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Abstract. In this paper, we shall prove some periodic point theorems of rational inequality in complex
valued metric spaces. The first result of this type was due to Sehgal[14] and his result was generalized by
Guseman[5], Khanzanchi[6], Rhoades and Ray[2] and Murthy and Pathak[10].

1. Introduction

The Banach Fixed Point Theorem is a source of inspiration for the past and present researchers of math-
ematics and different branches of science and technology. Even in the 21st century computer scientists,
physicists, applied mathematicians, etc are trying to apply Banach Contraction Principle to serve the pur-
pose of human beings daily life.

In real analysis and functional analysis, metric space theory is a pivoting tool for the applications of
many concepts. The metric space is the most general space on which one can think about applications
in real life situations of this century. The concept of a topological via a metric space or the concept of a
normed linear space to a topological space via a metric space is always an interesting and challenging of
proves mathematics among the mathematicians. Metric fixed point theory has a wide range of applications
in dynamic programming problems, variational inequalities, solutions of nonlinear differential equations,
fractal dynamics, dynamical system of mathematics as well as the launching of satellites in their appropriate
orbits in the space, in medicine the most appropriate diagnosis of patients, in future medical emergencies
by using simulation techniques and in mock exercises on the spread of disease, etc.

The study of new space discoveries in mathematics and their basic properties are always favorite top-
ics of interest among the mathematical research community. In this context, the concept of 2-metric spaces,
introduced initially by S. Gahler[13] in his series of papers and given a new thought of new dimensions for
ordinary metric spaces. Since the metric for a pair of points is non-negative real, (i.e. [0,∞)) it has wide
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range of this study. The concept of probabilistic metric spaces in which the probabilistic distance between
two points is considered, it has given a new height and interest for the study to know more about stars
in the universe. In a similar way, the study of fuzzy metric spaces was initially done by Grabiec [9] and
Micehelic[8] in which the degree of agreement and disagreement were considered.

So far the study was done around the real numbers for e.g. Metric spaces, 2-Metric spaces, Normed
linear spaces, Fuzzy metric spaces, Probabilistic metric spaces, etc. Let X be a non-empty set and let
d : X×X→ R, ||.|| : N→ R, d : X×X×X→ R and M(x, y, t) : X×X× [0, 1]→ [0, 1], F : X×X −→ [0, 1]. It
was quiet natural to ask “What happens if we replace R by some other sets which are not completely ordered
sets like R?” This was answered by a few of them by introducing the cone metric space, the partially ordered
metric space, the modular metric space and very recently, the complex valued metric space respectively by
Huang and Zhang[7], Matthew [12], Chistyakov[15], Azam, Fisher and Khan [1].

Complex Valued Metric Space: Let X be a non-empty set and let ρ : X × X → C, where C is a set of
complex numbers in which ordering is not the same as in the set of real numbers. We recall some important
definitions, lemmas and theorems for our further study of common fixed points in complex valued metric
spaces.

Let C be a set of complex numbers and ξ1, ξ2 ∈ C. Define a partial order � on C as follows:
The elements ξ1, ξ2 ∈ C are partially ordered denoted by

ξ1 � ξ2 ⇒ Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),

or

ξ1 � ξ2 ⇒ Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),

Two elements ξ1, ξ2 ∈ C, and
ξ1 � ξ2 (or ξ1 � ξ2)

If one of the following conditions holds:

(i) Re(ξ1) = Re(ξ2), Im(ξ1) = Im(ξ2),

(ii) Re(ξ1) < Re(ξ2), Im(ξ1) < Im(ξ2),
or Re(ξ1) > Re(ξ2), Im(ξ1) > Im(ξ2),

(iii) Re(ξ1) < Re(ξ2), Im(ξ1) = Im(ξ2),
or Re(ξ1) > Re(ξ2), Im(ξ1) = Im(ξ2),

(iv) Re(ξ1) = Re(ξ2), Im(ξ1) < Im(ξ2),
or Re(ξ1) = Re(ξ2), Im(ξ1) > Im(ξ2)

In particular,
ξ1 � ξ2 (or ξ1 � ξ2), if ξ1 , ξ2 and one of (ii), (iii) and (iv) is satisfied.

We will also write ξ1 ≺ ξ2(or ξ1 � ξ2), if (ii) is satisfied.

Note that 0 � ξ1 � ξ2 =⇒| ξ1 |<| ξ2 |,

For all ξ1, ξ2, ξ3 ∈ C
ξ1 � ξ2, ξ2 ≺ ξ3 =⇒ ξ1 ≺ ξ2.
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Definition 1.1. Let X be a non-empty set. Suppose that the mapping ρ : X × X→ C, satisfies

(CM1) 0 � ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(CM2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(CM3) ρ(x, y) � ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a complex valued metric on X and (X, ρ) is called a complex valued metric space.

Remark: For various examples on complex valued metric spaces refer [1, 4, 16].
A point x in X is called an interior point of a set A ⊆ X if there exists 0 ≺ r ∈ C such that

B(x, r) = {y ∈ X : ρ(x, y) ≺ r} ⊆ A.

A point x of X is called a limit point of A, if there exists B(x, r) centered at x with radius r which contains at
least one point of A other than x. i.e. B(x, r) ∩ A∼x , φ.

A subset G of X is said to be open if each point of G is an interior point of G. A subset B of X is said
to be closed if each limit point of B is in B.

The family F = {B(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for the Hausdroff topology on X.

A sequence {xn} of X is said to be a convergent sequence and converges to a point x ∈ X, if for a given ε ∈ C
with ε � 0, there exists a positive integer n0 such that ρ(xn, x) ≺ ε for all n > n0.

A sequence {xn} of X is said to be a Cauchy sequence, if for a given ε ∈ C with ε � 0 there exists a
positive inter n0 such that ρ(xn, xm) ≺ ε for all m,n > n0.

A complex valued metric space (X, ρ) is said to be complete, if every Cauchy sequence in X is a convergent
sequence.

Lemma 1.2. Let (X, ρ) be a complex valued metric space and let {xn} be a sequence in X. Then {xn} converges to x if
and only if | ρ(xn, x) |→ 0 as n→∞.

Lemma 1.3. Let (X, ρ) be a complex valued metric space and let {xn} be a sequence in X. Then {xn} is a Cauchy
sequence if and only if | ρ(xn, xn+m) |→ 0 as m,n→∞.

2. Main Results

Theorem 2.1. Let E and F be two self mappings of a complete complex metric space (X, ρ) such that there exists
positive integers p(x) and q(x) such that for each x, y ∈ X,

ρ(Ep(x)x,Fq(y)y) �
α(ρ(x, y))ρ(x,Ep(x)x)ρ(y,Fq(y)y)
ρ(x, y) + ρ(x,Fq(y)y) + ρ(y,Ep(x)x)

+ β(ρ(x, y))ρ(x, y) (1)

where α, β : C+ → [0, 1) such that for all x, y ∈ X, α(x) + β(x) < 1.
Then E and F have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point of X and define the sequence {xn}

xn =

{
Ep(xn−1)xn−1, when n is odd,
Fq(xn−1)xn−1, when n is even (2)

for n = 1, 2, 3 · · ·
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If x2n+1 = x2n+2, then {xn} is a Cauchy sequence.

Now suppose that x2n+1 , x2n+2 for each p(x) , q(y). Then

ρ(x2n+1, x2n+2) = ρ(Ep(x2n)x2n,Fq(x2n+1)x2n+1)

�
α(ρ(x2n, x2n+1))ρ(x2n,Ep(x2n)x2n)ρ(x2n+1,Fq(x2n+1)x2n+1)
ρ(x2n, x2n+1) + ρ(x2n,Fq(x2n+1)x2n+1) + ρ(x2n+1,Ep(x2n)x2n)
+β(ρ(x2n, x2n+1))ρ(x2n, x2n+1)

�
α(ρ(x2n, x2n+1))ρ(x2n, x2n+1)ρ(x2n+1, x2n+2)
ρ(x2n, x2n+1) + ρ(x2n, x2n+2) + ρ(x2n+1, x2n+1)
+β(ρ(x2n, x2n+1))ρ(x2n, x2n+1)

� α(ρ(x2n, x2n+1))ρ(x2n, x2n+1) + β(ρ(x2n, x2n+1))ρ(x2n, x2n+1),

since ρ(x2n+1, x2n+2) � ρ(x2n, x2n+2) + ρ(x2n, x2n+1)).

Or equivalently

ρ(x2n+1, x2n+2) � δ(ρ(x2n, x2n+1))ρ(x2n, x2n+1), (3)

where δ = α + β < 1.

Similarly, replacing x by x2n+2 and y by x2n+3, we have

ρ(x2n+2, x2n+3) � α(ρ(x2n+1, x2n+2)) + β(ρ(x2n+1, x2n+2))ρ(x2n+1, x2n+2),

or equivalently

ρ(x2n+2, x2n+3) � δ(ρ(x2n+1, x2n+2))ρ(x2n+1, x2n+2) (4)

where δ = α + β < 1.
From (3) and (4), we have

ρ(xn, xn+1) � δ(ρ(xn−1, xn))ρ(xn−1, xn)

for all n ∈ N, which implies that

| ρ(xn, xn+1) | ≤ | δ(ρ(xn−1, xn)) || ρ(xn−1, xn) | ≤ | ρ(xn−1, xn) | . (5)

Therefore {ρ(xn−1, xn)}n∈N is monotonically decreasing and bounded below. Hence | ρ(xn−1, xn) |→ d for
some d ≥ 0.

To prove that d = 0, we shall assume d > 0. Taking the limit as n→∞ in (5), we have

| δ(ρ(xn−1, xn)) |→ 1.

Since δ ∈M, | ρ(xn−1, xn) |→ 0, is a contradiction. Therefore, we have d = 0.

Now, we shall show that the sequence {xn} is a Cauchy sequence. It is easy and enough to show that
{x2n} is a Cauchy sequence.

Since X is complete, every Cauchy sequence in X is convergent and converges to a point u (say) in X.
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Suppose F(u) , u. Then from (1), we have

ρ(x2n+1,Fq(u)u) = ρ(Ep(x2n)x2n,Fq(u)u)

�
α(ρ(x2n,u))ρ(x2n,Ep(x2n)x2n)ρ(u,Fq(u)u)
ρ(x2n,u) + ρ(x2n,Fq(u)u) + ρ(u,Ep(x2n)x2n)
+β(ρ(x2n,u))ρ(x2n,u).

Letting n→∞ in the above inequality, it follows that | ρ(u,Fq(u)u) |→ 0.

Thus Fq(u)u = u. Similarly we can show that Ep(u)u = u and so u is a periodic point of E and F.

Now we shall show that this point is unique. If possible, let v be another periodic point of E and F.
i.e. Ep(u)u = u and Fq(v)v = v. Then

ρ(u, v) = ρ(Ep(u)u,Fq(v)v)

�
α(ρ(u, v))ρ(u,Ep(u)u)ρ(v,Fq(v)v)
ρ(u, v) + ρ(u,Fq(v)v) + ρ(u,Ep(u)u)

+ β(ρ(u, v))ρ(u, v)

and so
ρ(u, v) � β(ρ(u, v))ρ(u, v)

which implies that u = v, since 0 ≤ β(ρ(u, v)) < 1).
Hence u is a unique periodic point of E and F.

Now Eu = EEp(u)u = Ep(u)E(u) implies that E(u) is a periodic point of E. From the uniqueness of u.E(u) = u.
Similarly, F(u) = u. Hence, u is a common fixed point of E and F.

This completes the proof.

As an immediate consequence of the above theorems we have the following corollaries:

Corollary 2.2. Let E be a self mapping of a complete complex metric space (X, ρ) such that there exists positive
integers p(x) and q(x) such that for each x, y ∈ X,

ρ(Ep(x)x,Eq(y)y) �
α(ρ(x, y))ρ(x,Ep(x)x)ρ(y,Eq(y)y)
ρ(x, y) + ρ(x,Eq(y)y) + ρ(y,Ep(x)x)

+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X, α(x) + β(x) < 1. Then E has a unique common fixed point in X.

Corollary 2.3. Let E be a self mapping of a complete complex metric space (X, ρ) such that there exists positive integer
p such that for each x, y ∈ X,

ρ(Epx,Epy) �
α(ρ(x, y))ρ(x,Epx)ρ(y,Epy)
ρ(x, y) + ρ(x,Epy) + ρ(y,Epx)

+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X, α(x) + β(x) < 1. Then E has a unique common fixed point in X.

Corollary 2.4. Let E be a self mapping of a complete complex metric space (X, ρ) such that for each x, y ∈ X,

ρ(Ex,Ey) �
α(ρ(x, y))ρ(x,Ex)ρ(y,Ey)
ρ(x, y) + ρ(x,Ey) + ρ(y,Ex)

+ β(ρ(x, y))ρ(x, y)

where α, β : C+ → [0, 1) such that for all x, y ∈ X, α(x) + β(x) < 1. Then E has a unique common fixed point in X.

Now we shall give an example to support our theorem:
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3. Example

Let X1 = {C : Re(z) ≥ 0, Im(z) = 0} and X2 = {C : Re(z) = 0, Im(z) ≥ 0}. Also we let X = X1×X2 and de f ine ρ :
X × X→ C by :

ρ(z1, z2) =



max{x1, x2} + imax{x1, x2}: if z1, z2 ∈ X1

max{x1, x2} + imax{x1, x2}: if z1, z2 ∈ X2

(x1 + y2) + i(x1 + y2): if z1, z2 ∈ X2

(x2 + y1) + i(x2 + y1): if z1 ∈ X2 and z2 ∈ X1

where z1 = x1+iy1 and z2 = x2+iy2. It is very easy to see that (X, ρ) is a complete complex valued metric space.

Now we set Ep(x)x = Fq(x)x = Tx and define a mapping T : X → X such that with k is any finite positive
integer

T(z) =


(

x
k , 0

)
: if z ∈ X1(

0, y
k

)
: if z ∈ X2

Now we can easily evaluate that all the conditions of the Theorem(4) satisfied here with α(t) = 1
k and 0 <

β(t) < k−1
k and all the conditions of the theorem satisfied and we can find z = 0 ∈ X is unique common fixed

point of T.

4. Application

Let X = C([a, b],Rn), a > 0 and let ρ : X × X→ C be defined by

ρ(x, y) = maxt∈[a,b] ‖ x(t) − y(t) ‖∞
√

1 + a2 ei tan−1 a.

Consider the Urysohns integral equations

x(t) =

∫ b

a
K1(t, s, x(s))ds + 1(t), (6)

x(t) =

∫ b

a
K2(t, s, x(s))ds + 1(t), (7)

where t ∈ [a, b] ⊆ R, x, 1, h ∈ X and K1, K2 : [a, b] × [a, b] × Rn
→ Rn.

Suppose K1, K1 are such that Fx, Gx ∈ X for all x ∈ X, where

Fx(t) =

∫ b

a
K1(t, s, x(s))ds, (8)

Gx(t) =

∫ b

a
K2(t, s, x(s))ds (9)

for all t ∈ [a, b].

If there exists two mappings α, β : C+ → [0, 1] such that for all x, y ∈ X the following holds:

(i) α(t) + β(t) < 1;
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(ii) the mapping γ : C+ → [0, 1] defined by γ(x) =
α(x)

1−β(x) belongs to Γ;

(iii) ‖ Fx(t) − Gy(t) + 1(t) − h(t) ‖∞
√

1 + a2 ei tan−1 a

� α(maxt∈[a,b] A(x, y)(t))A(x, y) + β(maxt∈[a,b] A(x, y)(t))B(x, y),
where
A(x, y)(t) =‖ x(t) − y(t) ‖∞

√

1 + a2 ei tan−1 a

and

B(x, y)(t) =
‖ Fx(t) + 1(t) − x(t) ‖∞ ‖ Gy(t) + h(t) − y(t) ‖∞

‖ Fx(t) + 1(t) − y(t) ‖∞ + ‖ Gy(t) + h(t) − x(t) ‖∞ + d(x, y)
.

Then the system of integral equations (6) and (7) has a unique common solution.

Proof. Define S,T : X→ X by S(x) = Fx + 1 and T(x) = Gy + h. Then

ρ(Sx,Ty) = max
t∈[a,b]

‖ Fx(t) − Gy(t) + 1(t) − h(t) ‖∞
√

1 + a2 ei tan−1 a,

ρ(x,Sx) = max
t∈[a,b]

‖ Fx(t) + 1(t) − x(t) ‖∞
√

1 + a2 ei tan−1 a,

ρ(y,Ty) = max
t∈[a,b]

‖ Gy(t) + h(t) − y(t) ‖∞
√

1 + a2 ei tan−1 a,

ρ(y,Sx) = max
t∈[a,b]

‖ Fx(t) + 1(t) − y(t) ‖∞
√

1 + a2 ei tan−1 a,

ρ(x,Ty) = max
t∈[a,b]

‖ Gy(t) + h(t) − x(t) ‖∞
√

1 + a2 ei tan−1 a.

Then we can easily see that for x, y ∈ X,

ρ(Ex, Fy) � α
ρ(x, Ex)ρ(y, Fy)

ρ(x, y) + ρ(x, Fy) + ρ(y, Ex)
+ β ρ(x, y).

By applying Theorem(2.1). we get the solution to (6) and (7) of Urysohn’s Integral Equations which is
unique.

Authors wish to extend their thanks to the anonymous respected referee for altering the paper [17]for
example.

References

[1] A. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis
and Optimization, 32(3)(2011), 243 - 253.

[2] B.E.Rhoades and B.K.Ray, fixed point theorems for mappings with a contractive iterate, Pacific J. Math. 71(2)(1977), 517-520.
[3] D.S.Jaggi and B. K. Das, An extension of Banach’s fixed point theorem through a rational expression, Bull. Cal. Math. Soc.

72(1980), 261.
[4] F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spces, Computers and Mathematics

with applications, 64(2012), 1866 - 1874.
[5] L. F. Guseman, fixed point theorems for mappings with contractive iterate at a point, Proc. AMS 26(1970), 615-618.
[6] L. Khazanchi, Results on fixed points in complete metric spaces, Math. Japonica, 19(1974), 283-289.
[7] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007)

1468-1476.
[8] M. A. Erceg, Metric space in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 205-230.
[9] M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems 27 (1988) 385-389.

[10] P. P. Murthy and H. K. Pathak, Some Fixed point theorems without continuity, Bull. Cal. Math. Soc. 82(1990), 212 - 215.
[11] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. 60(1968), 71 - 78.
[12] S. G. Matthews, Partial metric topology, in Proceedings of the 8thSummer Conference on General Topology and Applications

(Anals of the New York Academy of Sciences), vol. 728(1994), 183-197.
[13] S. Gahler, 2-metricsche Raume und ihre topologische struktur, Math. Nachr., 26(1963), 115-148.



P. P. Murthy et al. / Filomat 31:7 (2017), 2143–2150 2150

[14] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc., 2(3)(1972), 571-576.
[15] V. V. Chistyakov, Modular metric spaces-I: Basic concepts, Nonlinear Analysis, 72(2010), 1-14.
[16] W. Sintunavart, Y.J.Cho and P. Kuman, Uryshon integral equations approach by common fixed points in complex-valued metric

spaces, Advances in Difference Equations, 49(2013)
[17] H. K. Naashine, M. Imdad and M. Hasan, Common fixed point theorems under rational contractions in complex valued metric

spces, J. Nonlinear Sci. Appl., 7(1)(2014), 42 - 50.


