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Family of Simultaneous Methods with Corrections for Approximating
Zeros of Analytic Functions

Lidija Z. Rančić
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Abstract.A family of accelerated iterative methods for the simultaneous approximation of complex zeros
of a class of analytic functions is proposed. Considered analytic functions have only simple zeros inside a
simple smooth closed contour in the complex plane. It is shown that the order of convergence of the basic
family can be increased from four to five and six using Newton’s and Halley’s corrections, respectively.
The improved convergence is achieved on the account of additional calculations of low computational cost,
which significantly increases the computational efficiency of the accelerated methods. Numerical examples
demonstrate a good convergence properties, fitting very well theoretical results.

1. Introduction

Finding all zeros of analytic functions is a very important problem in numerical analysis and applied
scientific disciplines. In this paper we consider a class of analytic functions having only simple zeros inside
a simple smooth closed contour in the complex plane. The aim of this paper is to present a new family of
accelerated iterative methods for the simultaneous computation of zeros of an analytic function from the
considered class. Also, the convergence properties of the presented family are studied. Good convergent
properties are illustrated by two numerical examples.

The derivation of the basic family is proposed in [10]. It is based on suitable combination of appropriate
analytic function with a cubically convergent iterative method for finding a single zero of an analytic
function f , proposed by Gutiérez and Hernández [4],

x̂ = x −
f (x)
f ′(x)

(
1 +

1
s(x) − α

)
. (1)

Here α is a real parameter, x is a current approximation, x̂ is a new approximation to the wanted zero and

s(x) =
2 f ′(x)2

f (x) f ′′(x)
.
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The authors were supported in part by the Serbien Ministry of Education, Science and Technological Development under grant

174022
Email address: lidija.rancic@yahoo.com (Lidija Z. Rančić)
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The family (1) includes various methods with a cubic convergence when α is finite: Halley’s method (α = 1)
and Chebyshev-Euler’s method (α = 0), for example. As a limiting case, when |α| → ∞, the family (1)
behaves as quadratically convergent Newton’s method

x = x −
f (x)
f ′(x)

.

For this reason, it is preferable to avoid the choice of large parameter α in (1).

2. Derivation of the accelerated families

Let z 7→ Φ(z) be an analytic function inside and on the simple smooth closed contour Γ, without zeros
on Γ and with a known number n of simple zeros ζ1, . . . , ζn inside Γ.We note that there exist several reliable
approaches for computing the number of zeros of an analytic function inside a given smooth closed contour
in the complex plane (see [2], [5], [7], [8], for instance). The number of zeros n of Φ iside Γ may be determined
by the argument principle (see, e.g., [5])

n =
1

2πi

∫
Γ

Φ′(w)
Φ(w)

dw =
1

2π

[
arg Φ(ω)

]
ω∈Γ

= n
(
Φ(Γ), 0

)
. (2)

Φ(Γ) denotes the image of the curve Γ under the mapping Φ. The integer n
(
Φ(Γ), 0

)
is the so-called winding

number of Φ(Γ) with respect to the origin and it is equal to the number of times that the curve Φ(Γ) “winds”
itself around the origin.

Following Smirnov [12] and Iokimidis and Anastasselou [6] Φ can be represented in the form of product

Φ(z) = exp
(
Ψ(z)

) n∏
j=1

(z − ζ j), (3)

where Ψ is an analytic function inside Γ given by

Ψ(z) =
1

2πi

∫
Γ

log
[
(w − η)−nΦ(w)

]
w − z

dw (4)

and η is an arbitrary point inside Γ.
In order to increase computational efficiency of the basic method proposed in [10], we state some

modifications. It is obvious that the zeros of analytic function Φ inside Γ coincide with the zeros of function

Vi(z) =
Φ(z)

exp
(
Ψ(z)

) n∏
j=1
j,i

(z − v j)

, (5)

where v1, . . . , vn are some approximations to the zeros ζ1, . . . , ζn of Φ. The computational cost could be
increased if the approximations v j use the already calculated values Φ(z j),Φ′(z j) and Φ′′(z j) in a suitable
way. We consider the following approximations (v1, . . . , vn) = (z(k)

1 , . . . , z
(k)
n ), k = 1, 2, 3, where

z(1)
j = z j (current approximation),

z(2)
j = z j −N j (Newton’s approximation), (6)

z(3)
j = z j −H j (Halley’s approximation).
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Newton’s and Halley’s approximations occur in the classic iterative methods

ẑ j = z j −N j = z j −
Φ(z j)
Φ′(z j)

(Newton’s method, order 2),

ẑ j = z j −H j = z j −

(Φ′(z j)
Φ(z j)

−
Φ′′(z j)
2Φ′(z j)

)−1

(Halley’s method, order 3).

In the sequel, for i ∈ In := {1, . . . ,n}, we will use the abbreviations

δq,i =
Φ(q)(zi)
Φ(zi)

, S(k)
q,i =

∑
j∈In\{i}

1(
zi − z(k)

j

)q , Σq,i =
∑

j∈In\{i}

1(
zi − ζ j

)q , (q = 1, 2, k = 1, 2, 3), (7)

where z(k)
j is defined by (6).

For simplicity, we will write Ψ′i = Ψ′(zi), Ψ′′i = Ψ′′(zi). If we use the logarithmic derivative in (5),
according to introduced abbreviations (7), we find(

Vi(z)
)′

Vi(z)

∣∣∣∣∣∣
z=zi

= δ1,i − S(k)
1,i −Ψ′i = Ti,k, (8)(

Vi(z)
)′′(

Vi(z)
)′ ∣∣∣∣∣∣

z=zi

= δ1,i − S(k)
1,i −Ψ′i −

δ2
1,i − δ2,i − S(k)

2,i + Ψ′′i

δ1,i − S(k)
1,i −Ψ′i

= Ti,k −
Hi,k

Ti,k
, (9)

where we set

Ti,k = δ1,i − S(k)
1,i −Ψ′i , Hi,k = δ2

1,i − δ2,i − S(k)
2,i + Ψ′′i . (10)

Taking the iterative formula (1) with the function V instead of Φ and substituting V′(z)/V(z) and
V′′(z)/V′(z) evaluated at the point z = zi and given by (8) and (9), we construct the following one parameter
family of iterative methods for finding, simultaneously, simple zeros of the analytic function Φ inside the
contour Γ,

ẑi = zi −
1

Ti,k

(
1 +

(
Ti,k

)2
−Hi,k

2
(
Ti,k

)2
− α

((
Ti,k

)2
−Hi,k

) ) (i ∈ In, k = 1, 2, 3). (11)

Introducing the iteration index m and assuming that T(m)
i,k and H(m)

i,k involve quantities obtained in the
m-th iteration, the last iterative formula gets the form

z(m+1)
i = z(m)

i −
1

T(m)
i,k

(
1 +

(
T(m)

i,k

)2
−H(m)

i,k

2
(
T(m)

i,k

)2
− α

((
T(m)

i,k

)2
−H(m)

i,k

) ) (i ∈ In, k = 1, 2, 3, m = 0, 1, . . .). (12)

For simplicity, we will often omit the iteration index in our analysis.
In the particular case when α = 1 from the iterative formula (11) we obtain Halley-like method

ẑi = zi −
2Ti,k(

Ti,k

)2
+ Hi,k

(i ∈ In)

considered for k = 1 (basic method) in [9]. If α → +∞, the basic method in (11) reduces to the iterative
method

ẑi = zi −
1

Φ′(zi)
Φ(zi)

−Ψ′(zi) −
n∑

j=1
j,i

(zi − z j)−1

(i ∈ In)

of the third order, considered by Iokimidis and Anastasselou in [6].
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3. Convergence analysis

The subject of the following theorem is the order of convergence of the proposed family (12):

Theorem 3.1. If the initial approximations z(0)
1 , . . . , z

(0)
n are sufficiently close to the respective zeros ζ1, . . . , ζn of Φ,

then the family of iterative methods (12) has the order of convergence equal to k + 3 (k = 1, 2, 3).

Proof. We omit iteration index for short and use the iterative formula (11) instead of (12). For Newton’s
and Halley’s corrections we have

N j =
Φ(z j)
Φ′(z j)

=
ε j

1 + ε j(Ψ′j + Σ1, j)
, (13)

H j =
(Φ′(z j)

Φ(z j)
−

Φ′′(z j)
2Φ′(z j)

)−1

=
2ε j

(
1 + ε j(Ψ′j + Σ1, j)

)
2 + 2ε j(Ψ′j + Σ1, j) + ε2

j

(
(Ψ′j + Σ1, j)2 + Σ2, j −Ψ′′j

) . (14)

According to (6), (13) and (14), we find the errors z(k)
j − ζ j, for k = 1, 2, 3

z(1)
j − ζ j = zi − ζ j = ε j = ω(1)

j ε j,

z(2)
j − ζ j = z j −N j − ζ j =

ε2
j (Ψ

′

j + Σ1, j)

1 + ε j(Ψ′j + Σ1, j)
= ω(2)

j ε
2
j ,

z(3)
j − ζ j = z j −H j − ζ j

=
ε3

j

(
(Ψ′j + Σ1, j)2 + Σ2, j −Ψ′′j

)
2 + 2ε j(Ψ′j + Σ1, j) + ε2

j

(
(Ψ′j + Σ1, j)2 + Σ2, j −Ψ′′j

) = ω(3)
j ε

3
j .

These errors can be written in the unique form

z(k)
j − ζ j = ω(k)

j ε
k
j (k = 1, 2, 3).

Let us introduce the notation

Ai,k = S(k)
1,i − Σ1,i =

∑
j∈In\{i}

εk
jω

(k)
j

(zi − z(k)
j )(zi − ζ j)

, (15)

and

Bi,k = S(k)
2,i − Σ2,i =

∑
j∈In\{i}

εk
j(2zi − z(k)

j − ζ j)ω
(k)
j

(zi − z(k)
j )2(zi − ζ j)2

. (16)

Using the logarithmic derivative in (3) and the introduced notation (7) we obtain

δ1,i =
Φ′(zi)
Φ(zi)

=
1
εi

+ Σ1,i + Ψ′i ,

δ2
1,i − δ2,i = −

d
dz

Φ′(z)
Φ(z)

∣∣∣∣
z=zi

=
Φ′(zi)2

−Φ′′(zi)Φ(zi)
Φ(zi)2 =

1
ε2

i

+ Σ2,i −Ψ′′i .
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Regarding (10) we estimate

Ti,k = δ1,i − S(k)
1,i −Ψ′i =

1
εi

+ Σ1,i − S(k)
1,i =

1
εi
− Ai,k, (17)

Hi,k = δ2
1,i − δ2,i − S(k)

2,i + Ψ′′i =
1
ε2

i

+ Σ2,i − S(k)
2,i =

1
ε2

i

− Bi,k. (18)

Starting from the family of iterative methods (11), from (17) and (18) we have

ε̂i = ẑi − ζi = εi −
1

Ti,k

(
1 +

(Ti,k)2
−Hi,k

2(Ti,k)2 − α
(
(Ti,k)2 −Hi,k

) )

= εi −
εi

1 − εiAi,k

(
1 +

(
1/εi − Ai,k

)2
+ Bi,k − 1/ε2

i

2
(
1/εi − Ai,k

)2
− α

((
1/εi − Ai,k

)2
+ Bi,k − 1/ε2

i

) )

= εi −
εi

1 − εiA
(k)
i

(
1 +

ε2
i

(
(A(k)

i )2 + B(k)
i

)
− 2εiA

(k)
i

2 + 2(α − 2)εiA
(k)
i − ε

2
i

(
(α − 2)(A(k)

i )2 + αB(k)
i

) )

=
ε3

i

(
(Ai,k)2(3 − 2α) − Bi,k + εi

(
(α − 2)(Ai,k)3 + αAi,kBi,k

))
2 + 2(α − 2)εiAi,k − ε2

i

(
(α − 2)(Ai,k)2 + αBi,k

) . (19)

According to the assumptions of the theorem, the approximations z1, . . . , zn are good enough, so the
quantity ε = max1≤ j≤n |ε j| is sufficiently small. The denominator of the last expression is bounded and tends
to 2 when |ε| → 0. From (15) and (16) we have the estimations

Ai,k = O(εk), Bi,k = O(εk). (20)

Taking the relations (19) and (20) we find that

ε̂ = O(εk+3),

which completes the proof. �

To implement the iterative formula (11) it is necessary to calculate the derivatives Ψ′(z) and Ψ′′(z) at the
point zi, i ∈ In. Starting from (4) we find

Ψ′(z) =
1

2πi

∫
Γ

log
[
(w − η)−nΦ(w)

]
(w − z)2 dw. (21)

Without loss of generality, we can take η = 0 in (21). Applying an integration by parts, from (21) we obtain

Ψ′(z) =
1

2πi

∫
Γ

Φ′(w)
Φ(w)

dw
w − z

, (22)

(see [12]), wherefrom

Ψ′′(z) =
1

2πi

∫
Γ

Φ′(w)
Φ(w)

dw
(w − z)2 . (23)

The integral in (2) (the number of zeros) and the integrals in (22) and (23) have the similar form and we
can calculate them by applying a numerical integration. We can use a convenient sufficiently accurate
quadrature rule for contours of the form

1
2πi

∫
Γ

f (w)dw �

p∑
k=1

Akp f (wkp)
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based on the trapezoidal rule or on the orthogonal polynomials. Akp are the weights and wkp are the
corresponding nodes of quadrature formula. The same values Φ(wkp) and Φ′(wkp) may be used in all three
integrals. We refer the reader to [1], [2], [3], [6] and the references cited therein for details.

In [11] we discussed the influence of the error of numerical integration on the accuracy of the produced
approximations. The influence of the increased number of iterative steps is very small. The same discussion
can be performed for the iterative methods (11). The conclusion is that even rough approximations to Ψ′(zi)
and Ψ′′(zi) can provide a good approximations to the wanted zeros of Φ.

It should be noted that all zero-finding methods applied to the considered class of analytic functions are
not effective if the sought zeros are very close to the contour Γ.

4. Numerical examples

To demonstrate the convergence speed of the proposed simultaneous methods (12), we tested a lot
of analytic functions. In this section we give some selected examples chosen among many numerical
experiments. The proposed simultaneous methods with Newton’s and Halley’s corrections use the already
calculated values Φ,Φ′,Φ′′ at the points z1, . . . , zn so that the convergence speed of the implemented iterative
methods is accelerated with the negligible number of additional operations. In this manner a very high
computational efficiency of the proposed methods is provided, which is the main advantage of the presented
methods. In order to save all significant digits of the obtained approximations, we implemented the
considered methods using the programming package Mathematica 8 with multiple precision arithmetic.

The performed numerical experiments demonstrated very fast convergence of the modified methods
for finding simple zeros of analytic function Φ. For illustration we present two numerical examples. As a
measure of closeness of approximations with regard to the exact zeros, we have calculated Euclid’s norm

em :=
( n∑

i=1

∣∣∣z(m)
i − ζi

∣∣∣2)1/2

. (24)

Example 1. We applied the proposed family of iterative methods (12) obtained for α = 0, α = 1, α = −1
and α = 100, for the simultaneous approximation to the simple zeros of the analytic function

Φ(z) = z(z − 1)(z − 2)(z − 3)(z − 4) + cos z − 1

inside the contour Γ = {z ∈ C : |z| = 5}.

The number n of zeros of Φ inside Γ and the values of Ψ′(zi) and Ψ′′(zi) were calculated by the trapezoidal
quadrature rule along the circle Γ = {z : |z| = 5}. The details of such kind of approximate integration may
be found in [2], [6] and [9]. We found by this approach that the number of zeros in the disk {z : |z| < 5} is
n = 5. The number of zeros can be also determined by the winding number n(Φ(Γ), 0) (see Fig.1).

The following initial approximations

z(0)
1 = 0.3 − 0.3 i, z(0)

2 = 1. + 0.1 i, z(0)
3 = 2.4 + 0.4 i, z(0)

4 = 2.4 − 0.4 i, z(0)
5 = 4. − 0.6 i,

were employed in the realization of the iterative methods (12). In each iteration we calculated the accuracy
of approximations z(m)

i by the Euclidean norm (24). For the above initial approximations we have e0 = 0.790.
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Fig. 1 The curve Φ(Γ) where Φ(z) = z(z − 1)(z − 2)(z − 3)(z − 4) + cos z − 1 and Γ = {z ∈ C : |z| = 5}

The results of the first three iterations are given in Table 1, where A(−h) means A × 10−h.

Methods k = 1 k = 2 k = 3
(basic method) (Newton’s corr.) (Halley’s corr.)

e1 3.26(−2) 4.46(−3) 4.50(−3)
α = 0 e2 2.84(−8) 5.28(−14) 4.29(−17)

e3 5.48(−33) 2.75(−68) 3.76(−100)
e1 2.90(−2) 4.82(−3) 3.72(−3)

α = 1 e2 1.74(−8) 8.33(−14) 1.38(−17)
e3 7.40(−34) 2.93(−67) 1.55(−103)
e1 3.63(−2) 4.25(−3) 5.42(−3)

α = −1 e2 5.67(−8) 5.44(−14) 2.05(−16)
e3 6.30(−32) 5.14(−68) 2.81(−95)
e1 5.33(−2) 1.69(−2) 2.65(−2)

α = 1000 e2 1.60(−5) 2.95(−10) 7.15(−12)
e3 1.21(−19) 1.81(−49) 1.50(−68)

Table 1 The error em for the first three iterations

From Table 1 we observe that the basic method and the both accelerated methods from (11) for small
α in magnitude possess very fast convergence and almost the same accuracy among approximations for a
fixed k, in spite of the rough initial approximations. When α takes too large values, the family (11) reduces
to the iterative methods

ẑ = zi −
1

Φ′(zi)
Φ(zi)

−Ψ′(zi) −
n∑

j=1
j,i

(
zi − z(k)

j

)−1
, (25)

and for k = 1, 2, 3 possess the order of convergence k + 2. For k = 1 the iterative method (25) was considered

in [6].

Example 2. We applied the proposed family of methods (12) for the simultaneous approximation to the
zeros of the analytic function

Φ(z) = (z2
− 4)(e2z cos z + z3

− 1 − sin z)

inside the contour Γ = {z ∈ C : |z| = 3}.
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Fig. 2 The curve Φ(Γ) where Φ(z) = (z2
− 4)(e2z cos z + z3

− 1 − sin z) and Γ = {z ∈ C : |z| = 3}

The number n of zeros of Φ inside Γ and the values of Ψ′(zi) and Ψ′′(zi) were calculated by the trapezoidal
quadrature rule along the circle Γ = {z : |z| = 3}. We found by this approach that the number of zeros in
the disk {z : |z| < 3} is n = 6. Also, from Fig. 2 we observe that the winding number of Φ is six.

In the realization of the iterative methods (12) we use the following initial approximations

z(0)
1 = −0.6 + 0.7 i, z(0)

2 = −0.6 − 0.7 i, z(0)
3 = 0.2 − 0.1 i,

z(0)
4 = 2.2 + 0.1 i, z(0)

5 = −2.2 + 0.1 i, z(0)
6 = 1.6 − 0.2 i.

In each iteration we controlled the accuracy of approximations z(m)
i by the Euclidean norm (24). For the

above initial approximations we have e0 = 0.494. The results of the first three iterations are given in Table 2.

Methods k = 1 k = 2 k = 3
(basic method) (Newton’s corr.) (Halley’s corr.)

e1 1.97(−2) 9.61(−3) 4.76(−3)
α = 0 e2 1.50(−6) 9.94(−10) 6.54(−14)

e3 4.56(−23) 1.64(−46) 6.13(−79)
e1 1.75(−2) 8.97(−3) 4.57(−3)

α = 1 e2 9.52(−7) 7.54(−10) 5.85(−14)
e3 7.53(−24) 4.19(−47) 3.15(−79)
e1 2.16(−2) 1.02(−2) 4.94(−3)

α = −1 e2 2.15(−6) 1.27(−9) 7.21(−14)
e3 1.91(−22) 5.34(−46) 1.10(−78)
e1 4.43(−2) 2.01(−2) 9.99(−3)

α = 1000 e2 2.86(−4) 8.50(−8) 6.84(−12)
e3 7.24(−14) 1.00(−36) 7.66(−67)

Table 2 The error em for the first three iterations

The tested methods from the family (12) showed good convergence behavior which coincides with the
theoretical results. The order of convergence k + 3 (k = 1, 2, 3) is concerned for small α in magnitude. The
presented examples and a number of numerical experiments did not yield a optimal value of α for all Φ.
Also, an extensive numerical experimentation has shown wide domain of convergence of the proposed
family (12).

The presented approach allows us to the following conclusions:
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• The accelerated families of iterative methods possess very fast convergence and a wide domain of
convergence.

• The convergence rate is accelerated at the price of a negligible number of additional operations because
the Newton’s and Halley’s corrections use the already calculated values Φ, Φ′ and Φ′′ at the points
z1, . . . , zn.
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