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Abstract. Suppose S and T are adjointable linear operators between Hilbert C∗-modules. It is well known
that an operator T has closed range if and only if its Moore-Penrose inverse T† exists. In this paper, we
show that (TS)† = S†T†, where S and T have closed ranges and (ker(T))⊥ = ran(S). Moreover, we investigate
some results related to the polar decomposition of T. We also obtain the inverse of 1− T†T + T, when T is a
self-adjoint operator.

1. Introduction

Investigation of the closedness of ranges of operators and study of Moore-Penrose inverses are important
in operator theory. We want to extend some ideas of Izumino [4] in the framework of Hilbert C∗-modules
and obtain some characterizations of operators having closed ranges.

Xu and Sheng [9] showed that a bounded adjointable operator between two HilbertA-modules admits
a bounded Moore-Penrose inverse if and only if it has closed range. In general, there is no relation between
(TS)† with T† and S† except in some especial cases. This problem was first studied by Bouldin and Izumino
for bounded operators between Hilbert spaces, see [1, 2, 4]. Recently Sharifi [8] studied the Moore -Penrose
inverse of product of the operators with closed range in Hilbert C∗-modules. In the present paper, we
investigate the relation between (TS)†, T† and S† in a special case and prove that (TS)† = S†T†, when S and
T have closed ranges and (ker(T))⊥ = ran(S). Applying this relation, we state some results dealing with the
polar decomposition. Moreover, we obtain the inverse of 1 − T†T + T, when T is a self-adjoint operator.

Throughout the paper A is a C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a
C∗-algebraA is a complex linear spaceX, which is an algebraic rightA-module equipped with anA-valued
inner product 〈., .〉 : X ×X → A satisfying
(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0,
(ii)〈x, y + λz〉 = 〈x, y〉 + λ〈x, z〉,
(iii)〈x, ya〉 = 〈x, y〉a,
(iv) 〈y, x〉 = 〈x, y〉∗,
for each x, y, z ∈ X, λ ∈ C, a ∈ A. A pre-HilbertA-module X is called a HilbertA-module if it is complete
with respect to the norm ‖x‖ = ‖〈x, x〉‖

1
2 . Left HilbertA-modules are defined in a similar way. For example
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every C∗-algebra A is a Hilbert A-module with respect to the inner product 〈x, y〉 = x∗y, and every inner
product space is a left Hilbert C-module.

Suppose that X and Y are Hilbert A-modules. By L(X,Y) we denote the set of all maps T : X → Y
for which there is a map T∗ : Y → X such that 〈Tx, y〉 = 〈x,T∗y〉 for each x ∈ X, y ∈ Y. It is known
that any element T of L(X,Y) must be a bounded linear operator, which is also A-linear in the sense that
T(xa) = (Tx)a for x ∈ X and a ∈ A [5, Page 8]. We use the notations L(X) in place of L(X,X), and ker(·) and
ran(·) for the kernel and the range of operators, respectively.

Suppose thatX is a HilbertA-module andM is a closed submodule ofX. We say thatM is orthogonally
complemented if X =M⊕M⊥, whereM⊥ := {x ∈ X : 〈m, x〉 = 0 for all m ∈ M} denotes the orthogonal
complement ofM in X. The reader is referred to [5] for more details.

Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented,
however, Lance [5] proved that certain submodules are orthogonally complemented as follows.

Theorem 1.1. (see [5, Theorem 3.2]) Let X, Y be Hilbert A-modules and T ∈ L(X,Y) have closed range.
Then

• ker(T) is orthogonally complemented in X, with complement ran(T∗).

• ran(T) is orthogonally complemented inY, with complement ker(T∗).

• The map T∗ ∈ L(Y,X) has closed range.

Definition 1.2. Suppose that X and Y are Hilbert A-modules and T ∈ L(X,Y). The Moore-Penrose inverse of T
(if it exists) is an element T† of L(Y,X) satisfying

TT†T = T, T†TT† = T†, (TT†)∗ = TT†, (T†T)∗ = T†T. (1)

Under these conditions T† is unique and T†T and T T† are orthogonal projections. (Recall that an orthogonal
projection is a selfadjoint idempotent operator, that its range is closed.) Clearly, T is Moore-Penrose
invertible if and only if T∗ is Moore-Penrose invertible, and in this case (T∗)† = (T†)∗ .

Example 1.3. The standard Hilbert C∗-module overA, denoted byHA := `2(A), is the space of all sequences {an}n∈I
in A such that

∑
n∈I a∗nan converges in norm to an element of A and endowed with the natural linear structure

and rightA-multiplication and with theA-valued inner product defined by 〈{an}, {bn}〉 =
∑

n∈I a∗nbn, where the sum
converges in norm.

Let T ∈ L(HA,HA) be the left shift, i.e. T(a1, a2, ...) = (a2, a3, ...). Then

〈T(a1, a2, ...), (b1, b2, ...)〉 = 〈(a2, a3, ...), (b1, b2, ...)〉
= a∗2b1 + a∗3b2 + a∗4b3 + ....

= a∗10 + a∗2b1 + a∗3b2 + a∗4b3 + ....

= 〈(a1, a2, ...), (0, b1, b2, ...)〉.

This implies that T∗(b1, b2, ...) = (0, b1, b2, ...). We know that TT∗ and T∗T are projections. Also, TT∗T(a1, a2, ...) =
T(0, a2, a3, ...) = (a2, a3, ...) = T(a1, a2, ...) and T∗TT∗(a1, a2, ...) = T∗T(0, a1, a2, a3, ...) = T∗(a1, a2, a3, ...). By unique-
ness of Moore-Penrose inverse, we have T† = T∗.

Theorem 1.4. (see [9, Theorem 2.2]) Let X, Y be Hilbert A-modules and T ∈ L(X,Y). Then the Moore-
Penrose inverse T† of T exists if and only if T has closed range.

By (1), we have

ran(T) = ran(T T†) ran(T†) = ran(T†T)
ker(T) = ker(T†T) ker(T†) = ker(T T†)

and by Theorem 1.1, we know that

X = ker(T) ⊕ ran(T†) = ker(T†T) ⊕ ran(T†T)
Y = ker(T†) ⊕ ran(T) = ker(T T†) ⊕ ran(T T†).

Throught the paper we assume that X,Y andZ are HilbertA-modules.
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2. Moore-Penrose Inverse

In this section, we state some properties of Moore-penrose inverses of operators.

Proposition 2.1. (see [6, Corollary 2.4]) Suppose that T ∈ L(X,Y) has closed range. Then (TT∗)† = (T∗)†T†.

Theorem 2.2. Suppose that T ∈ L(X,Y) has closed range and U ∈ L(X) is an orthogonal projection commuting
with T†T. Then TUT∗ has closed range. Furthermore if TUT† is self-adjoint, then (TUT∗)† = (T∗)†UT†.

Proof. By the assumption, T†T commutes with U and T†T = (T†T)∗ = T∗(T∗)†. The operator (T∗)†UT† is a
generalized inverse of TUT∗, since

TUT∗(T∗)†UT†TUT∗ = TUT∗

and (T∗)†UT†TUT∗(T∗)†U†T† = (T∗)†UT†. Hence TUT∗ has closed range.
If TUT† is self-adjoint, then

((T∗)†UT†TUT∗)∗ = ((T∗)†U2T†TT∗)∗ = ((T∗)†UT∗)∗ = TUT†.

Also

(TUT∗(T∗)†UT†)∗ = (TUT†TUT†)∗ = (TU2T†TT†)∗ = (TUT†)∗ = TUT†.

By the uniqueness of Moore-Penrose inverse, (TUT∗)† = (T∗)†UT†.

Theorem 2.3. Suppose that P,Q are orthogonal projections inL(X) such that ranP ⊆ ranQ. Then PQ and 1−Q−P
have closed ranges.

Proof. Since P and Q are orthogonal projections with ranP ⊆ ranQ, it holds that QP = P, which means that
PQ = P by taking ∗-operation. Thus PQ is actually an orthogonal projection and so it has closed range. Also
by [8, Lemma 3.2], 1 −Q − P has closed range.

3. The Relation Between (TS)† with S† and T†

In this section we will show that (TS)† = S†T†, when (ker(T))⊥ = ranS.

Lemma 3.1. Suppose P and Q are orthogonal projections on a Hilbert A-module X and ker(Q) + ran(P) and
ker(P) + ran(Q) are orthogonally complemented in X. If PQ has closed range and R and U are the orthogonal
projections onto the closed submodules ker(Q) + ran(P) and ker(P) + ran(Q), respectively, then

(PQ)†(PQ) = QR and (PQ)(PQ)† = PU. (2)

Proof. Since 1 − Q and R are the orthogonal projections onto ker(Q) and ker(Q) + ran(P), respectively, and
ker(Q) ⊆ ker(Q) + ran(P), by a reasoning as in the proof of [3, Theorem 3. Page 42], (1 − Q)R = R(1 − Q) =
1 − Q. Hence RQ = QR. Consequently, QR is a orthogonal projection with closed range, and ran(QR) is
orthogonally complemented inX. Since PQ has closed range, by Theorem 1.1, (PQ)∗ = QP has closed range.
Since

ran(QP) ⊆ ran(QR) ⊆ ran(QP) = ran(QP),

we have ran(QP) = ran(QR). Then ran(PQ)∗ = ran(QP) = ran(QR). Since QP has closed range, (QP)† exist.
Hence QP(QP)† is a projection and

(QP)(QP)† = ((QP)(QP)†)∗ = ((QP)†)∗(QP)∗ = (PQ)†(PQ).

Now, ran((PQ)†(PQ)) = ran((QP)(QP)†) = ran(QP) = ran(QR). Therefore ran((PQ)†PQ) = ran(QR). So that
(PQ)†PQ = QR, since (PQ)†PQ and QR are orthogonal projections.

By a similar discussion for 1 − P and U instead of 1 − Q and R, respectively, we can conclude that
(PQ)(PQ)† = PU.
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Theorem 3.2. Suppose that S ∈ L(X,Y), T ∈ L(Y,Z) and TS have closed ranges and (ker(T))⊥ = ran(S). Then

(TS)† = S†T†.

Proof. Let P = T†T and Q = SS†. Since ranS = (ker(T))⊥ = ranT∗, we have ran(SS†) = ran(T∗(T∗)†) =
ran((T†T)∗) = ran(T†T), or equivalently, Q = SS† = T†T = P. Therefore PQ has closed range and (PQ)† exists.
Also TS has closed range, so (TS)† exists. We have

TSS†T†TS = TT†TT†TS = TT†TS = TS,

S†T†TSS†T† = S†T†TT†TT† = S†T†,

and
(TSS†T†)∗ = (TT†TT†)∗ = (TT†)∗ = TT† = TT†TT† = TSS†T†.

Similarly, (S†T†TS)∗ = S†T†TS. Hence by the uniqueness of Moore-Penrose inverse, (TS)† = S†T†.

Definition 3.3. An operator V ∈ L(X,Y) is a partial isometry if for each x ∈ (ker V)⊥, it holds that ‖Vx‖ = ‖x‖.

Similar to [7, Theorem 2.3.4], each T ∈ L(X,Y) has a polar decomposition T = V|T|, where V ∈ L(X,Y)
is a partial isometry, |T| = (T∗T)

1
2 ker(V) = ker(T), ran(V) = ran(T),

ker(V∗) = ker(T∗), ran(V∗) = ran(|T|) and V∗T = |T|.

Remark 3.4. As an application of Theorem 3.2, suppose that T ∈ L(X,Y) is an operator with a polar decomposition
T = V|T|. Since V ∈ L(X,Y) is a partial isometry, ran(V) = ran(T) = ranT. Then V has a closed range
and V† exists. By [5, Page 30] and the uniqueness of Moore-Penrose inverse, V∗ = V†. Utilizing the polar
decomposition, we have ran(|T|) = ran(T∗), so ran(|T|) is closed. By Theorem 1.1, since V has closed range,
(ker V)⊥ = ran(V∗) = ran(|T|) = ran(|T|). Theorem 3.2 implies that T† = (V|T|)† = |T|†V† = |T|†V∗.

Theorem 3.5. Let T ∈ L(X,Y) be an operator with closed range and T = V|T|, be the polar decomposition of T.
Then V = T|T|†.

Proof. By remark 3.4, V∗ = V†, so ran(V†) = ran(V∗) = ran(|T|). Therefore ran(V†V) = ran(|T||T|†) or
equivalently V†V = |T||T|†. Multiplying on the left by V we reach V = VV†V = V|T||T|† = T|T|†.

The following theorem gives the conditions under which, (TS)† = S†T†.

Theorem 3.6. Suppose that operators S ∈ L(X,Y), T ∈ L(Y,Z) and TS ∈ L(X,Z) have closed ranges. If
ran(T∗TS) ⊆ ran(S) and ran(SS∗T∗) ⊆ ran(T∗), then (TS)† = S†T†.

Proof. Suppose y ∈ ran(S). Then y = S(x) for some x ∈ X and SS†(Sx) = Sx. If y ∈ ran(T∗), then y = T∗(z) for
some z ∈ Z and T†T(T∗(z)) = T∗(z).

Therefore SS† and T†T are projections on ran(S) and ran(T∗), respectively. By the assumption, we have

SS†T∗TS = T∗TS and T†TSS∗T∗ = SS∗T∗. (3)

From the first equation of (3), we have S∗T∗TSS† = S∗T∗T. By multiplying on the right by T† and on the left
by ((TS)∗)†, we get ((TS)∗)†S∗T∗TSS†T† = ((TS)∗)†S∗T∗TT†, whence

(TS)S†T† = (TS)(TS)†TSS†T†

= ((TS)∗)†(TS)∗TSS†T†

= ((TS)∗)†S∗T∗TSS†T†

= ((TS)∗)†S∗T∗TT†

= ((TS)∗)†S∗(TT†T)∗

= ((TS)∗)†S∗T∗

= TS(TS)†.
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From the second equation of (3), we have T†TSS∗T∗ = SS∗T∗. By multiplying on the left by S† and on the
right by ((TS)∗)†, we reach S†T†TSS∗T∗((TS)∗)† = S†SS∗T∗((TS)∗)†, from which we get

S†T†(TS) = S†T†TS(TS)†(TS)
= S†T†TS(TS)∗((TS)∗)†

= S†T†TSS∗T∗((TS)∗)†

= S†SS∗T∗((TS)∗)†

= (SS†S)∗T∗((TS)∗)†

= S∗T∗((TS)∗)†

= (TS)∗((TS)∗)†

= ((TS)†(TS))∗

= (TS)†TS.

TSS†T† and S†T†TS are orthogonal projections, since TS(TS)† and (TS)†TS are orthogonal projections.
Hence by the uniqueness of Moore-Penrose inverse, (TS)† = S†T†.

4. Invertibility via Moore-Penrose Inverse

The purpose of this section is to find the inverse of some special operators by using Moore-Penrose
inverse.

Theorem 4.1. Suppose that X is a Hilbert A-module and T ∈ L(X) is a self-adjoint operator with closed range.
Then 1 − T†T + T is invertible.

Proof. If T ∈ L(X) is a self-adjointable operator with closed range, then TT† = (TT†)∗ = (T†)∗T∗ = (T∗)†T∗ =
T†T.
Put C = 1 − T†T + T and K = 1 − T†T + T†. Then

CK = (1 − T†T + T)(1 − T†T + T†)
= 1 − T†T + T† − T†T + T†TT†T − T†TT† + T − TT†T + TT†

= 1 − T†T + T† − T†T + T†T − T† + T − TT†T + TT†

= 1 − T†T + TT†

= 1,

and

KC = (1 − T†T + T†)(1 − T†T + T)
= 1 − T†T + T − T†T + T†TT†T − T†TT + T† − T†T†T + T†T
= 1 − T†T + T − T†T + T†T − T + T† − T† + T†T
= 1.

Hence 1 − T†T + T is invertible.

Corollary 4.2. Suppose that T ∈ L(X,Y) has closed range. Then 1 − TT† + TT∗ is an invertible operator.

Proof. Since TT∗ is a self-adjoint operator, Theorem 4.1 and Proposition 2.1 imply that 1− (TT∗)†TT∗ + TT∗ =
1 − (T∗)†T†TT∗ + TT∗ = 1 − TT† + TT∗ is invertible. Moreover, its inverse is 1 − TT† + (TT∗)†.

Theorem 4.3. Suppose that T ∈ L(X,Y) has closed range and operators U, TUT† are projections and U commutes
with T†T. Then 1 − TUT† + TUT∗ is injective. Furthermore, if both TT∗ and (TT∗)† commute with U, then
1 − TUT† + TUT∗ is invertible.
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Proof. Theorem 2.2 ensures that TUT∗ has closed range and (TUT∗)† = (T∗)†UT†.
Put C = 1 − TUT† + TUT∗ and K = 1 − TUT† + (TUT∗)†. We observe that

KC = (1 − TUT† + (TUT∗)†)(1 − TUT† + TUT∗)
= 1 − TUT† + TUT∗ − TUT†TUT∗ + (TUT∗)† − (TUT∗)†TUT† + (TUT∗)†TUT∗

= 1 − TUT† + TUT∗ − TUUT†TT∗ + (TUT∗)† − (TUT∗)†TUT† + (TUT∗)†TUT∗

= 1 − TUT† + (T∗)†UT† − (T∗)†UT†TUT† + (T∗)†UT†TUT∗

= 1 − TUT† + (T∗)†UT† − (T∗)†UUT†TT† + (T∗)†UT†TUT∗

= 1 − TUT† + (TUT†TUT†)∗

= 1 − TUT† + (TUT†)∗

= 1.

Therefore K is a left inverse for C, and 1 − TUT† + TUT∗ is injective. Moreover, if TT∗ and (TT∗)† commute
with U, then we see that

CK = (1 − TUT† + TUT∗)(1 − TUT† + (TUT∗)†)
= 1 − TUT† + (TUT∗)† − TUT†(TUT∗)† + TUT∗ − TUT∗TUT† + TYT∗(TUT∗)†

= 1 − TUT† + (T∗)†UT† − TUT†(T∗)†UT† + TUT∗ − TUT∗TUT† + TUT∗(T∗)†UT†

= 1 − TUT† + (T∗)†UT† − TU(T∗T)†UT† + TUT∗ − TUT∗TUT† + TUT†TUT†

= 1 − TUT† + (T∗)†UT† − T(T∗T)†UUT† + TUT∗ − TUUT∗TT† + TUUT†TT†

= 1 − TUT† + (T∗)†UT† − TT†(T∗)†UT† + TUT∗ − TUT∗TT† + TUT†

= 1 − TUT† + (T∗)†UT† − (T∗)†UT† + TUT∗ − TUT∗ + TUT†

= 1

This shows that K is a right inverse for C. Hence 1 − TUT† + TUT∗ is invertible.
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