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Abstract. We define the concept of a convergence class on an object of a given category by using certain
generalized nets for expressing the convergence. The resulting topological category, whose objects are the
pairs consisting of objects of the original category and convergence classes on them, is then investigated. We
study the full subcategories of this category which are obtained by imposing on it some natural convergence
axioms. In particular, we find sufficient conditions for the subcategories to be cartesian closed. We also
investigate the behavior of the closure operator associated with the convergence in a natural way.

1. Introduction

The study of topological structures on categories was initiated by Dikranjan and Giuli in their paper
[3] on categorical closure operators and now it represents an important branch of categorical topology.
Originally, only the topological structures on categories given by closure operators were considered and
investigated. Later on, also other types of topological structures on categories were introduced and studied,
e.g., convergence structures in [13-14] and neighborhood structures in [7-8]. Different types of topological
structures on categories are studied to provide convenient tools for investigating topological features of
(objects of) the categories. But only those categories may be investigated which possess such a structure.
The approach of the present paper is different - we define new topological structures, convergence classes,
on each object of a category possessing no topological structure in general and study the obtained category
whose objects are pairs consisting of objects of the original category and convergence classes on them. As
a tool for introducing convergence (classes) on objects of a category we use a generalized concept of nets
given by a functor from a given category to the category under investigation. We consider certain natural
convergence axioms and investigate behavior of the categories of objects with a convergence class satisfying
these axioms. In particular, we find a sufficient conditions under which these categories are cartesian closed.
Recall that cartesian closedness is a very useful categorical property having many applications. For example,
in computer science, cartesian closed categories are used as models of the so-called typed lambda-calculus,
which is an important formal programming language. We also show that the introduced categories of
objects with a convergence class possess a closure operator in the sense of [3]. This closure operator is
studied and, among others, sufficient conditions are given for the operator to be additive and idempotent,
respectively.
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2. Generalized-Net Convergence

For the categorical terminology used see [1]. Throughout the paper, S and K will be non-empty
categories and F : S → K a functor. For each K -object K, we denote by (F ↓K) the comma category of
objects F -over K, i.e., the category with objects all pairs 〈S, f 〉, where S is an S-object and f : F S → K is a
K -morphism, and with morphisms h : 〈S, f 〉 → 〈T, 1〉 those S-morphisms h : S→ T satisfying 1 ◦ F h = f .

Definition 2.1. Objects of the category (F ↓K) will be called F -nets in K. Given a pair 〈S, f 〉, 〈T, 1〉 of F -nets
in K, 〈S, f 〉 is said to be a subset of 〈T, 1〉 if there is an (F ↓K)-morphism h : 〈S, f 〉 → 〈T, 1〉.

Example 2.2. (1) Let α > 0 be an ordinal, let α be the construct whose only object is α and whose morphisms
are isotone injections of α into itself, and let F : α → Set be the forgetful functor. Then F -nets in a set X
and their subnets are precisely the sequences of type α in X and their subsequences. For α = ω we get the
usual sequences and subsequences.

(2) Let Dir be the construct of directed sets and cofinal maps and let F : Dir → Set be the forgetful
functor. Then F -nets in a set X and their subnets are precisely the usual nets in X and their subnets - see
[9].

(3) Let Set+ be the construct of nonempty sets and let F : Set+
→ Set+ be the identity functor. If 〈S, f 〉

and 〈T, 1〉 is a pair of F -nets in a set X, then 〈S, f 〉 is a subnet of 〈T, 1〉 if and only if f (S) ⊆ 1(T).
(4) Let S be a non-empty construct and F : S → Set the forgetful functor. The F -nets in a set X and

their subnets coincide with S-nets in X and their subnets introduced in [11] and studied also in [12].
(5) Let HComp be the construct of compact Hausdorff topological spaces and let F : HComp → Set be

the forgetful functor. A quasi-topology [15] on a set X is nothing but a collection (Q(S,X))S∈HComp where, for
eachHComp-object S, Q(S,X) is a set of F -nets 〈S, f 〉 in X satisfying some given axioms.

From now on, we assume thatK has terminal objects and for eachK -object K we denote by K̃ the class of
all points of K, i.e.,K -morphisms IK → K where IK is a terminal object ofK . (If x : IK → K and x′ : I′

K
→ K

are points with x′ ◦ t = x where t : IK → I′
K

is the unique isomorphism, then we write x � x′ and regard x
and x′ as identical.)

Now, let K be a K -object and π ⊆ Obj(F ↓ K) × K̃ a subclass. Instead of (〈S, f 〉, x) ∈ π, we will write
〈S, f 〉 π

→ x and say that 〈S, f 〉 converges to x with respect to π. Analogously, for any 〈S, f 〉 ∈ Obj(F ↓K) and
any x ∈ K̃, instead of (〈S, f 〉, x) < π, we will write 〈S, f 〉 π

9 x (and say that 〈S, f 〉 does not converge to x with
respect to π). The class π is called a convergence class on K.

Let K, L be K -objects and let π and ρ be convergence classes on K and L, respectively. A K -morphism
ϕ : K → L is said to be continuous (w.r.t. π and ρ) if 〈S, f 〉 π

→ x implies 〈S, ϕ ◦ f 〉
ρ
→ ϕ ◦ x. We denote by

[S,F ,K ] the category with objects the pairs (K, π), where K is a K -object and π is a convergence class on
K, and with morphisms ϕ : (K, π) → (L, ρ) the continuous (w.r.t. π and ρ) K -morphisms ϕ : K → L. Note
that the objects of [S,F ,K ] may not form a class so that, according to the terminology introduced in [1],
[S,F ,K ] is a so-called quasicategory rather then a category. Since all categorical concepts may naturally be
extended to quasicategories, we will avoid using the concept of a quasicategory here, i.e., we will call the
quasicategory [S,F ,K ] simply a category. Similarly, (full) subquasicategories of [S,F ,K ] will be called
(full) subcategories of [S,F ,K ] or briefly categories.

Proposition 2.3. [S,F ,K ] is a topological category overK .

Proof. It is evident that [S,F ,K ] is a concrete category over K . Clearly, for any family (K j, π j), j ∈ J, of
[S,F ,K ]-objects and any source ϕ j : K → K j, j ∈ J, in K , the convergence class π on K given by 〈S, f 〉 π

→ x

if and only if 〈S, ϕ j ◦ f 〉
π j
→ ϕ j ◦ x for all j ∈ J is the initial convergence class on K.

Though [S,F ,K ] is a topological category, it is too general from the convergence point of view - the
convergence classes do not have the proper convergence nature. Therefore, we will introduce and study
some full subcategories of [S,F ,K ] obtained by imposing the following natural convergence axioms:
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Definition 2.4. Let (K, π) ∈ Obj[S,F ,K ] and consider the following three axioms:

(i) If 〈S, f 〉 is and F -net in K such that f factors through a point x ∈ K̃ (i.e., f is a constant), then 〈S, f 〉 π
→ x

(constant-net axiom).
(ii) If 〈S, f 〉 π

→ x, then 〈T, 1〉 π
→ x for each subnet 〈T, 1〉 of 〈S, f 〉 (subnet axiom).

(iii) If 〈S, f 〉 π
9 x, then there is a subnet of 〈S, f 〉whose every subnet 〈T, 1〉 fulfils 〈T, 1〉 π

9 x (Urysohn axiom).

The object (K, π) is called an F -net space, an F -convergence space, or an F -limit space if the axiom (i), the
axioms (i) and (ii), or the axioms (i), (ii) and (iii) are fulfilled, respectively.

We denote by NetF , ConvF and LimF the full subcategories of [S,F ,K ] with the objects allF -net spaces,
all F -convergence spaces and all F -limit spaces, respectively.

Remark 2.5. As usual, ifA is a concrete category over a categoryB, then we do not distinguish notationally
between A-morphisms and their underlying B-morphisms. Moreover, if A is a construct with terminal
objects and A is and A-object, then we do not distinguish between an element x ∈ A such that {x} is the
underlying set of an initial subobject of A with respect to the inclusion map, and the point IA → A whose
range is {x}.

Example 2.6. (1) Let F : α → Set be the forgetful functor (see Example 2.2(1)) and let (X, π) be an F -
convergence space. Then π is nothing but the multivalued convergence on X from [10]. TheF -convergence
or F -limit spaces (X, π) for which 〈ω, f 〉 π

→ x and 〈ω, f 〉 π
→ y imply x = y for each F -net (i.e., sequence)

〈ω, f 〉 in X are known as the (Fréchet) L-spaces or L∗-spaces, respectively - cf. [5].
(2) The B-convergence structures studied in [16] for special subcategories B of Dir (see Example 2.2(2))

are nothing but the F -convergence spaces where F : B → Set is the forgetful functor.
(3) Let F : Dir→ Set or F : α→ Set be the forgetful functor (see Examples 2.2 (1) and (2)). Let (X,O) be

a topological space (given by the set O of open subsets). For an F -net 〈S, f 〉 in a set X, put 〈S, f 〉 π
→ x if and

only if, for each A ∈ Owith x ∈ A, there exists sA ∈ F S such that f (s) ∈ A for every s ∈ F S with s ≥ sA. Then
(X, π) is an F -limit space.

(4) If F : Dir→ Set is the forgetful functor (see Example 2.2 (2)), then LimF coincides with the category
of L∗-spaces studied in [6].

(5) If S is a non-empty construct and F : S → Set the forgetful functor, then NetF , ConvF and LimF
coincide with the categories NetS, ConvS and LimS studied in [11] and [12].

Theorem 2.7. Let K be a construct with finite concrete products and discrete terminal objects, let K have initial
subobjects with respect to inclusion maps, and let F : K → Set be the forgetful functor. IfK is cartesian closed, then
so is NetF .

Proof. Under the assumptions of the statement, the cartesian closedness of K implies that K has function
spaces. Let (K, π), (L, ρ) be F -net spaces and LK be the function space of K and L in K . Let M be the initial
subobject (with respect to the inclusion map) of LK whose underlying set is the set of all K -morphisms
ψ : K → L that are continuous w.r.t. π and ρ. Let σ be the convergence class on M given by 〈S, 1〉 σ

→ z
if and only if 〈S, f 〉 π

→ x implies that 〈S, 1 f
〉

ρ
→ z(x) where 1 f : F S → L is the K -morphism defined by

1 f (s) = 1(s)( f (s)). Indeed, 1 f is a K -morphism because 1 f = e ◦ ( f × 1) ◦ d where d : F S → F S × F S is
the diagonal, i.e., the map given by d(s) = (s, s) (which is obviously a K -morphism), and e : K ×M → L
is the evaluation map, i.e., the map given by e(x, z) = z(x). As K has function spaces, the evaluation map
ev : K × LK

→ L is a K -morphism. But K ×M is an initial subobject of K × LK w.r.t. the inclusion map, so
that e : K ×M→ L is a K -morphism, too. Let 〈S, 1〉 be a constant F -net in M with 1(s) = z for every s ∈ F S
and let 〈S, f 〉 be an F -net in K with 〈S, f 〉 π

→ x. Then 1 f = z ◦ f , hence 〈S, 1 f
〉

ρ
→ z(x). Therefore, 〈S, 1〉 σ

→ z
and we have shown that (M, σ) is an F -net space.

We will show that e : (K, π) × (M, σ) → (L, ρ) is continuous. To this end, put (N, τ) = (K, π) × (M, σ) and
let 〈U, h〉 τ

→ (x, z). Then 〈U, prK ◦ h〉 π
→ x and 〈U, prM ◦ h〉 σ

→ z. Hence, 〈U, qp
〉

ρ
→ z(x) where q = prM ◦ h and
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p = prK ◦ h. We have qp(u) = q(u)(p(u)) = e(p(u), q(u)) = e(prK(h(u)), prM(h(u)) = e(h(u)) for every u ∈ FU.
Therefore, qp = e ◦ h, which yields 〈U, qp

〉
ρ
→ w(x, z). Consequently, e : (K, π) × (M, σ)→ (L, ρ) is continuous.

Now, let (N, µ) be an F -net space, let ϕ : (K, π) × (N, µ) → (L, ρ) be a continuous K -morphism and
let ϕ∗ : N → LK be the map given by ϕ∗(y)(x) = ϕ(x, y). Put (K × N, ν) = (K, π) × (N, µ) and let y ∈ N.
Let 〈S, f 〉 π

→ x and let c : F S → N be the constant map given by c(s) = y for each s ∈ F S. Then c is a
morphism inK (becauseK has discrete terminal objects). Therefore, 〈S, c〉

µ
→ y, and thus 〈S, ( f , c)〉 ν

→ (x, y).
Consequently, 〈S, ϕ ◦ ( f , c)〉

ρ
→ ϕ(x, y). For each s ∈ F S we have ϕ(( f , c)(s)) = ϕ( f (s), y) = ϕ∗(y)( f (s)), so

that ϕ ◦ ( f , c) = ϕ∗(y) ◦ f . We have 〈S, ϕ∗(y) ◦ f 〉
ρ
→ ϕ∗(y)(x). Therefore, ϕ∗(y) ∈ M for each y ∈ N, so that

we may consider ϕ∗ to be a map ϕ∗ : N → M. As K has function spaces, ϕ∗ : N → LK is a K -morphism.
Consequently, sinceK has initial subobjects with respect to inclusion maps, ϕ∗ : N→M is aK -morphism,
too. Let 〈S, r〉

µ
→ y and 〈S, f 〉 π

→ x. Then 〈S, ( f , r)〉 ν
→ (x, y) and hence 〈S, ϕ ◦ ( f , r)〉

ρ
→ ϕ(x, y). This results

in 〈S, ϕ∗ ◦ r〉 σ
→ ϕ∗(y) because ϕ(( f , r)(s)) = ϕ∗(r(s))( f (s)) = (ϕ∗ ◦ r) f (s) whenever s ∈ F S. Consequently,

ϕ∗ : (N, µ) → (M, σ) is continuous. Since clearly e ◦ (idK × ϕ∗) = ϕ, we have shown that (M, σ) is a function
space of (K, π) and (L, ρ) in NetF . Therefore, NetF is cartesian closed.

It can easily be seen that ConvF and LimF are initially closed in NetF so that they are topological.
Consequently, ConvF is a concretely reflective subcategory of NetF and LimF is a concretely reflective
subcategory of ConvF . The concrete reflection of an F -net space (K, π) in ConvF is given by the identity

K -morphism idK : (K, π) → (K, π̂) where π̂ is the convergence class on K defined by 〈S, f 〉 π̂
→ x if and only

if there is an F -net 〈T, 1〉 in K with 〈T, 1〉 π
→ x such that 〈S, f 〉 is a subnet of 〈T, 1〉. The concrete reflection of

an F -convergence space (K, π) in LimF is given by the identity L-morphism idK : (K, π)→ (K, π̂) where π̂ is

the convergence class on K defined by 〈S, f 〉 π̂
→ x if and only if each subnet of 〈S, f 〉 has a subnet 〈T, 1〉with

〈T, 1〉 π
→ x.

Theorem 2.8. ConvF is a concretely coreflective subcategory of NetF .

Proof. Let (K, π) be an F -net space and let π∗ be the convergence class on K given by 〈T, 1〉 π
∗

→ x if and only if
〈S, f 〉 π

→ x for every subnet 〈S, f 〉 of 〈T, 1〉. Clearly, (K, π∗) is anF -convergence space and idK : (K, π∗)→ (K, π)
is continuous. Let (L, ρ) be anF -convergence space and letϕ : (L, ρ)→ (K, π) be a continuousK -morphism.
Let 〈U, h〉

ρ
→ y. Then each subnet 〈V, p〉 of 〈U, h〉 satisfies 〈V, p〉

ρ
→ y. Let 〈W, q〉 be a subnet of 〈U, ϕ ◦ h〉. Then

there is an (F ↓ K)-morphism r : 〈W, q〉 → 〈U, ϕ ◦ h〉, i.e., an S-morphism r : W → U with q = ϕ ◦ h ◦ F r.
Since 〈W, h◦F r〉 is a subnet of 〈U, h〉, we have 〈W, h◦F r〉

ρ
→ y. Consequently, 〈W, q〉 = 〈W, ϕ◦h◦F r〉 π

→ ϕ(y).

Hence, 〈U, ϕ ◦ h〉 π∗
→ ϕ(y), i.e., ϕ : (L, ρ) → (K, π∗) is continuous. Thus, idK : (K, π∗) → (K, π) is a concrete

reflection of (K, π) in ConvF and the proof is complete.

As ConvF is a full isomorphism closed subcategory of NetF which is closed under formation of products
in NetF , Theorems 2.7 and 2.8 result in

Corollary 2.9. Let K be a construct with finite concrete products and discrete terminal objects, let K have initial
subobjects with respect to inclusion maps and let F : K → Set be the forgetful functor. IfK is cartesian closed, then
so is ConvF .

Theorem 2.10. Let K be a construct with finite concrete products and discrete terminal objects, let K have initial
subobjects with respect to inclusion maps, and let F : K → Set be the forgetful functor. Let S have finite products
and let these products be preserved by F . IfK is cartesian closed, the so is LimF .

Proof. Let (K, π), (L, ρ) be F -limit spaces and LK be the function space of K and L in K . Let M be the
initial subobject (with respect to inclusion map) of LK whose underlying set is the set of all K -morphisms
f : K → L that are continuous w.r.t. π and ρ. Let σ be the convergence class on M defined by 〈T, 1〉 σ

→ z
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if and only if 〈S, f 〉 π
→ x implies 〈S × T, 1 f

〉
ρ
→ z(x) where 1 f : F S × F T → L is the K -morphism given

by 1 f (s, t) = 1(t)( f (s)). Indeed, 1 f is a K -morphism because 1 f = e ◦ ( f × 1) where e : K × LK
→ L is the

evaluation map. And for the same reasons as in the proof of Theorem 2.7, e is aK -morphism.
We will show that (M, σ) is an F -limit space. To this end, let 〈T, 1〉 be an F -net in M and let z ∈ M be

an element such that 1(t) = z for all t ∈ F T. Let 〈S, f 〉 π
→ x. Then 1 f (s, t) = 1(t)( f (s)) = z( f (s)) for each

(s, t) ∈ F S×F T. Hence, 1 f = z ◦ f ◦ prF S, so that 〈S×T, 1 f
〉 is a subnet of 〈S, z ◦ f 〉. Since z is continuous, we

have 〈S, z ◦ f 〉 π
→ z(x). Therefore, 〈S×T, 1 f

〉
ρ
→ z(x), i.e., 〈T, 1〉 σ

→ z. Thus, the constant net axiom is satisfied.
Let 〈T, 1〉 σ

→ z, 〈S, f 〉 π
→ x, and let 〈U, h〉 be a subnet of 〈T, 1〉. Then there is an S-morphism p : U → T

with h = 1 ◦ F p. We have 〈S × T, 1 f
〉

ρ
→ z(x). As the map q : S × U → S × T given by q = ids × p is an

S-morphism, 〈S × U, 1 f
◦ F q〉 is a subnet of 〈S × T, 1 f

〉. Thus, there holds 〈S × U, 1 f
◦ F q〉 σ

→ z(x). Since
F q = F ids × F p = idF s × F p, we have 1 f

◦ F q(s,u) = 1 f (s,F p(u)) = 1(F p(u))( f (s)) = h(u)( f (s)) = h f (s,u) for
every (s,u) ∈ F S × FU. Consequently, 〈U, h〉 σ

→ z and the validity of the subnet axiom is shown.
Let 〈T, 1〉 be an F -net in M, 〈T, 1〉 σ

9 z. Then there exists an F -net 〈S, f 〉 in K with 〈S, f 〉 π
→ x such that

〈S× T, 1 f
〉
ρ
9 z(x). Thus, there exists a subnet 〈U, h〉 of 〈S× T, 1 f

〉 such that 〈V, s〉
ρ
9 z(x) for any subnet 〈V, s〉

of 〈U, h〉. Let p : U → S × T be the S-morphism with h = 1 f
◦ F p. Then prT ◦ p : U → T is an S-morphism,

so that 〈U, 1 ◦ F prT ◦ F p〉 is a subnet of 〈T, 1〉. Of course, F prT = prF T where prF T : F S × F T → F T is the
projection. Let 〈W, t〉 be a subnet of 〈U, 1◦prF T ◦F p〉. Then there is an S-morphism q : W → U such that t =
1◦prF T◦F p◦F q. Let r : W → S×W be the map given by r = (prS◦p◦q◦idW)◦dW where dW : W →W×W is the
diagonal. Then r is anS-morphism and we have 1 f

◦F p◦F q(w) = 1 f (prF S(F p(F q(w))), prF T(F p(F q(w)))) =
1(prF T(F p(F q(w))))( f (prF S(F p(F q(w))))) = t(w)( f (prF S(F r(w)))) = t f (prF S(F r(w)),w) = t f (F r(w)) for each
w ∈ FW. Hence, 〈W, 1 f

◦ F p ◦ F q〉 is a subnet of 〈S ×W, t f
〉. As 〈W, 1 f

◦ F p ◦ F q〉 is a subnet of 〈U, h〉, we
have 〈W, 1 f

◦ F p ◦ F q〉
ρ
9 z(x). Consequently, 〈S ×W, r f

〉
ρ
9 z(x). Hence, 〈W, r〉 σ

9 z, which means that no
subnet of 〈U, 1 ◦ prF T ◦ F p〉 converges to z (w.r.t. σ). Thus, the Urysohn axiom is satisfied and we have
shown that (M, σ) is an F -limit space.

We will show that the evaluation map e : (K, π)× (M, σ)→ (L, ρ) is continuous. Put (N, τ) = (K, π)× (M, σ)
and let 〈S, f 〉 τ

→ (x, z). Then 〈S, prK ◦ f 〉 π
→ x and 〈S, prM ◦ f 〉 σ

→ z. Hence, 〈S × S, h1〉
ρ
→ z(x) where

1 = prK ◦ f and h = prM ◦ f . As the diagonal dS : S → S × S is an S-morphism, 〈S, h1 ◦ dF S〉 is a
subnet of 〈S × S, h1〉. Thus, 〈S, h1 ◦ dF S〉

ρ
→ z(x). Whenever s ∈ F S, we have h1(dF S(s)) = h1(s, s) =

prM( f (s))(prK( f (s)) = e(prK( f (s)), prM( f (s)) = e( f (s)). Therefore, 〈S, e ◦ f 〉 is a subnet of 〈S × S, h1〉 and,
consequently, 〈S, e ◦ f 〉

ρ
→ z(x) = e(x, z). Hence, e is continuous.

Let (N, τ) be an F -limit space and let ϕ : (K, π) × (N, τ) → (L, ρ) be a continuous K -morphism. Put
ϕ∗(w)(x) = ϕ(x,w) for any w ∈ N and any x ∈ L. Then, for the same reasons as in the proof of Theorem
2.7, ϕ∗ : N → M is a K -morphism. Let 〈S, f 〉 π

→ x and 〈T, 1〉 τ
→ y and put (P, µ) = (K, π) × (N, τ). Then

〈S × T, f × 1〉
µ
→ (x, y) and thus 〈S × T, ϕ ◦ ( f × 1)〉

ρ
→ ϕ(x, y). For every (s, t) ∈ F S × F T, we have

ϕ(( f × 1)(s, t)) = ϕ( f (s), 1(t)) = ϕ∗(1(t))( f (s)) = (ϕ∗ ◦ 1) f (s, t). Hence, 〈S × T, (ϕ∗ ◦ 1) f
〉

ρ
→ ϕ(x, y) = ϕ∗(y)(x),

which yields 〈S, ϕ∗ ◦ 1〉 σ
→ ϕ∗(y). Thus, ϕ∗ : (N, τ)→ (M, σ) is continuous. As the equality e ◦ (idK × ϕ∗) = ϕ

is clearly valid, we have shown that (M, σ) is a function space of (K, π) and (L, ρ) in LimF . The proof is
complete.

3. Categorical Structures of Convergence and Closure

Throughout this section, we assume that there is given a class M of monomorphisms in K which
contains all isomorphisms and is closed under compositions. Further, we assume that K isM-complete,
i.e., that all inverse images and intersections ofM-subobjects exist and areM-subobjects. Consequently,
there is a class E of K -morphisms such that the pair (E,M) is a factorization system for morphisms in K .
Given a K -object K,M|K will denote the class of all (equivalence classes of)M-subobjects of K. Of course,
M|K is a large-complete lattice for each K -object K - cf. [4]. Its joins will be denoted by ∨ and

∨
and its
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least element by oK. A closure operator [3] on K (with respect toM) is given by assigning to every K -object
K a map cK :M|K→M|K satisfying the following three axioms:

(1) m ≤ cK(m) for all m ∈ M|K,

(2) if m ≤ n inM|K, then cK(m) ≤ cK(n),

(3) ϕ(cK(m)) ≤ cL(ϕ(m)) for each K -morphism ϕ : K → L and each m ∈ M|K; here, ϕ(m) denotes the
M-part of the (E,M)-factorization of ϕ ◦m.

A closure operator c = (cK)K∈ObjK onK is called:
grounded if cK(oK) � oK for all K ∈ ObjK ,
additive if cK(m ∨ n) � cK(m) ∨ cK(n) whenever K ∈ ObjK and m,n ∈ M|K,
idempotent if cK(cK(m)) � cK(m) whenever K ∈ ObjK and m ∈ M|K.
SinceK isM-complete, [S,F ,K ] is EmbM-complete where EmbM denotes the class of allM-embeddings

in [S,F ,K ]. In the sequel, we assume thatM contains all points (of K -objects). For each [S,F ,K ]-object
K = (K, π) and each m ∈ M|K, we put cK(m) = m ∨

∨
{x ∈ K̃; there is an F -net 〈S, f 〉 in K such that f factors

through m and 〈S, f 〉 π
→ x}. We get a map cK :M|K→M|K.

As there is an isomorphism between the (large) complete latticesM|K and EmbM|K (= the class of all
initial subobjects of K with respect to M-morphisms), cK determines a unique map EmbM|K → EmbM|K
which will also be denoted by cK.

Proposition 3.1. The maps cK, K ∈ Obj[S,F ,K ], constitute a closure operator on [S,F ,K ] with respect to EmbM.

Proof. Let K = (K, r) ∈ Obj[S,F ,K ]. Clearly, if m ∈ M|K , then m ≤ cK(m) and, if also m′ ∈ M|K, then
m ≤ m′ ⇒ cK(m) ≤ cK(m′). Consequently, the same is also valid when m,m′ ∈ EmbM|K . Let ϕ : K → L be
a morphism in [S,F ,K ], K = (K, π), L = (L, ρ). Then ϕ : K → L is a K -morphism and for every m ∈ M|K
we have ϕ(cK(m)) = ϕ(m) ∨

∨
{ϕ(x); x ∈ K̃ and there is and F -net 〈S, f 〉 in K such that f factors through m

and 〈S, f 〉 π
→ x} ≤ ϕ(m) ∨

∨
{y ∈ L̃; there is an F -net 〈S, ϕ ◦ f 〉 in L such that ϕ ◦ f factors through ϕ(m)

and 〈S, ϕ ◦ f 〉
ρ
→ y} ≤ ϕ(m) ∨

∨
{y ∈ L̃; there is and F -net 〈T, 1〉 in L such that 1 factors through ϕ(m) and

〈T, 1〉
ρ
→ y} = cK(ϕ(m)). Hence, ϕ(cK(m)) ≤ cK(ϕ(m)) and the same is also true when m ∈ EmbM|K. Thus,

cK, K ∈ Obj[S,F ,K ], is a closure operator on [S,F ,K ] w.r.t. EmbM.

The closure operator cK, K ∈ Obj[S,F ,K ], on [S,F ,K ] (with respect to EmbM) will be calledM-natural
and so will be called also its restriction to (objects of) any full subcategory of [S,F ,K ].

We say that a K -object K has enough points [2] if
∨

K̃ � idK. If every K -object has enough points, then
we say thatK has enough points.

Lemma 3.2. Let (K, π) ∈ NetF . If the domain of eachM-subobject of K has enough points, then for each m ∈ M|K
we have m ≤

∨
{x ∈ K̃; there is an F -net 〈S, f 〉 in K such that f factors through m and 〈S, f 〉 π

→ x}.

Proof. Let m : M → K and let M̃ = {x j; j ∈ J}. Then
∨

M̃ =
∨
{x j; j ∈ J} = idM. Let 〈S, 1〉 be an F -net

in IK . Then 〈S,m ◦ x j ◦ 1〉 is an F -net in K and 〈S,m ◦ x j ◦ 1〉
π
→ m ◦ x j ∈ K̃ for each j ∈ J. We have

m � m ◦ idM � m ◦
∨
{x j; j ∈ J} �

∨
{m ◦ x j; j ∈ J}. This results in the statement.

Let A, B be categories and G : A → B a functor. Let W be a G-structured source, i.e., a source
f j : P→ FU j, j ∈ J, in B where U j, j ∈ J, areA-objects. A liftV of the sourceW is any source h j : U → U j,
j ∈ J, inA such that FV =W.

Lemma 3.3. Let every F -structured source consisting of a pair of points has a lift. Suppose that for every pair of
K -morphisms e : M→ L, p : N → L such that e ∈ E or p ∈ E there are x ∈ M̃ and y ∈ Ñ such that e ◦ x = p ◦ y. If
〈S, f 〉, 〈T, 1〉 are F -nets in aK -object K such that 1 factors through theM-part of the (E,M)-factorization of f , then
there is an F -net in K which is a subnet of both 〈S, f 〉 and 〈T, 1〉.
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Proof. Let f = m ◦ e be the (E,M)-factorization of f where e : F (S) → L and let 1 = m ◦ p. Then there are
x ∈ F̃ (S) and y ∈ F̃ (T) such that e ◦ x = p ◦ y. LetW be the F -structured source consisting of x and y and
let V be a lift ofW consisting of a pair of S-morphisms h : U → S and h′ : U → T where F (h) = x and
F (h′) = y. Clearly, the F -net 〈U, f ◦ x〉 = 〈U, 1 ◦ y〉 is a subnet of both 〈S, f 〉 and 〈T, 1〉.

Example 3.4. 1. The assumptions of Lemma 3.3 are clearly satisfied if S is a topological category overK .
2. If F : Dir→ Set is the forgetful functor (where Dir is the construct of directed sets and cofinal maps),

then the first assumption of Lemma 3.3 is not satisfied and the statement of the Lemma is not true in general
(note that, in the subnet 〈U, f ◦ x〉 of 〈S, f 〉 and 〈T, 1〉 found in the proof of the Lemma, the morphism f ◦ x
is a point in K ; but points need not be morphisms in Dir in general). The first assumption of Lemma 3.3 is
satisfied if, for example, S has a unique (up to isomorphisms) object U such that FU is a terminal object of
K and, for every S-object V and every point x ∈ ˜FV, there is an S-morphism h with F h = x.

Recall that a point x ∈ K̃, where K ∈ ObjK , is said to be
∨

-prime (cf. [4]) if, for every subclass
L ⊆ K̃, x ≤

∨
L implies x � y for some y ∈ L. We say that the categoryK is

∨
-prime if, whenever K ∈ ObjK ,

each point x ∈ K̃ is
∨

-prime, i.e.,
∨̃
L =

⋃
{ j ∈ MorK ; there exists x ∈ L with

∨
L ◦ j � x} for each subclass

L ⊆ K̃.

Lemma 3.5. Let K have enough points, let K be
∨

-prime and let the assumptions of Lemma 3.3 be fulfilled. Let
K = (K, π) ∈ ObjLimF , let 〈S, f 〉 be an F -net in K and let x ∈ K̃ be a point. Then 〈S, f 〉 π

→ x if and only if, for each
subnet 〈T, 1〉 of 〈S, f 〉, we have x ≤ cK(m) where m is theM-part of the (E,M)-factorization of 1.

Proof. Suppose that 〈S, f 〉 π
9 x. Then there is a subnet 〈T, 1〉 of 〈S, f 〉 such that 〈U, h〉 π

9 x for any subnet
〈U, h〉 of 〈T, 1〉. Let m be theM-part of the (E,M)-factorization of 1 and let 〈V, p〉 be an F -net in K such that
p factors through m. By Lemma 3.3, there is an F -net 〈W, q〉 in K that is a subnet of both 〈V, p〉 and 〈T, 1〉.
But then 〈W, q〉 π

9 x, hence 〈V, p〉 π
9 x. As x is

∨
-prime, x �

∨
{x ∈ K̃; there is an F -net 〈S, f 〉 in K such that f

factors through m and 〈S, f 〉 π
→ x} = cK(m) (for the last equality see Lemma 3.2). We have proved that from

x ≤ cK(m) for each subnet 〈T, 1〉 of 〈S, f 〉, where m is theM-part of the (E,M)-factorization of 1, it follows
that 〈S, f 〉 π

→ x. As the converse implication is obvious, the proof is complete.

Theorem 3.6. LetK have enough points, letK be
∨

-prime and let the assumptions of Lemma 3.3 be fulfilled. Then
for every pair K,L ∈ ObjLimF we have:

(1) if K , L, then cK , cL,

(2) if K = (K, π), L = (L, %) and ϕ : K→ L is a K -morphism with ϕ(cK(m)) ≤ cL(ϕ(m)) for each m ∈ M|K, then
ϕ is continuous w.r.t. π and %.

Proof. (1) Let K = (K, π), L = (L, %) and let π , ρ. Without loss of generality we can suppose that there is
an F -net 〈S, f 〉 in K and a point x ∈ K̃ such that 〈S, f 〉 π

→ x but 〈S, f 〉
%
9 x. Thus, by Lemma 3.5, x ≤ cK(m)

for each subnet 〈T, 1〉 of 〈S, f 〉 where m is theM-part of the (E,M)-factorization of 1, and there is a subnet
〈T0, 10〉 of 〈S, f 〉 such that x � cK(n) where n is theM-part of the (E,M)-factorization of 10. Hence, cK , cL.

(2) Let 〈S, f 〉 be an F -net in K and let 〈S, f 〉 π
→ x. Then, by Lemma 3.5, for each subnet 〈T, 1〉 of 〈S, f 〉 we

have x ≤ cK(m) where m is theM-part of the (E,M)-factorization of 1. Consequently, ϕ ◦ x ≤ ϕ(cK(m)) ≤
cK(ϕ(m)). But every subnet of 〈S, ϕ ◦ f 〉 has the form 〈T, ϕ ◦ 1〉where 〈T, 1〉 is a subnet of 〈S, f 〉. Since ϕ(m) is
clerly theM-part of the (E,M)-factorization of ϕ ◦ 1, we have 〈S, ϕ ◦ f 〉

%
→ ϕ ◦ x by Lemma 3.5. Therefore,

ϕ is continuous w.r.t. π and %.

Remark 3.7. Theorem 3.6 states that the ”large” category of all categories LimF such that K has enough
points, K is

∨
-prime and the assumptions of Lemma 3.3 are satisfied, can be fully concretely embedded

into the ”large” category of all categories with a closure operator.
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Remark 3.8. Clearly, the M-natural closure operator on [S,F ,K ] is grounded if and only if, for each
K = (K, π) ∈ Obj[S,F ,K ] and each x ∈ K̃, x � oK whenever there is an F -net 〈S, f 〉 in K such that f factors
through oK and 〈S, f 〉 π

→ x.

Example 3.9. Let S be a construct with the forgetful functor F : S → Set and letM be the class of inclusion
maps. If F (X) , ∅ for each X ∈ ObjS, then theM-natural closure operator on [S,F ,Set] is grounded.

We will give sufficient conditions for the M-natural closure operator on [S,F ,K ] to be additive and
idempotent, respectively.

Definition 3.10. The category S is said to be join-hereditary with respect to F andM if, for anyK -object K,
any pair m,n ofM-subobjects of K and any F -net 〈S, f 〉 in K such that f factors through m ∨ n, there are an
S-object T, an S-morphism h : T→ S and aK -morphism 1 such that f ◦ F (h) = m ◦ 1 or f ◦ F (h) = n ◦ 1.

Theorem 3.11. TheM-natural closure operator on ConvF is additive if S is join-hereditary with respect to F and
M.

Proof. Let S be join-hereditary with respect to F andM. Let K = (K, π) ∈ ObjConvF and m,n ∈ M|K. Let
〈S, f 〉 be an F -net in K which factors through m ∨ n and let 〈S, f 〉 π

→ x. Then there is a subnet 〈T,m ◦ 1〉
or 〈T,n ◦ 1〉 of 〈S, f 〉 which converges to x w.r.t. π (as (K, π) is an F -convergence space). Thus, we have
cK(m∨ n) = m∨ n∨

∨
{x ∈ K̃; there is an F -net 〈S, f 〉 in K such that f factors through m∨ n and 〈S, f 〉 π

→ x} ≤
(m ∨

∨
{x ∈ K̃; there is an F -net 〈T, p〉 in K such that p factors through m and 〈T, p〉 π

→ x}) ∨ (n ∨
∨
{x ∈ K̃;

there is an F -net 〈T, p〉 in K such that p factors through n and 〈T, p〉 π
→ x}) = cK(m) ∨ cK(n).

Proposition 3.12. Let S be a construct, F : S → Set the forgetful functor and M the class of inclusion maps.
Suppose that for any S-object S and any pair U,V of sets with F (S) = U ∪ V, there exists an initial subobject T of S
with respect to anM-morphism such that F (T) = U or F (T) = V. Then S is join-hereditary with respect to F and
M.

Proof. Let the assumptions of the statement be fulfilled. For any set K, any pair of subsets M,N ⊆ K and
any F -net 〈S, f 〉 in K such that f (F S) ⊆M∪N, put U = f−1(M) and V = f−1(N). Then FS = U∪V and thus
there is an initial subobject T of S with respect to anM-morphism such that F (T) = U or F (T) = V. Let
h : T → S be an embedding and put 1 = f |U if F (T) = U or 1 = f |V if F (T) = V. Then clearly f ◦ h = 1 and
f (h(t)) ∈M for each t ∈ F (T) or f (h(t)) ∈ N for each t ∈ F (T). Therefore, S is join-hereditary with respect to
F andM.

Example 3.13. Let α ≥ ω be an initial ordinal and let [α] be the construct of well-ordered sets isomorphic
to α with isotone injections as morphisms. If S = [α] or S = Dir (the construct of directed sets and cofinal
maps), then S satisfies the assumptions of Proposition 3.12 and, therefore, S is join-hereditary with respect
to the forgetful functor F : S → Set and the classM of inclusions in Set.

Definition 3.14. We say that an object K = (K, π) ∈ [S,F ,K ] fulfils the weak condition of iterated limits if the
following condition is satisfied:
If 〈S, f 〉 π

→ x, F̃ S , ∅ and 〈Ts, 1s〉
π
→ f ◦ s for each s ∈ F̃ S, then there is an F -net 〈U, h〉 in K such that

〈U, h〉 π
→ x and theM-part n of the (E,M)-factorization of h fulfils n ≤

∨
{ms; s ∈ F̃ S} where ms denotes the

M-part of the (E,M)-factorization of 1s for each s ∈ F̃ S.

Theorem 3.15. LetK have enough points and be
∨

-prime and let F̃ S , ∅ for each S ∈ ObjS. If each object of NetF
fulfils the weak condition of iterated limits, then theM-natural closure operator on NetF is idempotent.

Proof. Let K = (K, π) ∈ ObjNetF and m ∈ M|K. By Lemma 3.2, cKcK(m) =
∨
{x ∈ K̃; there is an F -net 〈S, f 〉

in K such that f factors through cK(m) and 〈S, f 〉 π
→ x}. If f factors through cK(m), then f ◦ s ≤ cK(m) for each
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s ∈ F̃ S and, by Lemma 3.2, cK(m) =
∨
{x ∈ K̃; there is an F -net 〈T, 1〉 in K such that f factors through m and

〈T, 1〉 π
→ x}. As K is

∨
-prime, for each s ∈ F̃ S there is an F -net 〈Ts, 1s〉 in K such that 1s factors through m

and 〈Ts, 1s〉
π
→ f ◦ s. As K fulfills the weak condition of iterated limits, there is an F -net 〈U, h〉 in K such that

〈U, h〉 π
→ x and theM-part n of the (E,M)-factorization of h fulfills n ≤

∨
{ms; s ∈ F̃ S}where ms denotes the

M part of the (E,M)-factorization of 1s for each s ∈ F̃ S. But the (E,M)-diagonalization property implies
that ms ≤ m for each F̃ S, hence n ≤ m. Thus, h factors through m. Consequently, cKcK(m) ≤

∨
{x ∈ K̃; there

is an F -net 〈U, h〉 in K such that h factors through m and 〈U, h〉 π
→ x} � cK(m).

Definition 3.16. Let S be a construct with concrete products, let F : S → Set be the forgetful functor, and
let F S , ∅ for each S ∈ ObjS. An object (K, π) ∈ LimF is said to fulfil the condition of iterated limits if the
following is valid: Let S ∈ ObjS and let 〈Ts, 1s〉 be an F -net in K for each s ∈ F S. Put U = S ×

∏
s∈S Ts and

let h : FU → K be the map given by h(s, t) = 1s(t(s)). If 〈Ts, 1s〉
π
→ xs for each s ∈ F S and 〈S, f 〉 π

→ x, where
f : F S→ K is the map given by f (s) = xs, then 〈U, h〉 π

→ x.

Example 3.17. IfS = Dir (see Example 2.2(2)) andF : S → Set is the forgetful functor, then the condition of
iterated limits from Definition 3.16 coincides with the condition of iterated limits introduced by J.L. Kelley
in [9].

As the condition of iterated limits (for constructs) clearly implies the weak condition of iterated limits,
we have

Corollary 3.18. LetS be a construct with concrete products, letF : S → Set be the forgetful functor, and letF S , ∅
for each S ∈ ObjS. Let M be the class of all injective maps in Set. If each object of LimF fulfils the condition of
iterated limits, then theM-natural closure operator on LimF is idempotent.

Definition 3.19. Let S be a construct, let F : S → Set be the forgetful functor, and let F S , ∅ for each
S ∈ ObjS. Then S is called fine if for each S-object S there is a map i 7→ S(i) of F S into the class of all
subobjects of S such that

(1) j ∈ F S(i)
⇒ F S( j)

⊆ F S(i),
(2) F (

∏
k∈K

Sk)(v)
⊆ F

∏
k∈K

S(v(k))
k whenever Sk ∈ ObjS for each k ∈ K,

(3) given S,T ∈ ObjS, a map h : S → T is an S-morphism if for any j ∈ F T there exists i ∈ F S such that
h(F S(i)) ⊆ F T( j).

Example 3.20. (1) The category Dir of directed sets and cofinal maps is fine: For any directed set S = (F S,≤)
and any i ∈ F S, the directed subset S(i) of S is given by S(i) = ([i),≤) (where [i) = {s ∈ S; s ≥ i}).

(2) The category Set+ of non-empty sets is fine: For any non-empty set S and any i ∈ S the subset S(i) is
given by S(i) = S.

Theorem 3.21. LetS be a construct with concrete products, letF : S → Set be the forgetful functor, and letF S , ∅
for each S ∈ ObjS and let S be fine. If every object of LimF fulfils the condition of iterated limits, then for every pair
K,L ∈ ObjLimF we have:

(1) if K , L, then cK , cL,
(2) if K = (K, π), L = (L, %) and ϕ : K → L is a map with ϕ(cK(m)) ⊆ cL(ϕ(m)) for each m ⊆ K, then ϕ is

continuous w.r.t. π and %.

Proof. The proof is analogous to that of Theorem 5.5 in [11].

Remark 3.22. Let S be a construct with concrete products, let F : S → Set be the forgetful functor and let
F S , ∅ for each S ∈ ObjS. Let L̂imF denote the full subcategory of LimF whose objects are precisely the
F -limit spaces fulfilling the condition of iterated limits. Theorem 3.21 states that the ”large” category of
all categories L̂imF can be fully concretely embedded into the ”large” category of all categories with an
idempotent closure operator. Note that, in difference to Theorem 3.6, the assumptions of Theorem 3.21 are
satisfied in the case when S is the construct Dir of directed sets and cofinal maps.
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[12] J. Šlapal, Compactness in categories of S-net spaces, Appl. Categ. Struct. 6 (1998) 515–525.
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