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Abstract. The games G2 and G3 are played on a complete Boolean algebra B in ω-many moves. At the
beginning White picks a non-zero element p of B and, in the n-th move, White picks a positive pn < p and
Black chooses an in ∈ {0, 1}. White wins G2 iff lim inf pin

n = 0 and wins G3 iff
∨

A∈[ω]ω
∧

n∈A pin
n = 0. It is shown

that White has a winning strategy in the game G2 iff White has a winning strategy in the cut-and-choose
gameGc&c introduced by Jech. Also, White has a winning strategy in the gameG3 iff forcing byB produces a
subset R of the tree <ω2 containing eitherϕa0 orϕa1, for eachϕ ∈ <ω2, and having unsupported intersection
with each branch of the tree <ω2 belonging to V. On the other hand, if forcing by B produces independent
(splitting) reals then White has a winning strategy in the game G3 played on B. It is shown that ♦ implies
the existence of an algebra on which these games are undetermined.

1. Introduction

In [3] Jech introduced the cut-and-choose gameGc&c, played by two players, White and Black, inω-many
moves on a complete Boolean algebra B in the following way. At the beginning, White picks a non-zero
element p ∈ B and, in the n-th move, White picks a non-zero element pn < p and Black chooses an in ∈ {0, 1}.
In this way two players build a sequence 〈p, p0, i0, p1, i1, . . . 〉 and White wins iff

∧
n∈ω pin

n = 0 (see Definition
1).

A winning strategy for a player, for example White, is a function which, on the basis of the previous
moves of both players, provides “good” moves for White such that White always wins. So, for a complete
Boolean algebra B there are three possibilities: 1) White has a winning strategy; 2) Black has a winning
strategy or 3) none of the players has a winning strategy. In the third case the game is said to be undetermined
on B.

The game-theoretic properties of Boolean algebras have interesting algebraic and forcing translations.
For example, according to [3] and well-known facts concerning infinite distributive laws we have the
following results.

Theorem 1. (Jech) For a complete Boolean algebra B the following conditions are equivalent:
(a) White has a winning strategy in the game Gc&c;
(b) The algebra B does not satisfy the (ω, 2)-distributive law;
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(c) Forcing by B produces new reals in some generic extension;
(d) There is a countable family of 2-partitions of the unity having no common refinement.

Also, Jech investigated the existence of a winning strategy for Black and using ♦ constructed a Suslin
algebra in which the game Gc&c is undetermined. Moreover in [6] Zapletal gave a ZFC example of a
complete Boolean algebra in which the game Gc&c is undetermined.

Several generalizations of the gameGc&c were considered. Firstly, instead of cutting of p into two pieces,
White can cut into λ pieces and Black can choose more than one piece (see [3]). Secondly, the game can be
of uncountable length so Dobrinen in [1] and [2] investigated the game Gκ<µ(λ) played in κ-many steps in
which White cuts into λ pieces and Black chooses less then µ of them.

In this paper we consider three games G2,G3 and G4 obtained from the game Gc&c (here denoted by G1)
by changing the winning criterion. Let (0, p)B = {b ∈ B : 0 < b < p} and [0, p]B = {b ∈ B : b ≤ p}.

Definition 1. The games Gk, k ∈ {1, 2, 3, 4}, are played by two players, White and Black, on a complete Boolean
algebra B in ω-many moves. At the beginning White chooses a non-zero element p ∈ B. In the n-th move White
chooses a pn ∈ (0, p)B and Black responds choosing pn or its complement p′n = p \ pn or, equivalently, picking an
in ∈ {0, 1} chooses pin

n , where, by definition, p0
n = pn and p1

n = p′n. White wins the play 〈p, p0, i0, p1, i1, . . . 〉 in the game

G1 if and only if
∧

n∈ω pin
n = 0;

G2 if and only if
∨

k∈ω
∧

n≥k pin
n = 0, that is lim inf pin

n = 0;
G3 if and only if

∨
A∈[ω]ω

∧
n∈A pin

n = 0;
G4 if and only if

∧
k∈ω
∨

n≥k pin
n = 0, that is lim sup pin

n = 0.

In the following theorem we list some results concerning the game G4 which are contained in [5].

Theorem 2.. (a) White has a winning strategy in the game G4 played on a complete Boolean algebra B iff
forcing by B collapses c to ω in some generic extension.

(b) If B is the Cohen algebra r.o.(<ω2,⊇) or a Maharam algebra (i.e. carries a positive Maharam submea-
sure) then Black has a winning strategy in the game G4 played on B.

(c) ♦ implies the existence of a Suslin algebra on which the game G4 is undetermined.

The aim of the paper is to investigate the game-theoretic properties of complete Boolean algebras related
to the gamesG2 andG3. So, Section 2 contains some technical results, in Section 3 we consider the gameG2,
Section 4 is devoted to the game G3 and Section 5 to the algebras on which these games are undetermined.

Our notation is standard and follows [4]. A subset of ω belonging to a generic extension will be called
supported iff it contains an infinite subset of ω belonging to the ground model. In particular, finite subsets
of ω are unsupported.

2. Winning a Play, Winning All Plays

Using the elementary properties of Boolean values and forcing it is easy to prove the following two
statements.

Lemma 1. Let B be a complete Boolean algebra, 〈bn : n ∈ ω〉 a sequence in B and σ = {〈ň, bn〉 : n ∈ ω} the
corresponding name for a subset of ω. Then

(a)
∧

n∈ω bn = ‖σ = ω̌‖;
(b) lim inf bn = ‖σ is cofinite‖;
(c)
∨

A∈[ω]ω
∧

n∈A bn = ‖σ is supported‖;
(d) lim sup bn = ‖σ is infinite‖.
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Lemma 2. Let B be a complete Boolean algebra, p ∈ B+, 〈pn : n ∈ ω〉 a sequence in (0, p)B and 〈in : n ∈ ω〉 ∈ ω2.
For k ∈ {0, 1} let Sk = {n ∈ ω : in = k} and let the names τ and σ be defined by τ = {〈ň, pn〉 : n ∈ ω} and
σ = {〈ň, pin

n 〉 : n ∈ ω}. Then
(a) p′ 
 τ = σ = ∅̌;
(b) p 
 τ = σ4Š1;
(c) p 
 σ = τ4Š1;
(d) p 
 σ = ω̌⇔ τ = Š0;
(e) p 
 σ =∗ ω̌⇔ τ =∗ Š0;
(f) p 
 |σ| < ω̌⇔ τ =∗ Š1.

Theorem 3. Under the assumptions of Lemma 2, White wins the play 〈p, p0, i0, p1, i1, . . . 〉 in the game
G1 iff ‖σ is not equal to ω̌‖ = 1 iff p 
 τ , Š0;
G2 iff ‖σ is not cofinite‖ = 1 iff p 
 τ ,∗ Š0;
G3 iff ‖σ is not supported‖ = 1 iff p 
 “τ ∩ Š0 and Š1 \ τ are unsupported”;
G4 iff ‖σ is not infinite‖ = 1 iff p 
 τ =∗ Š1.

Proof. We will prove the statement concerning the gameG3 and leave the rest to the reader. So, White wins
G3 iff

∨
A∈[ω]ω

∧
n∈A pin

n = 0, that is, by Lemma 1, ‖σ is not supported‖ = 1 and the first equivalence is proved.
Let 1 
 “σ is not supported” and let G be a B-generic filter over V containing p. Suppose τG ∩ S0 or

S1 \ τG contains a subset A ∈ [ω]ω ∩ V. Then A ⊆ σG, which is impossible.
On the other hand, let p 
 “τ ∩ Š0 and Š1 \ τ are unsupported” and let G be a B-generic filter over V. If

p′ ∈ G then, by Lemma 2(a), σG = ∅ so σG is unsupported. Otherwise p ∈ G and by the assumption the sets
τG ∩ S0 and S1 \ τG are unsupported. Suppose A ⊆ σG for some A ∈ [ω]ω ∩ V. Then A = A0 ∪ A1, where
A0 = A ∩ S0 ∩ τG and A1 = A ∩ S1 \ τG, and at least one of these sets is infinite. But from Lemma 2(c) we
have A0 = A ∩ S0 and A1 = A ∩ S1, so A0,A1 ∈ V. Thus either S0 ∩ τG or S1 \ τG is a supported subset of ω,
which is impossible. So σG is unsupported and we are done. �

In the same way one can prove the following statement concerning Black.

Theorem 4. Under the assumptions of Lemma 2, Black wins the play 〈p, p0, i0, p1, i1, . . . 〉 in the game
G1 iff ‖σ is equal to ω̌‖ > 0 iff ∃q ≤ p q 
 τ = Š0;
G2 iff ‖σ is cofinite ‖ > 0 iff ∃q ≤ p q 
 τ =∗ Š0;
G3 iff ‖σ is supported ‖ > 0 iff ∃q ≤ p q 
 “τ ∩ Š0 or Š1 \ τ is supported”;
G4 iff ‖σ is infinite ‖ > 0 iff ∃q ≤ p q 
 τ ,∗ Š1.

Since for each sequence 〈bn〉 in a c.B.a. B∧
n∈ω bn ≤ lim inf bn ≤

∨
A∈[ω]ω

∧
n∈A bn ≤ lim sup bn, (1)

we have

Proposition 1. Let B be a complete Boolean algebra. Then
(a) White has a w.s. in G4 ⇒White has a w.s. in G3 ⇒White has a w.s. in G2 ⇒White has a w.s. in G1.
(b) Black has a w.s. in G1 ⇒ Black has a w.s. in G2 ⇒ Black has a w.s. in G3 ⇒ Black has a w.s. in G4.

3. The Game G2

Theorem 5. For each complete Boolean algebra B the following conditions are equivalent:
(a) B is not (ω, 2)-distributive;
(b) White has a winning strategy in the game G1;
(c) White has a winning strategy in the game G2.
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Proof. (a)⇔(b) is proved in [3] and (c)⇒(b) holds by Proposition 1. In order to prove (a)⇒(c) we suppose
B is not (ω, 2)-distributive. Then p := ‖∃x ⊆ ω̌ x < V‖ > 0 and by The Maximum Principle there is a name
π ∈ VB such that

p 
 π ⊆ ω̌ ∧ π < V. (2)

Clearly ω = A0 ∪ A ∪ Ap, where A0 = {n ∈ ω : ‖ň ∈ π‖ ∧ p = 0}, A = {n ∈ ω : ‖ň ∈ π‖ ∧ p ∈ (0, p)B} and
Ap = {n ∈ ω : ‖ň ∈ π‖ ∧ p = p}. We also have A0,A,Ap ∈ V and

p 
 π = (π ∩ Ǎ) ∪ Ǎp. (3)

Let f : ω→ A be a bijection belonging to V and τ = {〈ň, ‖ f (n)ˇ ∈ π‖ ∧ p〉 : n ∈ ω}. We prove

p 
 f [τ] = π ∩ Ǎ. (4)

Let G be a B-generic filter over V containing p. If n ∈ f [τG] then n = f (m) for some m ∈ τG, so ‖ f (m)ˇ ∈
π‖∧p ∈ G which implies ‖ f (m)ˇ ∈ π‖ ∈ G and consequently n ∈ πG. Clearly n ∈ A. Conversely, if n ∈ πG∩A,
since f is a surjection there is m ∈ ω such that n = f (m). Thus f (m) ∈ πG which implies ‖ f (m)ˇ ∈ π‖ ∧ p ∈ G
and hence m ∈ τG and n ∈ f [τG].

According to (2), (3) and (4) we have p 
 π = f [τ]∪ Ǎp < V so, since Ap ∈ V, we have p 
 f [τ] < V which
implies p 
 τ < V. Let pn = ‖ f (n)ˇ ∈ π‖ ∧ p, n ∈ ω. Then, by the construction, pn ∈ (0, p)B for all n ∈ ω.

We define a strategy Σ for White: at the beginning White plays p and, in the n-th move, plays pn. Let us
prove Σ is a winning strategy for White in the game G2. Let 〈in : n ∈ ω〉 ∈ ω2 be an arbitrary play of Black.
According to Theorem 3 we prove p 
 τ ,∗ Š0. But this follows from p 
 τ < V and S0 ∈ V and we are done.

�

4. The Game G3

Firstly we give some characterizations of complete Boolean algebras on which White has a winning
strategy in the gameG3. To make the formulas more readable, we will write wϕ for w(ϕ). Also, for i : ω→ 2
we will denote 1i = {i � n : n ∈ ω}, the corresponding branch of the tree <ω2.

Theorem 6. For a complete Boolean algebra B the following conditions are equivalent:
(a) White has a winning strategy in the game G3 on B;
(b) There are p ∈ B+ and w : <ω2→ (0, p)B such that

∀i : ω→ 2
∨

A∈[ω]ω
∧

n∈A wi(n)
i�n = 0; (5)

(c) There are p ∈ B+ and w : <ω2→ [0, p]B such that (5) holds.
(d) There are p ∈ B+ and ρ ∈ VB such that

p 
 ρ ⊆ (<ω2)ˇ ∧ ∀ϕ ∈ (<ω2)ˇ (ϕa0̌ ∈ ρ ∨̇ ϕa1̌ ∈ ρ)

∧ ∀i ∈ ((ω2)V)ˇ (ρ ∩ 1̌i is unsupported).
(6)

(e) In some generic extension, VB[G], there is a subset R of the tree <ω2 containing either ϕa0 or ϕa1, for each
ϕ ∈ <ω2, and having unsupported intersection with each branch of the tree <ω2 belonging to V.

Proof. (a)⇒(c). Let Σ be a winning strategy for White. Σ is a function adjoining to each sequence of
the form 〈p, p0, i0, . . . , pn−1, in−1〉, where p, p0, . . . , pn−1 ∈ B+ are obtained by Σ and i0, i1, . . . , in−1 are arbitrary
elements of {0, 1}, an element pn = Σ(〈p, p0, i0, . . . , pn−1, in−1〉) of (0, p)B such that White playing in accordance
with Σ always wins. In general, Σ can be a multi-valued function, offering more “good” moves for White,
but according to The Axiom of Choice, without loss of generality we suppose Σ is a single-valued function,
which is sufficient for the following definition of p and w : <ω2→ [0, p]B.



M. S. Kurilić, B. Šobot / Filomat 30:13 (2016), 3389–3395 3393

At the beginning Σ gives Σ(∅) = p ∈ B+ and, in the first move, Σ(〈p〉) ∈ (0, p)B. Let w∅ = Σ(〈p〉).
Let ϕ ∈ n+12 and let wϕ�k be defined for k ≤ n. Then we define wϕ = Σ(〈p,wϕ�0, ϕ(0), . . . ,wϕ�n, ϕ(n)〉).
In order to prove (5) we pick an i : ω → 2. Using induction it is easy to show that in the match in

which Black plays i(0), i(1), . . . ,White, following Σ plays p,wi�0,wi�1, . . . Thus, since White winsG3, we have∨
A∈[ω]ω

∧
n∈A wi(n)

i�n = 0 and (5) is proved.
(c)⇒(b). Let p ∈ B+ and w : <ω2 → [0, p]B satisfy (5). Suppose the set S = {ϕ ∈ <ω2 : wϕ ∈ {0, p}}

is dense in the ordering 〈<ω2,⊇〉. Using recursion we define ϕk ∈ S for k ∈ ω as follows. Firstly, we
choose ϕ0 ∈ S arbitrarily. Let ϕk be defined and let ik ∈ 2 satisfy ik = 0 iff wϕk = p. Then we choose
ϕk+1 ∈ S such that ϕak ik ⊆ ϕk+1. Clearly the integers nk = dom(ϕk), k ∈ ω, form an increasing sequence, so
i =
⋃

k∈ω ϕk : ω→ 2. Besides, i � nk = ϕk and i(nk) = ik. Consequently, for each k ∈ ωwe have wi(nk)
i�nk

= wik
ϕk

= p.

Now A0 = {nk : k ∈ ω} ∈ [ω]ω and
∧

n∈A0
wi(n)

i�n = p > 0. A contradiction to (5).
So there is ψ ∈ <ω2 such that wϕ ∈ (0, p)B, for all ϕ ⊇ ψ. Let m = dom(ψ) and let vϕ for ϕ ∈ <ω2 be defined

by

vϕ =

{
wψ if |ϕ| < m,
wψa(ϕ�(dom(ϕ)\m)) if |ϕ| ≥ m.

Clearly v : <ω2→ (0, p)B and we prove that v satisfies (5). Let i : ω→ 2 and let j = ψa(i � (ω \m)). Then for
n ≥ m we have vi(n)

i�n = wi(n)
ψa(i�(n\m)) = w j(n)

j�n . Let A ∈ [ω]ω. Then A \ m ∈ [ω]ω and, since w satisfies (5), for the

function j defined above we have
∧

n∈A\m w j(n)
j�n = 0, that is

∧
n∈A\m vi(n)

i�n = 0, which implies
∧

n∈A vi(n)
i�n = 0 and

(b) is proved.
(b)⇒(a). Assuming (b) we define a strategy Σ for White. Firstly White plays p and p0 = w∅. In the n-th

step, if ϕ = 〈i0, . . . , in−1〉 is the sequence of Black’s previous moves, White plays pn = wϕ. We prove that Σ is
a winning strategy for White. Let i : ω → 2 code an arbitrary play of Black. Since White follows Σ, in the
n-th move White plays pn = wi�n, so according to (5) we have

∨
A∈[ω]ω

∧
n∈A pin

n = 0 and White wins the game.
(b)⇒(d). Let p ∈ B+ and w : <ω2 → (0, p)B be the objects provided by (b). Let us define v∅ = p and, for

ϕ ∈ <ω2 and k ∈ 2, let vϕak = wk
ϕ. Then ρ = {〈ϕ̌, vϕ〉 : ϕ ∈ <ω2} is a name for a subset of <ω2. If i : ω→ 2, then

σi = {〈(i � n)ˇ , vi�n〉 : n ∈ ω} is a name for a subset of 1i and, clearly,

1 
 σi = ρ ∩ 1̌i. (7)

Let us prove

∀i : ω→ 2 1 
 ρ ∩ 1̌i is unsupported. (8)

Let i : ω→ 2. According to the definition of v, for n ∈ ωwe have wi(n)
i�n = vi�(n+1) so, by (5),

∨
A∈[ω]ω

∧
n∈A vi�(n+1) =

0. By (7) we have vi�(n+1) = ‖(i � (n + 1))ˇ ∈ ρ ∩ 1̌i‖ and we have ‖∃A ∈ (([ω]ω)V)ˇ ∀n ∈ A (i � (n + 1))ˇ ∈
ρ ∩ 1̌i‖ = 0 that is ‖¬∃B ∈ (([<ω2]ω)V)ˇ B ⊂ ρ ∩ 1̌i‖ = 1 and (8) is proved. Now we prove

∀ϕ ∈ <ω2 p 
 ϕ̌a0̌ ∈ ρ ∨̇ ϕ̌a1̌ ∈ ρ. (9)

If p ∈ G, where G is a B-generic filter over V, then clearly |G ∩ {wϕ, p \ wϕ}| = 1. But wϕ = w0
ϕ = vϕa0 =

‖ϕ̌a0̌ ∈ ρ‖ and p \ wϕ = w1
ϕ = vϕa1 = ‖ϕ̌a1̌ ∈ ρ‖ and (9) is proved.

(d)⇒(c). Let p ∈ B+ and ρ ∈ VB satisfy (6). In V for each ϕ ∈ <ω2 we define wϕ = ‖(ϕa0)ˇ ∈ ρ‖ ∧ p and
check condition (c). So for an arbitrary i : ω→ 2 we prove∨

A∈[ω]ω
∧

n∈A wi(n)
i�n = 0. (10)

According to (6) for each n ∈ ω we have p 
 ((i � n)a0)ˇ ∈ ρ ∨̇ ((i � n)a1)ˇ ∈ ρ, that is p ≤ a0 ∨ a1 and
p ∧ a0 ∧ a1 = 0, where ak = ‖((i � n)ak)ˇ ∈ ρ‖, k ∈ {0, 1}, which clearly implies p ∧ a′0 = p ∧ a1, i.e.

p ∧ ‖((i � n)a0)ˇ ∈ ρ‖′ = p ∧ ‖((i � n)a1)ˇ ∈ ρ‖. (11)
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Let us prove

wi(n)
i�n = ‖(i � (n + 1))ˇ ∈ ρ‖ ∧ p. (12)

If i(n) = 0, then wi(n)
i�n = ‖((i � n)a0)ˇ ∈ ρ‖ ∧ p = ‖((i � n)ai(n))ˇ ∈ ρ‖ ∧ p and (12) holds. If i(n) = 1, then

according to (11) wi(n)
i�n = p \ wi�n = p ∧ ‖((i � n)a0)ˇ ∈ ρ‖′ = p ∧ ‖((i � n)a1)ˇ ∈ ρ‖ = p ∧ ‖((i � n)ai(n))ˇ ∈ ρ‖

and (12) holds again.
Now

∨
A∈[ω]ω

∧
n∈A wi(n)

i�n = p ∧ ‖∃A ∈ (([ω]ω)V)ˇ ∀n ∈ A ǐ � (n + 1) ∈ ρ‖ = p ∧ ‖ρ ∩ 1̌i is supported‖ = 0,

since by (6) p ≤ ‖ρ ∩ 1̌i is unsupported‖. Thus (10) is proved.
(d)⇒(e) is obvious and (e)⇒(d) follows from The Maximum Principle. �

Concerning condition (e) of the previous theorem we note that in [5] the following characterization is
obtained.

Theorem 7. White has a winning strategy in the game G4 on a c.B.a. B if and only if in some generic extension,
VB[G], there is a subset R of the tree <ω2 containing eitherϕa0 orϕa1, for eachϕ ∈ <ω2, and having finite intersection
with each branch of the tree <ω2 belonging to V.

Theorem 8. Let B be a complete Boolean algebra. If forcing by B produces an independent real in some generic
extension, then White has a winning strategy in the game G3 played on B.

Proof. Let p = ‖∃x ⊆ ω̌ x is independent‖ > 0. Then, by The Maximum Principle there is a name τ ∈ VB

such that

p 
 τ ⊆ ω̌ ∧ ∀A ∈ (([ω]ω)V)ˇ (|A ∩ τ| = ω̌ ∧ |A \ τ| = ω̌). (13)

Let us prove that K = {n ∈ ω : ‖ň ∈ τ‖ ∧ p ∈ {0, p}} is a finite set. Clearly K = K0 ∪Kp, where K0 = {n ∈ ω : p 

ň < τ} and Kp = {n ∈ ω : p 
 ň ∈ τ}. Since p 
 Ǩ0 ⊆ ω̌ \ τ ∧ Ǩp ⊆ τ, according to (13) the sets K0 and Kp are
finite, thus |K| < ω.

Let q ∈ (0, p)B and let pn, n ∈ ω, be defined by

pn =

{
q if n ∈ K,
‖ň ∈ τ‖ ∧ p if n ∈ ω \ K.

Then for τ1 = {〈ň, pn〉 : n ∈ ω}we have p 
 τ1 =∗ τ so according to (13)

p 
 τ1 ⊆ ω̌ ∧ ∀A ∈ (([ω]ω)V)ˇ (|A ∩ τ1| = ω̌ ∧ |A \ τ1| = ω̌). (14)

Then pn = ‖ň ∈ τ1‖ ∈ (0, p)B and we define a strategy Σ for White: at the beginning White plays p and, in
the n-th move, White plays pn.

We prove Σ is a winning strategy for White. Let 〈p, p0, i0, p1, i1, . . . 〉 be an arbitrary play in which White
follows Σ and let Sk = {n ∈ ω : in = k}, for k ∈ {0, 1}. Suppose q =

∨
A∈[ω]ω

∧
n∈A pin

n > 0. Now q ≤ p and
q =
∨

A∈[ω]ω (
∧

n∈A∩S0
‖ň ∈ τ1‖ ∧

∧
n∈A∩S1

(p∧ ‖ň < τ1‖) = p∧
∨

A∈[ω]ω ‖Ǎ∩ Š0 ⊆ τ1 ∧ Ǎ∩ Š1 ⊆ ω̌ \ τ1‖ ≤ ‖∃A ∈
(([ω]ω)V)ˇ (Ǎ ∩ Š0 ⊆ τ1 ∧ Ǎ ∩ Š1 ⊆ ω̌ \ τ1)‖.

Let G be a B-generic filter over V containing q. Then there is A ∈ [ω]ω ∩ V such that A ∩ S0 ⊆ (τ1)G and
A∩ S1 ⊆ ω \ (τ1)G. But one of the sets A∩ S0 and A∩ S1 must be infinite and, since p ∈ G, according to (14),
it must be split by (τ1)G. A contradiction. Thus q = 0 and White wins the game. �

Theorem 9. Let B be an (ω, 2)-distributive complete Boolean algebra. Then
(a) If 〈p, p0, i0, p1, i1, . . . 〉 is a play satisfying the rules given in Definition 1, then Black wins the game G3 iff Black

wins the game G4.
(b) Black has a winning strategy in the game G3 iff Black has a winning strategy in the game G4.
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Proof. (a) The implication “⇒” follows from the proof of Proposition 1(b). For the proof of “⇐” suppose
Black wins the play 〈p, p0, i0, p1, i1, . . . 〉 in the game G4. Then, by Theorem 4 there exists q ∈ B+ such that
q 
“σ is infinite”. Since the algebra B is (ω, 2)-distributive we have 1 
 σ ∈ V, thus q 
 σ ∈ (([ω]ω)V)ˇ and
hence ¬1 
 “σ is not supported” so, by Theorem 4, Black wins G3.

(b) follows from (a). �

5. Indeterminacy, Problems

Theorem 10. ♦ implies the existence of a Suslin algebra on which the games G1,G2, G3 and G4 are undetermined.

Proof. Let B be the Suslin algebra mentioned in (c) of Theorem 2. According to Proposition 1(b) and since
Black does not have a winning strategy in the game G4, Black does not have a winning strategy in the
games G1,G2,G3 as well. On the other hand, since the algebra B is (ω, 2)-distributive, White does not have
a winning strategy in the game G1 and, by Proposition 1(a), White does not have a winning strategy in the
games G2,G3,G4 played on B. �

Problem 1. According to Theorem 8, Proposition 1 and Theorem 5 for each complete Boolean algebra B we have:

B is ω-independent⇒White has a winning strategy in G3 ⇒ B is not (ω, 2)-distributive.

Can one of the implications be reversed?

Problem 2. According to Proposition 1(b), for each complete Boolean algebra B we have:

Black has a winning strategy in G1 ⇒ Black has a winning strategy in G2 ⇒ Black has a winning strategy in G3.

Can some of the implications be reversed?

We note that the third implication from Proposition 1(b) can not be replaced by the equivalence, since
if B is the Cohen or the random algebra, then Black has a winning strategy in the game G4 (Theorem 2(b))
while Black does not have a winning strategy in the game G3, because White has one (the Cohen and the
random forcing produce independent reals and Theorem 8 holds).
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