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Global Well-Posedness for a Viscosity Problem of
the Compressible Heisenberg Chain Equations

Jinrui Huang?

?School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P.R. China

Abstract. In this paper, we are concerned with the existence and uniqueness of global smooth solutions to
a viscosity problem for the compressible Heisenberg chain equations in one dimension. Furthermore, we
prove the global existence of weak solutions when the parameter A tends to zero by compactness method.

1. Introduction

In this paper, we are concerned with the existence and uniqueness of global smooth solutions to the
following periodic boundary value problem:

Zy=-eZx(Zx(G(Zy) Z)) +7Zx(G(Zy) Z) xeR, teR,, 1)
Z(x,0) = Zo(x), Z(x + D,t) = Z(x - D, t), |Zo(x)| =1, x € R, )

where G(&) = A + BIEP? and ¢,A,B,D > 0 are generic constants. If ¢ = 0, the above system is reduced
to the compressible Heisenberg chain equations (see [5]). Ding, Guo and Su [2] proved the existence of
measure-valued solutions to the compressible Heisenberg chain equations. If B = 0, the system is reduced
to the Landau-Lifshitz equations, one can refer to [3, 4, 6, 9] and their references for related topics.

There is a fact we will use in this paper: (1) is equivalent to the following form in the classical sense:

7= cG(Z)BP7 +¢(G(2) 7). + 2% (G(2) 2. ®

Note that if A = 0, (3) is in fact the one-dimensional heat flow of p-harmonic map with values into sphere

and p = 4 by neglecting the last term 7 x (G(Zx)zx)x on the right hand side of (3), one can refer to [1] for the
global existence of weak solutions to p-harmonic maps in multi-dimensions. The readers can also refer to
[7] for related topics.

We first establish the existence of local smooth solution to problem (1)-(2) by difference-differential
method, and then give a priori estimates for such solutions to obtain the global existence of regular solutions
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for fixed ¢ = 1, positive A and B. Furthermore, observing that some basic energy estimates independent of
A, we prove the global existence of weak solutions provided that A = 0. Let Q = [-D, D]. Now we state
the main results as follows.

Theorem 1.1. Let Zy(x) € H(Q), k > 2. Then for any given T > 0, problem (1)-(2) admits a unique global regular
solution Z(x, t):

[3] [&d]
Z(x,t) e F(T) = ( WS (0, T Hk—ZS(Q))) N ( MO, H"”‘ZS(Q))).
5=0

5=0

NI

Theorem 1.2. Let Zo(x) € W4(Q) and A = 0. Then for any given T > 0, problem (1)-(2) admits a global weak
solution Z(x, t) such that

Z(x, ) € L® (0, T; WM(Q)), Zi(x, 1) € L2 (o, T; LZ(Q)),

and (1) holds in the sense of distribution.

2. Local Smooth Solution
We need the following well known lemmas.
Lemma 2.1. ([8]) Let p be real number and j, m be integers such that 2 < p < 00,0 < j < m. Then
Wl < Gl (10"l + 5 )
where uy = {uj = u(x;) | j=0,+1,%2,..., %]}, x; = jh, h = 2D/], a = 1(] + 3 i- —) C is a constant which is
independent of uy, and h, and

o Afu;

hk

Ak y;
e

i<j—k

165wl = [

Lemma 2.2. ([8]) Let uy, = { uj = u(xj) |j=0,+£1,£2,...,]---}, v = { uj = v(x]-) |j=0,+1,£2,...,%---},
and ujy; = uj, Vi = vj, we have

J-1
Z uiN_v; = —Z vjALuj,
j=0

]

J
i=1
) J-1
(ii). Zu]A Avj= ZA+ujA+vj,
=1 =0

(iii). A+(ujv]) =uj1Av0; + 0 Au,  A(ujv)) = uj-1A-v; + vjA_uj,

i
] ;o lIe* uhllm— Jmax
i=0

where Ay, A_ denote the forward and backward difference respectively.

To get the existence of local smooth solution of (1)-(2), we apply the differential-difference method. Our

aim is to construct the local solution (in time t) of (1)-(2) as limits of sequence {Zh} when & tends to zero. We
only consider the case ¢ = 1. Firstly, we establish the following difference-differential system:

. AZ\ ALZ; AZi\ AZ
2 P | PO
—— =—Z;X|Z;X 7 +7Z; X 7 ,
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Zili=o = Zoj = Zo(jh), 5)

Zj+] = Zj/ (6)
where j = 0,21,%2,..., %], h = 2, Z; = Z(jh, 1), ] > 0.

It is clear that the initial value problem for ordinary differential equations (4)-(6) admits a local smooth
solution. For such solution, we shall give some estimates uniformly in & and then get a local smooth solution

to problem (1)-(2). In this section we always denote a smooth solution of (4)-(6) by 7 i j=0,%£1,%2,---.

Lemma 2.3. If Zo(x) € WY4(Q), then 7 i(t) € S? for all t and there are uniform constants To > 0, C > 0 independent
of h such that

sup (16Zu(®)ll2 + 16Zu(B)lls) < C. ”

0<t<Ty

Proof. Firstly, multiplying (4) by Z j» we obtain Z i 7 jt =0,j € Z. Then we have

Zit) =120l =1, jez. 8)
Secondly, it follows from (4) that
S AZ N\ ALZ; AZ\ AZ
dA,Z; R R A*(G( h]) h/) N A*(G( lz/) h])
0 =-A|Z;x|Z; x p +AL|Z; X " . 9)

A;Z/ ) 2% and then summing over j from 0 to | — 1 that

It yields from multiplying (9) by G (

h
o S\ 12
R 5 . AZ:\ ALZ;
S (AZ\AZ anZ A—(G(—h’)—h’)
ZG == =—Zij - . (10)
j=0 j=1

Therefore, we get

- S\ 2
A Zi\ AL Z:
] A_lG g B Wetaiond |
Ad =22 Bd 2 4 > ( ( I ) g ) _
5 2I0Zul + 7 Z10Z3 1} +]Z_; 7; % - = 0. (11)
Then we have
o 22
e a6 )
15Zi(B)ll + 16 Z(lls + f Y |7 - dt < CAIZo()llws). (12)
0 "
=1
0

Now we turn to get higher order estimates. Firstly, by noticing V4 i(t) € §%, we have from (4) that

R AV, AZP\ AZ; AV,
iz, (7)) [, ale() ), ale() )
E— h - Z]" I Z]'+Z]'X n .

(13)

Then we get the following lemma.
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Lemma 2.4. If Zo(x) € HX(Q), then there are uniform constants Ty > 0,C > 0 independent of h such that

To
sup (IZu(®Oll + 152 Zu(®)ll + 1Z(B)lls ) + f (I Zu(IB + 15Zw(DI3) dt < C. (14)
0

0<t<Ty

Proof. Taking the forward difference A; of (13), multiplying the resulting equations by , and then
summing over j from 1 to ], we have
. AZ\ AZ .
1d & |27 zh L, AvA- (G( ]) [ ’) N2A_Z;
5 2| )3 S
=0 j=
AZ\ ALZ R
Ll AEER))) ) waz
_ZA+ Z;- - il =5
i=
AZ N\ AZ .
|, A (G(T/)T]) NA 7,
+ZA+ ZiX 7 —
j=1
= I+II+1IL (15)

It yields from direct calculations, Lemma 2.2 and (8) that

h+2B Z

- 12
A2A_Z; 8z mAaZf

h3

]
h

- TP

]

T - -
+BZ([A2 1 AdA z]+[A2h]- A+Ah_zzj+1]].[A;zj'Ai;_zj]
1

]

1
I +A z]+1 NAZ;
+ZA+ * h3
j=1
J

s ( )](“”“ZJ'

ALZ
I —( ( 7 ) hl) M2A_Z,;
I = _ZA+ 7. [Zj+1‘+—]]
=1

h3

AZi\ AZ) - - -
/ A Z A- (G( h ) h ) A+Z]'+1 + A_Z]'+1 A+A_Z]‘+1
= LM% 2h e




I

Note that we can estimate the second term on the R.H.S. of III by the Cauchy inequality and (8)

AZ; N2AZ AZP) N2A_Z;
%Z[ —ﬁﬁwah]—%—

2
< 532

In conclusion, we have from the above calculation, Lemma 2.1, and the Cauchy inequality that

<

<
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AMZP\ AZ .

I 5 A—(G( h])T]) N
_]Z:; ;- - Zp =,
Lo, A (G (AGle) e ) A2A 7
Z AZjx hi - /

— I [

J AvA- (G (AZZ’ ) = ) N2A_7
+Z Z]+1X i 3 /

~ [ h
L, a(6(22)%2)) araz
Y |AZ;x S—

- h [
L (AZ A2AZ, AZ)) N2AZ
+4j BiB-Zill 3 +4j | BrB-4j
+ZB;[ ; || Zim x = =

j=1
AZNNA2Z (M7 AAZp\AZ
+A_ (G[ ]] +B :
h 12 h 2 h
5 NZ; ANA-Zjn Ajj]
h 2 nol

LAz AZAZ AZ AZAZ

h

3 J
e

=1

d - -
I Z4l; + Al Zul
A - - - - - -
SI6°Zlls + CIOZARNS Zal%(16°Z4l; + 1) + C (I6Zuls + 1) (15°Zlly +1)

3A 52 >
TII53Z/1II§ + ClIS*Zull5 + C,

where we have used the following interpolations

- - 1 -
16Znllso < ClI6Zill, (”622}1”2 +

- - 1 -
16°Znlleo < CIO*Zall; (lléSZhllz +

R 1
16Zll2 |*
2D !

R 1
162 Zll2 |*
2D '

3321

(16)

(17)

(18)

(19)
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Following by Gronwall’s inequality, we have there exist a Ty > 0 independent of /, such that

To
sup [|6°Zn(t)II5 + f 16°Zy(h)3dt < C.

0<t<T, 0

Finally, by noticing that

A

G A+Zf A+Z/ - - - - - - - -
D) | (A Zmang (M Z anZ)\AZy (07 AN A2
h h K2 h h2 h

Then we get (14) by (13), (18), (19), Lemma 2.3 and the Cauchy inequality. [

By the similar method as in the proof of Lemma 2.3 and Lemma 2.4 and using the induction argument,
one gets the following Lemma.

Lemma 2.5. Let Zo(x) € HXQ) (k > 2). There are constants Ty > 0,C > 0 independent of h such that
=3 To = 2
sup '|5k*252m5(t)|| + f ”5"”’25th5 (t)” dt<C 1)
0<t<T, 2 0 2

From Lemma 2.5, a priori estimates for solutions to the differential-difference equation (4)-(6), we con-
clude that there exists a generic constant Ty > 0 such that problem (1)-(2) admits a smooth solution in
Q % [0, Tp] by the standard procedure. This result is stated as follows.

Theorem 2.6. Let Zo(x) € HYQ) (k > 2). Then problem (1)-(2) admits at least one local smooth solution Z(x, t):

141 (5]
Z(x,t) € F(To) = ﬁwm (O,TO;H"‘ZS(Q)) ﬂ ﬁH (0, To; H*172(00)) |
5=0 s=0

3. A > 0: Global Smooth Solution

In section 2, we have obtained a local smooth solution for (1)-(2). In this section, we intend to prove the
existence of global smooth solution to problem (1)-(2) by deriving the global (in time) estimates for given A

and B. In the following, we always suppose Z(x,t)isa global smooth solution of problem (1)-(2). Forp > 1,
denote by L? = LP(Q) the L” space with the norm || - ||». For k > 1 and p > 1, denote by WP = WEP(Q) the
Sobolev space whose norm is || - |l HE = WE2(Q).

Lemma 3.1. Let Zy(x) € W'A(Q), and suppose that Z(x,t)is a global smooth solution of problem (1)-(2). Then for
any given T > 0, we have

Zex, )l =1, Y(x,t) e Qx][0,TI (22)
A - 2 B - 4 T - =] 2 A - 2 B - 4
sup (_”Zx('/ DIl + —l1Zx(, t)||L4) + 1Z X (G(Z2)Zx)x (-, DI dE = 1 Zoxlly + 11 Zoxll}s, (23)
0<t<T 2 4 0 2 4
T
f IZ(-, )12, dt < AllZol 2, + BllZoxllFs, (24)
0

T
- - - A - B -
SBZf NZel(Zs - Zox) (-, Bl AE < §||Z0x||iz+Z||Z0x”§4~ (25)
0
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Proof. Multiplying (1) by Z(x, t), we have Z(x, t)- Zt(x, t) = 0. This implies (22). Then differentiating (1) with
respect to x, multiplying the resulting equation by G(Zx)zx, and then integrating it over Q2 , we have

SN+ 2208, 12 x (G ZoZos =0 (26)
This implies the basic energy equality
A 2 B - B -
FIZC i + ZIZeC D f 1Z X (G(Z)Z)l ot = ||ZOX||§2 + W20l (27)
Note that
1Z X (G(Z)Z)xl, = 1Z % (Z X (G(Z) Ze))II- (28)
This, together with (1), yields that
t
f IZiIR,dt < AllZoxlZ, + Bl Zosllf,- (29)
0
Observing that

I1Z x (G(Z)Z:)sIP,
= 1Zx(Zx(G(Z)Z))I
= WZ - (GZ)Z)Z ~ (GC(Z)Z P
= WGZZ)E = 1Z - (GZ)Z):I%,

f (CZ N il + 4B, - i) 2P+ 4BGZ )7 - 7Pl f GAZ)(Z - 7l
Q Q
f UBAZ, - Zo) 2, + 4BC(Z)Z, - Zuf?)dx
Q
> f 8B Z P Z, - ZylPdx. (30)
Q
Therefore, (25) follows. O
Remark 3.2. From the proof of (30), we have
I1Z % (G(Zx)Z:)x1%
> f CAZ )Wl f G2 - Zdx
Q Q
> f GHZNZ P dx — f GUZNZ - Zow)dx
Q Q
> f G2(Z)|Z o Pdx — 242 f |7, *dx — 2B2 f |7, [Bdx
Q Q Q

f (A% + BIZP)Z o Pdx - 242 f Z 4 dlx — 2B\ 7 f 7, 4d. (31)
Q Q Q
It yields from the one dimensional Sobolev embedding W1 (Q) < L*(Q) that
WZ:lle < cllZel il + csll0Zat )l
< GIZlE, + 2eZP(Zs - Ziw) i

IA

CINZ:lIE, + 2e 1 ZlNZA(Zs - Zo) 2, (32)
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where ¢ is a Sobolev constant. If we assume that A < 1, then by using Lemma 3.1, (31) and (32), we can conclude
that

T
2 f 17, DIt < C(B, o Zanllns, T), (33)
0

where the generic constant C(B, cs, | Zoxllwrs) is independent of A. This remark will be useful in the next section for
the sake of establishing the global existence of weak solutions when A — 0.

In the following lemmas, denote by C the uniform constants depending on A and B, but independent of
Z(x,1).

Lemma 3.3. Let Zo(x) € H%(Q), and suppose that Z(x, t) is a global smooth solution of problem (1)-(2). Then for
any given T > 0, we have

T
sup ([IZ¢(, Dllrz + 12 Ollz + 1122 C, Dlle + (G(Zx)Z)x (- Dlli2) + f (IZ2 (DI, + 1 ZxxC, B)IIT)dE < C. (34)
0

0<t<T

Proof. Differential (3) with respect to ¢, then multiplying the resulting equation by 7, and integrating it over
Q), one has

sii | Bkar= [ ©@aZo Zix+ [ GEIEFZRAx+ [ @x(C@IZN Zav. @9

We get from the first term on the right-hand side of (35) that

f (G(Z)Z)w - Zidx
Q

- f (GCZOZ - Zd
Q

- f 2BZ, - Z)Zx + (A + BZPD)Z ] - Zusdlx
Q

—2B f |7, ZuPdx— A f 17 4*dx — B f 17 P17 Pdx. (36)
Q Q Q

For the second term on the right-hand side of (35), we have

f G(Z)Z P ZPdx < (ANZ<Plles + BIZPIRNZAR, < CA + INZel(Zs - Ze)PNZelP, (37)
Q

where we have used Lemma 3.1, (32) and NZ Pl < CIIIZ)X|4||L%«,.
We finally deal with the third term as follows,

[Z X (G(Z)Z)ut] - Zydx
Q
- f (Z X (GZ)Z)1] - Zdi - f 2. X (CZ)Z.)1] - Zdx
Q Q

- -2B f Ze  Z)Z X Zy) - Zoydx — f G(Z)(Zy X Z) - Zydx

IA

- B - - - -
—fIZ | Ithlde+— sz Zuldx + 6f|Zx|2|th|2+CfGz(Zx)|Zt|2dx
Q Q

_ 3B f 7 P17 2z + B f 7y ZaPdx+ CO+ 1Z4 ) f 7 dx
6 Q 2 Q Q
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) fo 7, Pdx. (38)

||zt||2 +A f |Zldx + B f \Z:PIZ.wPPdx < CUIZAZx - ZuIPs + DIZAIP. (39)
Q Q

SB - - 3B - - BN N - 2
< =2 f 2, P1ZPex + f 2 ZuPdx+ C(1+ |22 2o,
Q Q L

In conclusion, we have

Then following by Gronwall’s inequality and (25), we get

T T
sup || Zill;2 + A f f |Z[*dxdt + B f f 1Z\Z 2 dxdt < C. (40)
0 Q 0 Q

0<t<T

Multiply (3) by Zxx, and then integrating it over Q, we have
2B f 7, - 7. Pdx + f (A + B|Z ) Z o Pdx
Q Q
= f 7y Zpdx + f G(Z ) Z[*dx — 2B f (Zy+ Zo)(Z X Zy) - Zypdx
Q Q Q
A - = =3 -
< > f |ZynPdx + Cf 1ZiPdx + 1 Z[* Ml f(A + B|Z,[})dx
Q Q Q

+7f| x'Zxx|2dx+?f|zx|zlzxx|2dx

A -
< |Zxx|2dx+ C+ CNZP(Zs - Ze)llis + = f \Zy - ZonlPdx + |Zx| 2|Z Pdx
< f |ZPPdx +C+C f 1Z,*dx + = f \Zy - ZoPdx + = f \Z, IZIZxXIde
< = f |ZePdx + C+ = f Zy+ ZoxPdx + = f |ZoPIZ e Pdx. (41)
2 Ja 3 Ja 3 Ja
Then we conclude that sup IIZ)XX(', )|l < C, and then the estimate about 1 Z.cllo follows by one dimensional
0<t<T
Sobolev embedding.

Finally, multiplying (3) by (G(Z4)Z+)s, and then integrating over ), we have

f 7, (CZ)Z)dx = f (G207, Pdx - f GZ )7 dx
Q Q Q

f (G(Z)Z)Pdx — f A?(1Zof* + BA\Z,® + 2ABIZ,[°) dx. (42)
Q Q
Then (34) follows from the interpolation inequalities. [J

Using the mathematical induction, we have the following Lemma.

Lemma 3.4. Let Zo(x) € HKQ), k > 2 and suppose that Z(x, t) is a global smooth solution of problem (1)-(2) . Then
for any given T > 0, there is C > 0 such that

T
sup (195052 Z(., D2 + f 1050512 Z(, P, dt < C, 0<s < [k/2]. (43)
0<t<T 0

Combining the local existence obtained in section 2 and the global in time estimates in Lemma 3.4, we
can get the existence of global smooth solution to problem (1)-(2) in the following sense.
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Theorem 3.5. Let Zo(x) € HYQ), k > 2. Then for any given T > 0, problem (1)-(2) admits at least one global
smooth solution Z(x, b):
151 [4]
Z(x,t) € F(T) = ﬂ W (0, T; H<2(Q)) ﬂ ﬂ H (0, T; H*172(Q)) |

s=0 s=0

The uniqueness of the global smooth solution can be proved by standard discussion.

4. A = 0: Global Weak Solution
Lemma 4.1. ([1]) Let p > 2. Then there holds for all a,b € RF

(laP~2a = [bP~2D) - (a = b) = 27~2|a - bPF. (44)

Proof of Theorem 1.2 For any Zo(x) € W4(Q), we can construct a approximate sequence {Z)(()k)(x)};‘;1 such
that ng)(x) € HYQ) (k > 2) and Zék) (x) = Zo(x) in WHQ). Suppose that (Z®(x, t)}e2, is the sequence of

regular solutions corresponding to the initial data {ng) ()} ;- Then by Lemma 3.1 in Section three, we have
from the estimates uniform in the parameter A that

(Z®(x, )}, is a bounded set in L™(0, T; W'"4(Q)), (45)
{9:Z¥(x, )22, is a bounded set in L2(0, T; L2(2)). (46)
Then one can pass to a subsequence, without changing notation, to get that as k — oo,
7Z® — 7 weakly+ in L¥(0, T; W'4(QQ)), (47)
Z® — 7, weakly in L2(0, T; L(Q)). (48)
By the compactness argument, one have
7Z® — 7 strongly in C(Qr), Qr = Q x [0, T]. (49)
Now we claim that
ZEZ‘) — Zx strongly in L*(Qr). (50)

In fact, by Lemma 4.1, we have

= - ]_ = - - - - -
1Z® — Z [fdxdt < 1 f (|z§j‘>|zz§"> - |zx|2zx) . (zg") - zx) dxdt
Qr T
1 =2 = = =2 1 =3 =3 = =
= | 1ZPPZY (Z9-Z,)- 1| 1ZPZ (Z9 - Z,) dxdt
Qr Qr
= L+D. (51)

Note that |Z,?Z, € L*(0,T;L3) and L5 = (L*)* (the dual space of L*) and by the weak convergence of

{Z®(x, )} ., we have

k=1’
L —0, k— oo. (52)
On the other hand, recalling (3), Lemma 3.1 and Remark 3.2, we get

_Liswesny 5w 2
ho= —((120rZ9) .29 - 2)
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1 2k =k A =10 = = 1 A 2k =2 -
= (VP20 + S2Y) 20 -2y 4 (G729 - 2)
1 = = = = = = = = = 1 A = = -
= —gZP - GENZPPZY - 29 x (GEZOV 2., 29~ 2y + (280,29 - )
< ColIZ® = Zheion (120 Nean) + IGEZONZE Pl gp) + 179 X (GEZZE) g + AHNZR2an)
< GCollZ® = Zlleay = 0, k — oo, (53)

where (-, -) represents the inner product in L?(Qr) space. Thus we finish the proof of the claim.

Finally, by the convergence (47)-(50), we can easily conclude that (1) holds in the sense of distribution.

O
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