≤ ε + 2NχK\K(δ)(s) (4)

where χD denotes the characteristic function of the set D and N = ‖ f ‖CB(K). Further we get

χK\K(δ)(s) ≤
1
δ2 (

s
1 − s

−
x

1 − x
)2. (5)

Combining (4) and (5), we get

| f (s) − f (x) |≤ ε +
2N
δ2 (

s
1 − s

−
x

1 − x
)2. (6)

After using the linearity and positivity of operators {Lr}, we get

| Lr( f ; x) − f (x) |≤ ε + M{ | Lr(10; x) − 10(x) | + | Lr(11; x) − 11(x) |

+ | Lr(12; x) − 12(x) | + | Lr(13; x) − 13(x) | } (7)

which implies that

|Lr( f ; x) − f (x)| ≤ ε + M
2∑

i=o

|Lr(1i; x) − 1i(x)|, (8)

where M := ε + N + 4N
δ2 . Now for a given ρ > 0, choose ε > 0 such that ε < ρ. Then, for each i = 0, 1, 2, set

ψρ(x) := |{k ∈ Ir : |Lk( f ; x) − f (x)| ≥ ρ}| and ψi,ρ(x) := |{k ∈ Ir : |Lk(1i; x) − 1i(x)| ≥ ρ−ε
3K }| for (i = 0, 1, 2), it follows

from (8) that ψρ(x) ⊆ ∪2
i=0ψi,ρ(x). Hence

‖ψρ(x)‖CB(K)

hr
≤

2∑
i=o

(
‖ψi,ρ(x)‖CB(K)

hr

)
. (9)

Now using the hypothesis (3) and the Definition 1.1, the right hand side of (9) tends to zero as r → ∞.
Therefore, we have

lim
r→∞

‖ψρ(x)‖CB(K)

hr
= 0 for every ρ > 0,

i.e. (2) holds.
This completes the proof of the theorem.
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Example 2.1. Consider the following Meyer-König and Zeller [16] operators:

Bn( f ; x) := (1 − x)n+1
∞∑

k=0

f
( k

k + n + 1

)(n + k
k

)
xk, (10)

where f ∈ Hω(K), and K = [0,A], A ∈ (0, 1).
Since, for x ∈ [0,A], A ∈ (0, 1),

1
(1 − x)n+1 =

∞∑
k=0

(
n + k

k

)
xk,

it is easy to see that

Bn(10; x) = 10(x).

Also, we obtain

Bn(11; x) = (1 − x)n+1
∞∑

k=0

k
n + 1

xk

= (1 − x)n+1x
∞∑

k=0

1
n + 1

(n + k)!
n!(k − 1)!

xk−1

= (1 − x)n+1x
1

(1 − x)n+2 =
x

(1 − x)
.

Finally, we get

Bn(12; x) = (1 − x)n+1
∞∑

k=0

(
k

n + 1
)2xk

= (1 − x)n+1 x
n + 1

∞∑
k=0

k
n + 1

(n + k)!
n!(k − 1)!

xk−1

= (1 − x)n+1 x
n + 1

x
∞∑

k=0

(n + k + 1)!
(n + 1)!(k − 1)!

xk−1

=
n + 2
n + 1

(
x

1 − x
)2 +

1
n + 1

x
1 − x

→ (
x

1 − x
)2.

Therefore

Bn(1i; x)→ 1i(x) (n→∞) (i = 0, 1, 2),

and cosequently, we have

Bn(1i) 1i(θ-equistat) (i = 0, 1, 2).

Hence by Theorem 2.1, we have

Bn( f ) f (θ-equistat).
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3. Rate of Lacunary Equistatistical Convergence

In this section we study the rate of lacunary equistatistical convergence of a sequence of positive linear
operators as given in [24].

Definition 3.1. Let (an) be a positive non-increasing sequence. A sequence ( fr) is lacunary equistatistically conver-
gent to a function f with the rate o(ar) if for every ε > 0,

lim
r→∞

Λr(x, ε)
ar

= 0

uniformly with respect to x ∈ K or equivalently, for every ε > 0,

lim
r→∞

‖Λr(., ε)‖CB(X)

ar
= 0,

where

Λr(x, ε) :=
1
hr
| {k ∈ Ir :| fk(x) − f (x) |≥ ε} | .

In this case, it is denoted by fr − f = o(ar)) (θ-equistat) on K.

We have the following basic lemma.

Lemma 3.1. Let ( fr) and (1r) be sequences of functions belonging to C(K). Assume that fr − f = o(ar) (θ-equistat)
on K and 1r − 1 = o(br) (θ-equistat) on K . Let cr = max{ar, br} . Then the following statement holds:
(i) ( fr + 1r) − ( f + 1) = o(cr) (θ-equistat) on K ,
(ii) ( fr − f )(1r − 1) = o(arbr) (θ-equistat) on K,
(iii) µ( fr − f ) = o(ar) (θ-equistat) on K for any real number µ,
(iv)

√
| fr − f | = o(ar) (θ-equistat) on K.

We recall that the modulus of continuity of a function f ∈ Hω(K) is defined by

ω( f ; δ) = sup
s,x∈K
{| f (s) − f (x)| : |s − x |≤ δ} (δ > 0).

Now we prove the following result.

Theorem 3.2. Let {Lr} be a sequence of positive linear operators from Hω(K) into CB(K). Assume that the following
conditions hold:
(a) Lr(10; x) − 10 = o(ar) (θ-equistat) on K,
(b) ω( f , δr) = o(br) (θ-equistat) on K , where δr(x) =

√
Lr(φ2; x)

with φ(x) =
(

s
1−s −

x
1−x

)
. Then for all f ∈ Hω(K), we have

Lr( f ) − f = o(cr) (θ-equistat) on K,

where cr = max{ar, br}.

Proof. Let f ∈ Hω(K) and x ∈ K. Then it is well known that,

|Lr( f ; x) − f (x)| ≤M|Lr(10; x) − 10(x)| + (Lr(10; x) +
√

Lr(10; x))ω( f , δr),

where M = ‖ f ‖Hω(K). This yields that

|Lr( f ; x) − f (x)| ≤ M|(Lr(10; x) − 10(x)| + 2ω( f , δr) + ω( f , δr)|(Lr(10; x) − 10(x)| + ω( f , δr)
√
|(Lr(10; x) − 10(x)|.

Now using the conditions (a), (b) and Lemma 3.1 in the above inequality, we get Lr( f )− f = o(cr) (θ-equistat)
on K.

This completes the proof of the theorem.
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