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Certain Complex Equations and Some of Their Implications
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Abstract. The aim of the present investigation is first to reveal some nonlinear relations between certain
inequalities (constituted by normalized analytic functions) and equations in the complex plane and then to
indicate some useful implications of them.

1. Introduction, Notations and Definitions

As it is known from literature, fractional calculus (FC) is a generalization of ordinary differentiation and
integration to arbitrary non-integer order. This subject is as old as the differential calculus, and also goes
back to time when Leibniz and Newton invented differential calculus. The efficient usage of FC has been a
subject of interest not only among mathematicians but also among physicists and engineers, appearing in
rheology, viscoelasticity, electrochemistry, electromagnetism, etc. Fractional differential equations (FDE),
i.e., differential equations determined by FC, have also many applications in modeling of physical and
chemical processes and also in engineering. In its turn, mathematical aspects of studies on FDE were
discussed by several authors. After some ordinary researches, it can be easily arrived at some of them. One
may look over their details in the works in [8-10, 13, 14]

The main purpose of this work is both to present a novel investigation dealing with analytic and
geometric function theory (AGFT) and FDE, and to reveal some nonlinear relations between certain complex
valued functions and complex (differential) equations established by using FC. (See [3, 4] for AGFT, [8-10,
13, 14] for FDE, and also see [5, 6] for certain results between AGFT and FDE.) Principally, a number of
special consequences of the main results are also pointed out in the concluding section of this paper.

Now we need to introduce (or remember) some well-known notations and also definitions which will
be used in this work.

First of all, letR, C andN be the set of real numbers, the set of complex numbers and the set of positive
integers, respectively. Also letN0 :=N ∪ {0}, C∗ := C − {0} and R∗ := R − {0}.

For 0 ≤ µ < 1 and a complex-valued function κ := κ(z), the symbol Dµ
z [κ] denotes an operator of FC,

which is defined as follows (cf., e.g., [1, 2, 7-10, 13, 14]):
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Research supported by TÜBİTAK (The Scientific and Technological Research Council of TURKEY)
Email address: hisimay@yahoo.com, hirmak@karatekin.edu.tr (Hüseyin Irmak)
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Let κ(z) be an analytic function in a simply-connected region of the z−plane containing the origin. Then,
the fractional derivative of order µ is defined by

D
µ
z [κ] =

1
Γ(1 − µ)

d
dz

∫ z

0

κ(ξ)
(z − ξ)µ

dξ
(
0 ≤ µ < 1

)
, (1)

where the multiplicity of (z − ξ)−µ above is removed by requiring lo1(z − ξ) to be real when z − ξ > 0. Here
and throughout this investigation, of course, the function Γ is the well-known gamma function that we
know.

Under the hypotheses of the definition above, for an analytic function κ(z), the fractional derivative of
order m + µ is also defined by

D
m+µ
z [κ] =

dm

dzm

(
D
µ
z [κ]

) (
0 ≤ µ < 1; m ∈N0

)
. (2)

As an application of the above operators, if we apply the definitions in (1) and (2) to the function
κ(z) = zω, it can be easily determined that

D
m+µ
z [zω] =

Γ(ω + 1)
Γ(ω −m − µ + 1)

zω−m−µ (ω > m + µ − 1) (3)

for some 0 ≤ µ < 1 and for all m ∈N0.

Next, letA denote the family of the functions f (z) normalized by the following Taylor-Maclaurin series:

f (z) = z + a2z2 + a3z3 + · · · + anzn + · · ·
(
an+1 ∈ C; n ∈N

)
, (4)

which are analytic in the unit open diskU = {z : z ∈ C and |z| < 1}. This functions familyA has an important
roles for AGFT. For certain examples concerning functions in the related family, see the results given by the
references in [1, 2, 5-7].

By applying the operatorDµ
z [·] to a complex function f (z) belonging to the classA, given by (1), we can

then define a linear operator Jµz [ f ] in the following form:

Jµz [ f ] = Γ(2 − µ)zµDµ
z [ f ] = z +

∞∑
k=2

Γ(k + 1)Γ(2 − µ)
Γ(k − µ + 1)

akzk, (5)

where µ ∈ R := R − {2, 3, 4, · · · }.

In order to prove main results in the next section, we need to recall the following assertion given by [11]:

Lemma 1. Let p(z) be an analytic function in the diskU with p(0) = 1. If there exists a point z0 inU such that

<e
(
p(z)

)
> 0

(
|z| < |z0|

)
, <e

(
p(z0)

)
= 0 and p(z0) , 0, (6)

then

p(z0) = ia and
zp′(z)
p(z)

∣∣∣∣∣
z=z0

= ik
(
a +

1
a

) (
k ≥

1
2

; a ∈ R∗
)
. (7)

2. The Main Results and Some Implications

In this section, for stating of the main results and also their implications, it needs to introduce three
important and comprehensive definitions which are in the following forms:
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F (z) =
(
1 − λ

)
f (z) + λz f ′(z)

(
λ ∈ R; f (z) ∈ A

)
, (8)

(1 − µ)J1+µ
z [F ] + (1 + µ)Jµz [F ] = zΦ(z)

(
µ ∈ R

)
(9)

and µ + (1 − µ)
J1+µ
z [F ]
Jµz [F ]

 ( Jµz [F ]
z

)δ
= Ψ(z)

(
δ ∈ R∗;µ ∈ R

)
. (10)

In relation to the definitions in (8)-(10), of course, after simple calculations, when focusing on the related
definitions (8)-(10), it is easily seen that the function F (z) is a member of the classA, and the functions Φ(z)
and Ψ(z) are analytic inU, and also both of the complex equations include several certain types of complex
differential equations (CDE) by choosing suitable values of the parameters λ, µ and/or δ there. Here and
throughout this work, note that the value of the complex power in (10) is considered to be its principle
value.

We now begin by setting and then proving the theorems consisting of several useful results between
certain complex - differential - equations and normalized analytic functions. The first of the main results is
contained in the following form.

Theorem 1. Let the function F (z) be defined by (8) and let the function Φ(z) be an analytic inU also satisfy any
one of the following conditions:

=m
(
Φ(z)

)
= 0 and

∣∣∣∣<e
(
Φ(z)

)∣∣∣∣ < 1. (11)

If the function F := F (z) is a solution for the complex equation given by (9), then

<e

 Jµz
[
F

]
z

 > 0
(
µ ∈ R; z ∈ U

)
. (12)

Proof. Let f (z) ∈ A and also let the function F (z) be defined by (8). By means of the definition of the
operator in (5), it can be easily derived that

Jµz
[
F

]
z

= 1 +

∞∑
n=2

Γ(k + 1)Γ(2 − µ)
Γ(k − µ + 1)

(
kλ − λ + 1

)
akzk−1, (13)

where λ ∈ R, µ ∈ R and z ∈ U.

If we define p(z) by
Jµz

[
F

]
z

= p(z)
(
µ ∈ R; z ∈ U

)
, (14)

then, clearly, the function p(z) is analytic in U with p(0) = 1. By means of the equality in (14), we easily
obtain that (

Jµz
[
F

])′
+

Jµz
[
F

]
z

= p(z)
(
2 +

zp′(z)
p(z)

)
. (15)

By using (2.8) and also the well known identy:

z ·
(
Jµz

[
F

])′
= (1 − µ) J1+µ

z

[
F

]
+ µ Jµz

[
F

]
, (16)

we easily get that

(1 − µ)J1+µ
z

[
F

]
+ (1 + µ)Jµz

[
F

] (
= zp(z)

(
2 +

zp′(z)
p(z)

))
=: zΦ(z). (say) (17)
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Then, it is clear that Φ(z) is both an analytic function inU and satisfies the complex equation in (9).

Now assume that there exists a point z0 inU such that

<e
(
p(z)

)
> 0

(
|z| < |z0|

)
, <e

(
p(z0)

)
= 0 and p(z0) , 0.

From (6) of the Lemma 1, we then obtain that

p(z0) = ia and
zp′(z)
p(z)

∣∣∣∣∣
z=z0

= ik
(
a +

1
a

) (
k ≥

1
2

; a ∈ R∗
)
.

By using the assertions just above, (17) follows that

=m
(
Φ(z0)

)
= =m

[
p(z)

(
2 +

zp′(z)
p(z)

)∣∣∣∣∣
z=z0

]
= 2a , 0

and ∣∣∣∣<e
(
Φ(z0)

)∣∣∣∣ =

∣∣∣∣∣∣<e
[

p(z)
(
2 +

zp′(z)
p(z)

)∣∣∣∣∣
z=z0

]∣∣∣∣∣∣ =

∣∣∣∣∣−k
(
a +

1
a

)∣∣∣∣∣ ≥ 2k ≥ 1.

But, these results overtly contradict our assumptions in (11), respectively. Hence, the equality in (13)
immediately yields that <e

(
p(z)

)
> 0 for all z ∈ U. Therefore, we evidently receive the inequality in (12).

This completes the related proof.

The second of the main results is also contained in following form.

Theorem 2. Let the function F (z) be defined by (8) and let the function Ψ(z) be an analytic in U and also satisfy
any one of the following conditions:

=m
(
Ψ(z)

)
= 0 and

∣∣∣∣<e
(
Ψ(z)

)∣∣∣∣ < 1
|δ|

(
δ ∈ R∗). (18)

If the function F := F (z) is a solution for the complex equation given by (10), then

<e


 Jµz

[
F

]
z


δ  > 0

(
δ ∈ R∗;µ ∈ R; z ∈ U

)
. (19)

Proof. Let f (z) ∈ A and also let F (z) be defined by (8). Then, in view of (13), if we first consider a
function p(z) (which is analytic inU and p(0) = 1) as in the form: Jµz

[
F

]
z


δ

= p(z) (δ ∈ R∗;µ ∈ R; z ∈ U) (20)

and also follow the smilar ways pursued in (15)-(17), we then derive that Jµz
[
F

]
z


δ

+ z

 Jµz
[
F

]
z


′  Jµz

[
F

]
z


δ−1

= p(z)
(
1 +

1
δ

zp′(z)
p(z)

)
,

or, equivalently, µ + (1 − µ)
J1+µ
z [F ]
Jµz [F ]

 ( Jµz [F ]
z

)δ (
= p(z)

(
1 +

1
δ

zp′(z)
p(z)

))
= Ψ(z). (say) (21)
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Obviously, Ψ(z) is an analytic function in U and also satisfies the equation in (10). As we did in the proof
of the Theorem 1, if we again the assumptions of the Lemma 1 to the equality in (21), we easily determine
that

=m
(
Ψ(z0)

)
= =m

[
p(z)

(
1 +

1
δ

zp′(z)
p(z)

)∣∣∣∣∣
z=z0

]
= a , 0

and ∣∣∣∣<e
(
Ψ(z0)

)∣∣∣∣ =

∣∣∣∣∣∣<e
[

p(z)
(
1 +

1
δ

zp′(z)
p(z)

)∣∣∣∣∣
z=z0

]∣∣∣∣∣∣ =

∣∣∣∣∣− k
δ

(
a +

1
a

)∣∣∣∣∣ ≥ 1
|δ|
,

which are contradictions with the assertions of Theorem 2 in (18), respectively. Hence, the equality in (15)
yields that <e

(
p(z)

)
> 0 for all z ∈ U. Therefore, we receive the inequalty in (15). Thus, the proof of the

Theorem 2 is completed.

As we emphasized in the section 1, the theorems above include several useful and comprehensive results
between certain complex differential equations, which were given by (9) and (10), and normalized analytic
functions, which were given by (1). It is impossible to list all of them. But, we want to center on only four of
them, which are directly related to the results between CDE and AGFT. Both the consequences of these (i.e.,
Corollaries 1-4 below) and the other possible results of the related theorems (which are here omitted) are
presented to the attention of the researchers who have been working on the theory relating to differential
equation or univalent function.

By putting µ := 0 and λ := 0 in (8), (9) and also in the Theorem 1, the following result (which is Corollary
1 below) dealing with close-to-starlikeness (w.r.t. origin) can be first revealed.

Corollary 1. Let w := f (z) ∈ A and also let Φ(z) be an analytic function and satisfy any one of the conditions given
by (11). Then,

z
dw
dz

+ w = zΦ(z) ⇒ <e
(w

z

)
> 0

(
z ∈ U

)
.

By setting µ := 0 and λ := 1 in (8), (9) and also in the Theorem 1, the following result (which is Corollary
2 below) relating to close-to-convexity (w.r.t. origin) can be second obtained.

Corollary 2. Let w := f (z) ∈ A and also let Φ(z) be an analytic function and satisfy any one of the conditions given
by (11). Then,

z
d2w
dz2 + 2

dw
dz

= Φ(z) ⇒ <e
(

dw
dz

)
> 0

(
z ∈ U

)
.

By letting µ := 0 and λ := 0 in (8), (9) and also in the Theorem 2, the following result (which is Corollary
3 below) can be then received.

Corollary 3. Let w := f (z) ∈ A and also let Ψ(z) be an analytic function and satisfy any one of the conditions given
by (18). Then,

z
(w

z

)δ dw
dz

= w Ψ(z) ⇒ <e
[ (w

z

)δ ]
> 0

(
δ ∈ R∗; z ∈ U

)
.

By choosing µ := 0 and λ := 1 in (8), (10) and also in the Theorem 3, the following result (which is
Corollary 4 below) can be also obtained.

Corollary 4. Let w := f (z) ∈ A and also let Ψ(z) be an analytic function and satisfy any one of the conditions given
by (18). Then, (

dw
dz

)δ (
z

d2w
dz2 +

dw
dz

)
−Ψ(z)

dw
dz

= 0 ⇒ <e
[ (dw

dz

)δ ]
> 0

(
δ ∈ R∗; z ∈ U

)
.
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