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Abstract. In this paper, the periodic stochastic differential equations are studied. By applying the theory
of Lyapunov’s second method, contraction mapping principle and establishing new lemmas, the existence
and uniqueness of stochastic periodic solutions to stochastic periodic differential equations are obtained.
Moreover, several examples are introduced to illustrate our theoretical results.

1. Introduction

Periodic movement is very universal in nature, for example, celestial bodies motion, the wave vibration,
climate changes in four seasons, etc. And these periodic movements may be modeled by differential
systems. So investigating the periodic solution is of great significance. An important aspect is to ensure
whether there exist periodic solutions for the system. The existence of periodic solutions of ordinary and
functional differential equations has been discussed extensively. Readers can see the books [1–3], papers
[4–10] and the references therein. There are many methods to study the existence of periodic solutions,
for example, coincidence degree, fixed point theorem, bifurcation theory and the method of Lyapunov
function, etc.

However, in the practical case, the systems are often subject to stochastic perturbation. So stochastic
differential equations (SDEs) have attracted great interests due to their applications in many ways such as in
insurance, finance, population dynamics, control and so on (see, e.g.[11]). Many researchers have studied
qualitative properties such as existence, uniqueness, boundedness and stability for various stochastic
differential systems, for instance [12–21]. However, as far as we know, there are few papers on periodic
stochastic differential equation. R. Z. Hasminskii [22] gave the definition of periodic Markov process and
discussed the sufficient and necessary conditions for the existence of periodic Markov process. In [23],
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Zhao and Zheng presented the definition of random periodic solutions of random dynamical systems.
They proved the existence of such periodic solutions for a C1 perfect cocycle on a cylinder using a random
invariant set, the Lyapunov exponents and the pullback of the cocycle. In [24, 25], Jiang et al. showed
thatE[1/x(t)] has a unique positive T-periodic solutionE[1/xp(t)] for the stochastic periodic Logistic model,
where x(t) is the population size at time t. In [26], Wang and Hu proved that stochastic periodic Logistic
model is asymptotic stable in distribution and gave the explicit stochastic periodic solution to this model.

In this paper, adopting the definition of periodic stochastic process in [26], we deal with the existence
and uniqueness of stochastic periodic solutions to stochastic periodic differential equations in the abstract
form

dX(t) = f (t,X(t))dt + 1(t,X(t))dBt (1)

on t ≥ 0 with initial value X(0) = x, where the coefficients f (t, x) : [0,∞)×Rn
→ Rn and 1(t, x) : [0,∞)×Rn

→

Rn are both Borel measurable, Ft−adapted and satisfy

f (t + T, x) = f (t, x), 1(t + T, x) = 1(t, x)

for all x ∈ Rn and some T > 0, Bt is a one-dimensional standard Brownian motion defined on a complete
probability space (Ω,F ,P) with a σ−field filtration {Ft}t≥0. The main technique is based upon contraction
mapping principle and Lyapunov’s second method. To the best of our knowledge to date, there are no
papers which study stochastic periodic solutions to stochastic periodic differential equations by applying
contraction mapping principle, so the significance of our paper is clear.

Throughout the paper, R+ := [0,∞). If A is a matrix, A > 0: A is a symmetric positive-definite matrix,
λmin(A): the smallest eigenvalue of a symmetric matrix A, λmax(A): the largest eigenvalue of a symmetric
matrix A. For p ∈ (0,∞), let Lp(Ω;Rn) be the family of Rn-valued random variables X with E|X|p < ∞. Let
C2,1(Rn

×R+;R+) denote the family of all non-negative functions on Rn
×R+ which are continuously twice

differential in x and once in t. Let K denote the family of all continuous increasing functions κ : R+ → R+

such that κ(0) = 0 while κ(u) > 0 for u > 0. Let K∨ denote the family of all convex functions κ ∈ K while
K∧ denote the family of all concave functions κ ∈ K [27].

The rest of this paper is organized as follows: In Section 2 we establish some lemmas and preliminary
facts which will be used in the sequel. In Section 3 the existence and uniqueness of periodic stochastic
solutions to stochastic periodic differential equations are arranged . In Section 4, examples are given to
illustrate our main result.

2. Preliminaries

In this section we mainly give some lemmas and preliminary facts which are used in the analysis in
what follows. The obtained results and their proofs are motivated by Mao and Yuan [27], Wu and Kloeden
[28]. For completeness, we also put them.

Firstly, we assume that the coefficients f (t, x) and 1(t, x) of Eq.(1) satisfy the following assumption:

Assumption 1. (Local Lipschitz condition) For each k = 1, 2, ..., and all t ∈ [0,∞), x, y ∈ Rn with |x| ∨ |y| ≤ k,
there is an hk > 0 such that

| f (t, x) − f (t, y)| ∨ |1(t, x) − 1(t, y)| ≤ hk|x − y|;

(Linear growth condition) For all (t, x) ∈ [0,∞) ×Rn, there is an h > 0 such that

| f (t, x)| + |1(t, x)| ≤ h(1 + |x|).

Under Assumption 1, from [27], we observe that Eq.(1) has a unique continuous solution X(t) on t ≥ 0. If
V ∈ C2,1(Rn

×R+;R+), define

LV(x, t) = Vt(x, t) + Vx(x, t) f (t, x) +
1
2

trace[1T(t, x)Vxx(x, t)1(t, x)],

where Vx = ( ∂V
∂x1
, ..., ∂V

∂xn
), Vxx = ( ∂2V

∂xi∂x j
)n×n.

The following lemma gives a criterion on the boundedness of pth moment for the solution.
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Lemma 2.1. Let Assumption 1 hold. If, in addition, there exist functions V ∈ C2,1(Rn
×R+;R+), κ1 ∈ κ∨, κ2 ∈ κ∧

and positive numbers λ1, β such that

κ1(|x|p) ≤ V(x, t) ≤ κ2(|x|p) (2)

and

LV(x, t) ≤ −λ1V(x, t) + β (3)

for all (x, t) ∈ Rn
× R+. Then for any initial value X(0) ∈ Lp(Ω;Rn), the pth moment of the solution of Eq.(1) is

bounded, say

E|X(t)|p ≤ K ∀t ≥ 0, (4)

where K is a positive constant.

Proof. For each integer k, define the stopping time

ρk = inf{t ≥ 0 : |X(t)| ≥ k}.

Clearly, ρk → ∞ almost surely as k → ∞. Applying Itô’s formula, integrating from 0 to t and taking
expectations we have

E[eλ1(ρk∧t)V(X(ρk ∧ t), ρk ∧ t)] = EV(X(0), 0) + E

∫ ρk∧t

0
eλ1sLV(X(s), s)ds + λ1E

∫ ρk∧t

0
eλ1sV(X(s), s)ds.

By combining conditions (2) and (3), it follows that

E[eλ1(ρk∧t)κ1(|X(ρk ∧ t)|p)] ≤ E(κ2(|X(0)|p)) + E

∫ ρk∧t

0
eλ1sβds.

Letting k→∞ results in

E[eλ1tκ1(|X(t)|p)] ≤ E(κ2(|X(0)|p)) +
β

λ1
[eλ1t
− 1].

Using Jensen’s inequality yields

κ1(E|X(t)|p) ≤ e−λ1tκ2(E|X(0)|p) +
β

λ1
[1 − e−λ1t].

Hence

lim sup
t→∞

E|X(t)|p ≤ κ−1
1 (

β

λ1
).

So there is a M > 0 such that E|X(t)|p ≤ 1.5κ−1
1 ( βλ1

) for all t ≥ M. At the same time, by the continuity of

E|X(t)|p, it is clearly that there is a K0 > 0 such that E|X(t)|p ≤ K0 for t ≤M. Denote K = max{1.5κ−1
1 ( βλ1

),K0},
then we have for all t ≥ 0, E|X(t)|p ≤ K. This completes the proof.

Now we consider the difference between two solutions of Eq.(1) starting from different values, that is

Xx1 (t) − Xx2 (t) = x1 − x2 +

∫ t

0
[ f (s,Xx1 (s)) − f (s,Xx2 (s))]ds +

∫ t

0
[1(s,Xx1 (s)) − 1(s,Xx2 (s))]dBs, (5)

where Xx1 (t) and Xx2 (t) denote the solutions of Eq.(1) starting from initial values x1 and x2, respectively. The
following lemma will show that E|Xx1 (t) − Xx2 (t)|p is uniformly continuous on [0,∞), which will be used
later. And the idea for our proof comes from [27, 29].
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Lemma 2.2. Suppose all the conditions of Lemma 2.1 hold and p ≥ 2. Then E|Xx1 (t) − Xx2 (t)|p is uniformly
continuous on the entire t ∈ [0,∞).

Proof. By Lemma 2.1, for any p ≥ 2, we can show that there exist constants K1, K2 such that E|Xx1 (t)|p ≤ K1,
E|Xx2 (t)|p ≤ K2. By the Itô’s formula,

E|Xx1 (t) − Xx2 (t)|p − E|Xx1 (s) − Xx2 (s)|p

=E

∫ t

s

[
p|Xx1 (u) − Xx2 (u)|p−2(Xx1 (u) − Xx2 (u))T( f (u,Xx1 (u)) − f (u,Xx2 (u)))

+
p
2
|Xx1 (u) − Xx2 (u)|p−2

|1(u,Xx1 (u)) − 1(u,Xx2 (u))|2

+
p(p − 2)

2
|Xx1 (u) − Xx2 (u)|p−4

|(Xx1 (u) − Xx2 (u))T(1(u,Xx1 (u)) − 1(u,Xx2 (u)))|2
]

du.

Hence using elementary inequality (a + b)p
≤ 2p(|a|p + |b|p) for p > 0 and the linear growth condition we

obtain that

|E|Xx1 (t) − Xx2 (t)|p − E|Xx1 (s) − Xx2 (s)|p|

≤E

∫ t

s

[
p|Xx1 (u) − Xx2 (u)|p−1

| f (u,Xx1 (u)) − f (u,Xx2 (u))|

+
p(p − 1)

2
|Xx1 (u) − Xx2 (u)|p−2

|1(u,Xx1 (u)) − 1(u,Xx2 (u))|2
]

du

≤E

∫ t

s

[
hp2p−1(|Xx1 (u)|p−1 + |Xx2 (u)|p−1)(2 + |Xx1 (u)| + |Xx2 (u)|)

+2h2p(p − 1)2p−2(|Xx1 (u)|p−2 + |Xx2 (u)|p−2)(2 + |Xx1 (u)|2 + |Xx2 (u)|2)
]

du.

From Young inequality we derive that

|E|Xx1 (t) −Xx2 (t)|p −E|Xx1 (s) −Xx2 (s)|p| ≤ C1

∫ t

s
[1 +E|Xx1 (u)|p +E|Xx2 (u)|p)]du ≤ C1(1 + K1 + K2)(t − s),

where C1 is a constant dependent of only p and h. This implies thatE|Xx1 (t)−Xx2 (t)|p is uniformly continuous
on the entire [0,∞). The proof is complete.

For a given function U ∈ C2,1(Rn
× R+;R+), we define an operator LU : Rn

× Rn
× R+ → R associated

with Eq.(5) by

LU(x, y, t) = Ut(x− y, t)+Ux(x− y, t)[ f (t, x)− f (t, y)]+
1
2

trace[(1(t, x)−1(t, y))TUxx(x− y, t)(1(t, x)−1(t, y))].

Lemma 2.3. Let the conditions of Lemma 2.1 hold and p ≥ 2. Assume further that there are functions U ∈
C2,1(Rn

×R+;R+), κ3 ∈ K∧ and κ4 ∈ K∨ such that

U(x, t) ≤ κ3(|x|p) ∀(x, t) ∈ Rn
×R+ (6)

and

LU(x, y, t) ≤ −κ4(|x − y|p) ∀(x, y, t) ∈ Rn
×Rn

×R+. (7)

If initial values x1 and x2 belong to Lp(Ω;Rn), then

lim
t→∞
E|Xx1 (t) − Xx2 (t)|p = 0. (8)
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Proof. Let N be a positive number. Define the stopping time

τN = inf{t ≥ 0 : |Xx1 (t) − Xx2 (t)| ≥ N}.

Clearly, τN →∞. Setting tN = τN ∧ t and applying Itô’s formula to U(Xx1 (tN) − Xx2 (tN), tN) yields

EU(Xx1 (tN) − Xx2 (tN), tN) = EU(x1 − x2, 0) + E

∫ tN

0
LU(Xx1 (s),Xx2 (s), s)ds.

So by conditions (6), (7) and then letting N→∞, we have

0 ≤ E(κ3(|x1 − x2|
p)) − E

∫ t

0
κ4(|Xx1 (s) − Xx2 (s)|p)ds.

Using Jensen’s inequality results in∫ t

0
κ4(E|Xx1 (s) − Xx2 (s)|p)ds ≤ κ3(E|x1 − x2|

p) < ∞. (9)

We now claim limt→∞E|Xx1 (t) − Xx2 (t)|p = 0. If this assertion is not true, then there is some ε > 0 and a
sequence {tn}n≥1 satisfying 0 ≤ tn ≤ tn + 1 ≤ tn+1 such that

E|Xx1 (t) − Xx2 (t)|p ≥ ε, n ≥ 1.

From Lemma 2.2, there is a positive constant C such that |E|Xx1 (t) − Xx2 (t)|p − E|Xx1 (s) − Xx2 (s)|p| ≤ C(t − s).
Let δ = 1 ∧ (ε/2C), then, for tn ≤ s ≤ tn + δ, we can get

E|Xx1 (s) − Xx2 (s)|p ≥ E|Xx1 (tn) − Xx2 (tn)|p − |E|Xx1 (s) − Xx2 (s)|p − E|Xx1 (tn) − Xx2 (tn)|p|

≥ ε − C(s − tn) ≥ ε − Cδ ≥
ε
2
.

Consequently∫
∞

0
κ4(E|Xx1 (s) − Xx2 (s)|p)ds ≥

∞∑
n=1

∫ tn+δ

tn

κ4(E|Xx1 (s) − Xx2 (s)|p)ds ≥
∞∑

n=1

∫ tn+δ

tn

κ4(
ε
2

)ds = ∞.

But this is in contradiction with (9). So

lim
t→∞
E|Xx1 (t) − Xx2 (t)|p = 0.

Lemma 2.4. [30] For X1, X2 ∈ Lp(Ω;Rn) (p ≥ 2), define a metric

d(X1,X2) = (E|X1 − X2|
p)

1
p ,

then Lp(Ω;Rn) is a complete metric space.

3. Stochastic Periodic Solution

In this section, we present and prove our main theorem. First we state the definition of periodic
stochastic process and stochastic periodic solution.

Definition 3.1. [26] Stochastic process f (t) (t ≥ 0) is said to be T-periodic stochastic process, if stochastic
processes 1(t) := f (t + T) (t ≥ 0) and f (t) (t ≥ 0) have the same finite-dimensional distributions.
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Definition 3.2. [26] If X(t) is a solution of Eq.(1) and X(t) is a T-periodic stochastic process, then X(t) is said
to be a stochastic periodic solution with period T of Eq.(1).

Theorem 3.3. Assume that the conditions of Lemmas 2.1 and 2.3 are all satisfied, then Eq.(1) admits a unique
T-periodic stochastic periodic solution.

Proof. For arbitrary x1, x2 ∈ Lp(Ω;Rn) (p ≥ 2), from Lemma 2.1, we get that for any t ∈ [0,∞), the solutions
Xx1 (t), Xx2 (t) ∈ Lp(Ω;Rn).

Define a mapping P : Lp(Ω;Rn) → Lp(Ω;Rn) as follows: Px = Xx(T), then from Lemma 2.3, for any
ε ∈ (0, 1), there is a constant M > 0 such that for any m > M

dp(Pmx1,Pmx2) = E|Xx1 (mT) − Xx2 (mT)|p < εpE|x1 − x2|
p = εpdp(x1, x2),

that is

d(Pmx1,Pmx2) < εd(x1, x2).

Therefore, Pm is a contraction mapping on the complete metric space Lp(Ω;Rn), and so there exists a unique
fixed point x∗ ∈ Lp(Ω;Rn) such that x∗ = Px∗ = Xx∗ (T).

Now we are in the position to prove that Xx∗ (t) is the unique T-periodic stochastic periodic solution of
Eq.(1). By Assumption 1, Xx∗ (t) satisfy the following SDE:

Xx∗ (t) = x∗ +

∫ t

0
f (s,Xx∗ (s))ds +

∫ t

0
1(s,Xx∗ (s))dBs, t ≥ 0. (10)

Let t = T and t = t + T in equation(10) respectively, we get

Xx∗ (T) = x∗ +

∫ T

0
f (s,Xx∗ (s))ds +

∫ T

0
1(s,Xx∗ (s))dBs,

Xx∗ (t + T) = x∗ +

∫ t+T

0
f (s,Xx∗ (s))ds +

∫ t+T

0
1(s,Xx∗ (s))dBs.

Let s = r + T, B̃t = Bt+T − Bt, the probability space (Ω,F ,P) is fixed, then

Xx∗ (t + T) =Xx∗ (T) +

∫ t+T

T
f (s,Xx∗ (s))ds +

∫ t+T

T
1(s,Xx∗ (s))dBs

=Xx∗ (T) +

∫ t

0
f (r + T,Xx∗ (r + T))dr +

∫ t

0
1(r + T,Xx∗ (r + T))dB̃r.

Note
f (t + T, x) = f (t, x), 1(t + T, x) = 1(t, x),

therefore,

Xx∗ (t + T) = Xx∗ (T) +

∫ t

0
f (r,Xx∗ (r + T))dr +

∫ t

0
1(r,Xx∗ (r + T))dB̃r, t ≥ 0. (11)

Hence (Bt, {Xx∗ (t)}t≥0) and (B̃t, {Xx∗ (t + T)}t≥0) are two weak solutions of Eq.(1) on the same complete proba-
bility space (Ω,F , {Ft}t≥0,P). By the strong property of Brownian motion, {Bt}t≥0 and {B̃t}t≥0 have the same
distribution. Notice that the solution for SDE (10) is a pathwise unique strong solution, moreover SDEs (10)
and (11) have the same formation, hence there is a measurable function F such that

Xx∗ (t) = F(Bs;∀s ≤ t), P − a.s.
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This means that for (11) we must also have

Xx∗ (t + T) = F(B̃s;∀s ≤ t), P − a.s.

So ∀A ∈ (Rn)
⊗

d, and ∀t1, ..., td ∈ [0,∞),

P((Xx∗ (t1), ...,Xx∗ (td)) ∈ A) = P((Xx∗ (t1 + T), ...,Xx∗ (td + T)) ∈ A),

moreover, initial values Xx∗ (T) and x∗ have the same distribution, hence we can get that Xx∗ (t) and Xx∗ (t + T)
have the same finite-dimensional distributions. Since x∗ is unique, we know that Xx∗ (t) is the unique
T-periodic stochastic periodic solution of Eq.(1). The proof of Theorem 3.3 is complete.

Remark 3.4. From the proof of Theorem 3.3, it is easy to see that if the solutions of Eq.(1) has the property (4) and
(8), then Eq.(1) admits a unique stochastic periodic solution.

Let us now consider the following special case of Eq.(1):

dX(t) = A(t)X(t)dt + 1(t,X(t))dBt, (12)

where A(t) is a n × n continuous matrix, A(t + T) = A(t), and 1(t + T, x) = 1(t, x). Denote µ(A(t)) =
λmax(A(t) + AT(t)), then µ(A(t)) is a continuous T-periodic function.

Corollary 3.5. Assume that for x, y ∈ Rn,

|1(t, x)|2 ≤ K0|x|2 + α,

|1(t, x) − 1(t, y)|2 ≤ K0|x − y|2,
max
[0,T]

µ(A(t)) + K0 < 0,

where α is a positive constant. Then Eq.(12) has a unique T-periodic stochastic periodic solution.

Proof. Define V(x, t) = U(x, t) = q|x|2, q > 0. Combining the conditions, we compute the operator LV(x, t)
associated with Eq.(12) as follows:

LV(x, t) =2qxTA(t)x + q|1(t, x)|2 = q(xT(A(t) + AT(t))x) + q|1(t, x)|2

≤qλmax(A(t) + AT(t))|x|2 + qK0|x|2 + qα = q(µ(A(t)) + K0)|x|2 + qα ≤ q(max
[0,T]

µ(A(t)) + K0)|x|2 + qα.

We see that the conditions of Lemma 2.1 hold.
Moreover, compute the operator LU:

LU(x, t) =2q(x − y)TA(t)(x − y) + q|1(t, x) − 1(t, y)|2

≤q(max
[0,T]

µ(A(t)) + K0)|x − y|2,

so the conditions of Lemma 2.3 are satisfied. Hence Eq.(12) admits a unique T-periodic stochastic periodic
solution from Theorem 3.3.

4. Examples and Numerical Simulations

To illustrate our main theorem we consider two simple examples in this section.

Example 1. We examine the existence and uniqueness of stochastic periodic solutions for the following
stochastic differential equation

dX(t) = −(2 + sin t)X(t)dt +
1
2

sin(t/10)dBt, t ≥ 0, (13)
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Figure 1: The solutions of Eq.(13)

f (t, x) = −(2 + sin t)x, 1(t, x) = 0.5 sin(t/10) are periodic functions with period 20π and satisfy Assumption 1.
Define V(x, t) = U(x, t) = c|x|2, c > 0. Compute LV(x, t) associated with Eq.(13) as

LV(x, t) =2cx f (t, x) + c12(t, x) = −2c(2 + sin t)x2 +
1
4

c sin2(t/10)

≤ − 2cx2 +
1
4

c.

Similarly, compute LU(x, y, t) associated with Eq.(13)

LU(x, y, t) =2c(x − y)( f (t, x) − f (t, y)) + c(1(t, x) − 1(t, y))2 = −2c(2 + sin t)(x − y)2

≤ − 2c(x − y)2.

So we get that the conditions of Lemma 2.1 and Lemma 2.3 are satisfied, an application of Theorem 3.3
yields that Eq.(13) has a unique stochastic periodic solution. Fig. 1 describes the trajectory of the solution
to Eq.(13).

Example 2. Consider the following 2-dimensional stochastic periodic differential equation

dx(t) = (−5x(t) + y(t) − 0.5)dt + 0.1 sin(t/8)dB(t),
dy(t) = (x(t) − 8y(t) + 0.1)dt + 0.1 cos(t/3)dB(t).

(14)

Let x∗(t) = x(t) + 0.1, then Eq.(14) can be written as

dx∗(t) = (−5x∗(t) + y(t))dt + 0.1 sin(t/8)dB(t),
dy(t) = (x∗(t) − 8y(t))dt + 0.1 cos(t/3)dB(t).

(15)

Denote A =

(
−5 1
1 −8

)
, and 1 = (0.1 sin(t/8), 0.1 cos(t/3))T is a 48π-periodic continuous function. All the

eigenvalues of A are negative, according to Corollary 3.5, we choose K0 = 0, α = 1, then all the conditions
of Corollary 3.5 hold, and Eq.(15) has a unique stochastic periodic solution with period 48π, so Eq.(14) has
a unique stochastic periodic solution. We plot the trajectory of the solution to Eq.(14) in Fig. 2.
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Figure 2: The trajectory of the solutions to Eq.(14) for x(0) = −0.1, y(0) = 0.

5. Conclusions

In this paper, we study the stochastic periodic solutions of stochastic differential equations with periodic
coefficients by applying Lyapunov’s second method and contraction mapping principle. From above
analysis, we can see that if properties (4) and (8) are satisfied, Eq.(1) has a unique stochastic periodic
solution. In section 2, we discuss the sufficient conditions for properties (4) and (8). As we mentioned in
the introduction section, investigating periodic solutions for differential equations is an important problem.
So it is necessary to study the stochastic periodic solutions to various of stochastic periodic population
systems, and we will report our findings in our following papers.
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