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The Asymptotic Behavior for Markov Chains in
a Finite i.i.d Random Environment Indexed by Cayley Trees

Huilin Huanga

aCollege of Mathematics and Information Science, Wenzhou University, Zhejiang, 325035, PR China

Abstract. We firstly define a Markov chain indexed by a homogeneous tree in a finite i.i.d random
environment. Then, we prove the strong law of large numbers and Shannon-McMillan theorem for finite
Markov chains indexed by a homogeneous tree in the finite i.i.d random environment.

1. Introduction

A tree T is a graph which is connected and contains no loops. Given any two vertices α , β ∈ T, let αβ be
the unique path connecting α and β. Define the graph distance d(α, β) to be the number of edges contained
in the path αβ.

Let T be an infinite tree with root 0. The set of all vertices with distance n from the root is called the n-th
generation of T, which is denoted by Ln. We denote by T(n) the union of the first n generations of T. For
each vertex t, there is a unique path from 0 to t, and |t| for the number of edges on this path. We denote the
first predecessor of t by 1t. The degree of a vertex is defined to be the number of neighbors of it. If every
vertex of the tree has degree d + 1, we say it Cayley tree, which is denoted by TC,d. Thus the root vertex has
d + 1 neighbors in the first generation and every other vertex has d neighbors in the next generation. For
any two vertices s and t of tree T, write s ≤ t if s is on the unique path from the root 0 to t. We denote by s∧ t
the vertex farthest from 0 satisfying s ∧ t ≤ s and s ∧ t ≤ t. XA = {Xt, t ∈ A} and denote by |A| the number of
vertices of A.

In the following, we always let T denote the Cayley tree TC,d. At first we extend the definition of
tree-indexed Markov chains, which is put forward by Benjamini and Peres([1]), to the case of Markov chain
indexed by Cayley tree in a finite i.i.d random environment.

Definition 1.1(T-indexed homogeneous Markov chains(see[1])) Let T be an infinite Cayley tree, {Xt, t ∈ T}
be a stochastic process defined on probability space (Ω,F ,P) and with a finite state space X. Let

p = {p(i), i ∈ X} (1.1)
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be a distribution on X, and

A = (a(i, j)), i, j ∈ X (1.2)

be a transition probability matrix on X2. For every vertex t ∈ T \ {0}, suppose that

P(Xt = j|X1t = i and Xs = xs for t ∧ s ≤ 1t)
= P(Xt = j|X1t = i) = a(i, j)) ∀i, j ∈ X, (1.3)

and

P(X0 = i) = p(i) ∀i ∈ X.

Thus we call {Xt, t ∈ T} to be anX-valued homogeneous Markov chain indexed by infinite Cayley tree with the initial
distribution (1.1) and transition probability matrix A whose elements are determined by (1.3).

The subject of tree-indexed processes in deterministic environments has been deeply studied and made
abundant achievements. Benjamini and Peres ([1]) have given the notion of the tree-indexed Markov chains
and studied the recurrence and ray-recurrence for them. Berger and Ye ([2]) have studied the existence
of entropy rate for some stationary random fields on a homogeneous tree. Ye and Berger (see [3],[4]) by
using Pemantle’s result([5]) and a combinatorial approach, have studied the Shannon-McMillan theorem
with convergence in probability for a PPG-invariant and ergodic random field on a homogeneous tree.
Yang and Liu ([6]) and Yang([7]) have studied a strong law of large numbers for Markov chains fields on
a homogeneous tree ( a particular case of tree-indexed Markov chains and PPG-invariant random fields
). Yang and Ye([8]) have established the Shannon-McMillan theorem with convergence almost surely
for nonhomogeneous Markov chains on a homogeneous tree. Huang and Yang (see [9]) has studied the
Shannon-McMillan theorem in the sense of almost surely for finite homogeneous Markov chains indexed
by a uniformly bounded infinite tree.

All above results are concentrated on the model of Markov chain indexed by trees in deterministic
environments. In this article, we want to know the story of the Markov chain indexed by trees in a
finite state i.i.d. random environment and mainly establish the strong law of large numbers and Shannon-
McMillan theorem with convergence almost surely for this model. Our idea is inspired by the popular work
of Cogburn([10]). The result of this paper is achieved by refining the method of [6-9], where a sequence of
strong law of numbers and Shannon-McMillan theorem were proved for Markov chains indexed by trees
with finite states in deterministic enviroment. In fact, our present outcomes can imply the similar results
in the work [7].

The rest of this article is organized as follows. In the following of this section we formulate a model of
Markov chain indexed by trees in a finite state i.i.d. random environment. In section 2 we construct a non-
negative martingale in Lemma 2.1 and prove a strong limit theorem based on Doob martingale convergence
theorem in Lemma 2.2. In section 3, we study the strong law of large numbers for Markov chain indexed
by a homogeneous tree in the finite i.i.d. random environment by using Lemma 2.2. At last, we establish
the Shannon-McMillan theorem for finite Markov chains indexed by a homogeneous tree with such finite
i.i.d random environment in section 4.

Definition 1.2 Let T be an infinite Cayley tree, both X and Θ two finite state spaces, and {ξt, t ∈ T} be a Θ-valued
random field indexed by T. For every vertex t ∈ T \ {0}, if

P(Xt = j|X1t = i, and Xs = xs, for t ∧ s ≤ 1t; ξl, l ∈ T)
= Pξ1 t

(i, j), a.s. (1.4)

and

P(X0 = i|ξl, l ∈ T) = P(i|ξ0) ∀i ∈ X, a.s. (1.5)

For each i, j ∈ X, Px = (Px(i, j))i, j∈X, x ∈ Θ is a family of stochastic matrices, then {Xt, t ∈ T} is called to be a Markov
chain indexed by tree T in a random environment {ξt, t ∈ T}. The ξ′ts are called the environmental process or control
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process indexed by tree T. Moreover, if {ξt, t ∈ T} is a T-indexed i.i.d random processes, then we call {Xt, t ∈ T} to be
a Markov chain indexed by tree T in an i.i.d random environment.

Beginning in Section 2 we will assume ξ = {ξt, t ∈ T} is a T-indexed i.i.d random fields taking values in
ΘT = {0, 1, · · ·, r − 1}T with the distribution as follows:

P(ξt = θ) = Λ(θ). (1.6)

We also denote the probability of going from i to j in one step in the θth environment by Pθ(i, j). In this case
it is easy to derive that {(ξt,Xt), t ∈ T} is a Markov chain indexed by T with initial distribution q = (q(θ, i))
and one-step transition function on Θ × X determined by

P(α, i; β, j) = Λ(β)Pα(i, j), (1.7)

where q(θ, i) = P(ξ0 = θ,X0 = i). Then we call {(ξt,Xt), t ∈ T} to be the bichain indexed by tree T. We also
denote the distribution vector of ξt by

Λ = (Λ(0),Λ(1), · · · ,Λ(r − 1)). (1.8)

For simplicity we always suppose that the component of Λ is positive, that is, for any θ ∈ Θ, Λ(θ) > 0.
Remark: If

P(ξt = θ) = Λ(θ) = 1,

then our model of Markov chain indexed by homogeneous tree in a finite state i.i.d. environment is reduced
to the model of Markov chain indexed by homogeneous trees(see [7]).

2. Some Useful Statements

Let {Xt, t ∈ T} be a Markov chain indexed by an infinite Cayley tree T in a finite state i.i.d. random
environment {ξt, t ∈ T}, which is defined as definition 1.2. Let 1t(α, i, β, j) be functions defined on (Θ × X)2.
Let λ be a real number,L0 = {0}. For every finite n ∈ N, Fn = σ(ξT(n)

,XT(n)
), now we define a stochastic

sequence as follows:

ϕn(λ,ω) =
eλ
∑

t∈T(n)\{0} 1t(ξ1 t,X1t,ξt,Xt)∏
t∈T(n)\{0} E[eλ1t(ξ1 t,X1 t,ξt,Xt)|ξ1t,X1t]

. (2.1)

At first we come to prove the following fact.
Lemma 2.1 {ϕn(λ,ω),Fn,n ≥ 1} is a nonnegative martingale.
Proof of Lemma 2.1: Because of the fact that {(ξt,Xt), t ∈ T} is a bichain indexed by tree T, it is easy to see

P(ξT(n)
= αT(n)

,XT(n)
= xT(n)

) = q(α0, x0)
∏

t∈T(n)\{0}

P(α1t, x1t;αt, xt), (2.2)

then, obviously we have

P(ξLn = αLn ,XLn = xLn |ξT(n−1)
= αT(n−1)

,XT(n−1)
= xT(n−1)

)

=
P(ξT(n)

= αT(n)
,XT(n)

= xT(n)
)

P(ξT(n−1) = αT(n−1) ,XT(n−1) = xT(n−1) )

=
∏
t∈Ln

P(ξt = αt,Xt = xt|ξ1t = α1t,X1t = x1t). (2.3)
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Furthermore, we have

E[eλ
∑

t∈Ln 1t(ξ1 t,X1 t,ξt,Xt)|Fn−1]

=
∑
αLn ,xLn

eλ
∑

t∈Ln 1t(ξ1t,X1 t,αt,xt)P(ξLn = αLn ,XLn = xLn |ξT(n−1)
,XT(n−1)

)

=
∑
αLn ,xLn

∏
t∈Ln

eλ1t(ξ1t,X1 t,αt,xt)P(ξt = αt,Xt = xt|ξ1t,X1t)

=
∏
t∈Ln

∑
(αt,xt)∈Θ×X

eλ1t(ξ1 t,X1 t,αt,xt)P(ξt = αt,Xt = xt|ξ1t,X1t)

=
∏
t∈Ln

E[eλ1t(ξ1 t,X1 t,ξt,Xt)|ξ1t,X1t] a.s.. (2.4)

On the other hand, we also have

ϕn(λ,ω) = ϕn−1(λ,ω)
eλ
∑

t∈Ln 1t(ξ1 t,X1 t,ξt,Xt)∏
t∈Ln

E[eλ1t(ξ1 t,X1 t,ξt,Xt)|ξ1t,X1t]
. (2.5)

Combining (2.4) and (2.5), we get

E[ϕn(λ,ω)|Fn−1] = ϕn−1(λ,ω) a.s..

Thus we complete the proof of Lemma 2.1.

Lemma 2.2 Let {Xt, t ∈ T} be a Markov chain indexed by an infinite Cayley tree T in a finite state i.i.d. random
environment {ξt, t ∈ T}. {1t(α, i, β, j), t ∈ T} are functions defined as above, denote

Rn(ω) =
∑

t∈T(n)\{0}

E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t], (2.6)

Let b > 0, denote

M(ω) = lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

E[12
t (ξ1t,X1t, ξt,Xt)eb|1t(ξ1 t,X1 t,ξt,Xt)||ξ1t,X1t], (2.7)

suppose that

D(b) = {ω : M(ω) < ∞} (2.8)

and

Hn(ω) =
∑

t∈T(n)\{0}

1t(ξ1t,X1t, ξt,Xt). (2.9)

Then we get

lim
n→∞

Hn(ω) − Rn(ω)
|T(n)|

= 0 a.s.on D(b). (2.10)

Proof: By Lemma 2.1, we have known that {ϕn(λ,ω),Fn,n ≥ 1} is a nonnegative martingale. According to
Doob martingale convergence theorem , we have

lim
n
ϕn(λ,ω) = ϕ(λ,ω) < ∞ a.s.,
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which implies that

lim sup
n→∞

lnϕn(λ,ω)
|T(n)|

≤ 0 a.s. . (2.11)

Let Hn(ω) be defined as (2.9), combining(2.1) and (2.11), we arrive at

lim sup
n→∞

1
|T(n)|

{λHn(ω) −
∑

t∈T(n)\{0}

ln[E[eλ1t(ξ1t,X1 t,ξt,Xt)|ξ1t,X1t]]} ≤ 0 a.s. (2.12)

Let λ > 0. Dividing two sides of above inequality by λ, we get

lim sup
n→∞

1
|T(n)|

{Hn(ω) −
∑

t∈T(n)\{0}

ln[E[eλ1t(ξ1 t,X1 t,ξt,Xt)|ξ1t,X1t]]
λ

} ≤ 0 a.s. (2.13)

For case 0 < λ ≤ b, combining with (2.13), the inequalities ln x ≤ x − 1(x > 0) and 0 ≤ ex
− 1 − x ≤ 2−1x2e|x|, it

follows that

lim sup
n→∞

1
|T(n)|

[Hn(ω) −
∑

t∈T(n)\{0}

E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t]]

≤ lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

{
ln[E[eλ1t(ξ1 t,X1 t,ξt,Xt)|ξ1t,X1t]]

λ
− E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t]}

≤ lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

{
E[eλ1t(ξ1 t,X1t,ξt,Xt)|ξ1t,X1t] − 1

λ
− E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t]}

≤
λ
2

lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

E[12
t (ξ1t,X1t, ξt,Xt)eλ|1t(ξ1 t,X1 t,ξt,Xt)||ξ1t,X1t]

≤
λ
2

lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

E[12
t (ξ1t,X1t, ξt,Xt)eb|1t(ξ1 t,X1 t,ξt,Xt)||ξ1t,X1t]

≤
λ
2

M(ω) a.s.on D(b). (2.14)

Letting λ→ 0+ in (2.14), combining with (2.6) we have

lim sup
n→∞

Hn(ω) − Rn(ω)
|T(n)|

≤ 0 a.s.on D(b) (2.15)

Let −b ≤ λ < 0. Similarly to the analysis of the case 0 < λ ≤ b. It follows from (2.12) that

lim inf
n→∞

Hn(ω) − Rn(ω)
|T(n)|

≥
λ
2

M(ω) a.s.on D(b).

Letting λ→ 0−, we can arrive at

lim inf
n→∞

Hn(ω) − Rn(ω)
|T(n)|

≥ 0 a.s.on D(b). (2.16)

Combining (2.15) and (2.16), it is easy to see that the conclusion (2.10) is true.
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3. Strong Law of Large Numbers

For every finite n ∈ N, let {Xt, t ∈ T} be a Markov chain indexed by an infinite Cayley tree T in the finite
state i.i.d. random environment {ξt, t ∈ T}. Now we define several stochastic sequences as follows:

Sn(α, i) =
∑
t∈T(n)

δα(ξt)δi(Xt) ∀(α, i) ∈ Θ × X; (3.1)

Sn(i) =
∑
t∈T(n)

δi(Xt) ∀i ∈ X; (3.2)

Sn(i, j) =
∑

t∈T(n)\{0}

δi(X1t)δ j(Xt) ∀(i, j) ∈ X2; (3.3)

Sn(α, i, j) =
∑

t∈T(n)\{0}

δα(ξ1t)δi(X1t)δ j(Xt) ∀(α, i, j) ∈ Θ × X2; (3.4)

Sn(α, i, θ) =
∑

t∈T(n)\{0}

δα(ξ1t)δi(X1t)δθ(ξt) ∀(i, α, θ) ∈ Θ × X ×Θ; (3.5)

Sn(α, θ, j) =
∑

t∈T(n)\{0}

δα(ξ1t)δθ(ξt)δ j(Xt) ∀(α, θ, j) ∈ Θ2
× X; (3.6)

Sn(i, θ, j) =
∑

t∈T(n)\{0}

δi(X1t)δθ(ξt)δ j(Xt) ∀(i, θ, j) ∈ X ×Θ × X; (3.7)

Sn(α, i, θ, j) =
∑

t∈T(n)\{0}

δα(ξ1t)δi(X1t)δθ(ξt)δ j(Xt) ∀(α, i, θ, j) ∈ Θ × X ×Θ × X, (3.8)

here and thereafter δ·(·) denotes the Kronecker function. What we are interested in are the strong limit laws
of those random sequences which are defined as above.

In the rest of this article, we always suppose that the following ergodic condition holds: the stochastic
matrix P = (P(α, i; β, j)) is ergodic, andπ = (π(α, i))(α,i)∈Θ×X is the stationary distribution which is determined
by P. If the stochastic matrix P = P(α, i; β, j) is ergodic, and π = (π(α, i))(α,i)∈Θ×X is the stationary distribution
which is determined by P, then we have

πP = π; Σα∈Θ,i∈Xπ(α, i) = 1.

Thus, combining with (1.7) and above relations, it follows that

Σα∈Θ,i∈Xπ(α, i)P(α, i; β, j) = π(β, j).

That is

Σα∈Θ,i∈Xπ(α, i)Pα(i, j) = π(β, j)/Λ(β). (3.9)
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Since the left hand side is independent of the factor β, then we can denote

µ( j) =: π(β, j)/Λ(β).

where µ( j) is also independent of β. In a word, for any β ∈ Θ and j ∈ X, we have

π(β, j) = µ( j)Λ(β). (3.10)

It is easy to derive that µ = (u(i), i ∈ X) is a probability distribution. Let’s re-substitute (3.10) into (3.9), we
get to

Σi∈Xµ(i)Σα∈ΘΛ(α)Pα(i, j) = µ( j). (3.11)

Thus we might as well denote

a(i, j) =: Σα∈ΘΛ(α)Pα(i, j). (3.12)

Then, (3.11) is equivalent to the following relation

Σi∈Xµ(i)a(i, j) = µ( j). (3.13)

Since µ is a probability distribution vector, then it is the stationary distribution of stochastic matrix A =

(a(i, j)).
Theorem 3.1 Let {Xt, t ∈ T} be a Markov chain indexed by an infinite Cayley tree T in an i.i.d environment {ξt, t ∈ T}
which is defined as definition 1.2. Suppose that the stochastic matrix P = (P(α, i; β, j)) satisfies the ergodic condition,
Sn(α, i) and Sn(α, i, θ, j) are defined as (3.1) and (3.8), then we have

lim
n→∞

Sn(α, i)
|T(n)|

= Λ(α)µ(i) ∀(α, i) ∈ Θ × X; a.s., (3.14)

lim
n→∞

Sn(α, i, θ, j)
|T(n)|

= Λ(α)Λ(θ)µ(i)Pα(i, j) ∀(α, i, θ, j) ∈ Θ × X ×Θ × X, a.s.. (3.15)

Proof of Theorem 3.1: At first, we come to prove (3.14). In Lemma 2.2, we can take

1t(ξ1t,X1t, ξt,Xt) = δα(ξt)δi(Xt),

obviously in (2.8) we have D(b) = Ω, then we get

Hn(ω) = Σt∈T(n)\{0}1t(ξ1t,X1t, ξt,Xt)

= Σt∈T(n)\{0}δα(ξt)δi(Xt)

= Sn(α, i) − δα(ξ0)δi(X0) (3.16)

Rn(ω) =
∑

t∈T(n)\{0}

E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t]

=
∑

t∈T(n)\{0}

∑
θ∈Θ

∑
j∈X

δα(θ)δi( j)P(ξ1t,X1t;θ, j)

=
∑

t∈T(n)\{0}

P(ξ1t,X1t;α, i)

=
∑
θ∈Θ

∑
j∈X

∑
t∈T(n)\{0}

δθ(ξ1t)δ j(X1t)P(θ, j;α, i)

= d
∑
θ∈Θ

∑
j∈X

Sn−1(θ, j)P(θ, j;α, i) + P(ξ0,X0;α, i) (3.17)
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Noting that limn→∞
|T(n)
|

|T(n−1) |
= d, combining (2.10), (3.16) and (3.17), we easily arrive at

lim
n→∞

Hn(ω) − Rn(ω)
|T(n)|

= lim
n→∞
{
Sn(α, i)
|T(n)|

−

∑
θ∈Θ

∑
j∈X Sn−1(θ, j)P(θ, j;α, i)

|T(n−1)|
} = 0 a.s.. (3.18)

Now we come to prove the equation (3.14) followed by the procedure of induction to (3.18). Multiplying
both sides of equality (3.18) by P(α, i; β, l) and adding them together, by using (3.18) again, we get

lim
n→∞

[
∑
α∈Θ

∑
i∈X

Sn(α, i)
|T(n)|

P(α, i; β, l) −
Sn+1(β, l)
|T(n+1)|

]

+ lim
n→∞

[
Sn+1(β, l)
|T(n+1)|

−

∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

Sn−1(θ, j)P(θ, j;α, i)P(α, i; β, l)
|T(n−1)|

]

= lim
n→∞
{
Sn+1(β, l)
|T(n+1)|

−

∑
θ∈Θ

∑
j∈X

Sn−1(θ, j)P(2)(θ, j; β, l)
|T(n−1)|

} = 0 a.s., (3.19)

where P(N)(θ, j; β, l) is the N−step transition probability determined by the transition matrix P. By induction
we have

lim
n→∞
{
Sn+N(β, l)
|T(n+N)|

−

∑
θ∈Θ

∑
j∈X

Sn−1(θ, j)P(N+1)(θ, j; β, l)
|T(n−1)|

} = 0. a.s. (3.20)

Since

lim
N→∞

P(N+1)(θ, j; β, l) = π(β, l),
∑
θ∈Θ

∑
j∈X

Sn−1(θ, j) = |T(n−1)
|, (3.21)

then, (3.14) is followed from (3.20), (3.21) and (3.10).

Now we come to prove the equality (3.15). By using Lemma 2.2 again, taking

1t(ξ1t,X1t, ξt,Xt) = δα(ξ1t)δi(X1t)δθ(ξt)δ j(Xt),

then we get

Hn(ω) = Σt∈T(n)\{0}1t(ξ1t,X1t, ξt,Xt)

= Σt∈T(n)\{0}δα(ξ1t)δi(X1t)δθ(ξt)δ j(Xt)

= Sn(α, i, θ, j), (3.22)

Rn(ω) =
∑

t∈T(n)\{0}

E[1t(ξ1t,X1t, ξt,Xt)|ξ1t,X1t]

=
∑

t∈T(n)\{0}

∑
β∈Θ

∑
l∈X

δα(ξ1t)δi(X1t)δθ(β)δ j(l)P(ξ1t,X1t; β, l)

=
∑

t∈T(n)\{0}

δα(ξ1t)δi(X1t)P(α, i;θ, j)

= dSn−1(α, i)P(α, i;θ, j) + δα(ξ0)δi(X0)P(α, i;θ, j) (3.23)



H. Huang / Filomat 31:2 (2017), 273–283 281

Combining the equalities (3.14), (3.22) and (3.23) and by using limn→∞
|T(n)
|

|T(n−1) |
= d and (2.10) again, we con-

clude that (3.15) is true. The proof of this theorem is completed.

Corollary 3.2 Under the same conditions of Theorem 3.1, we have

lim
n→∞

Sn(i)
|T(n)|

= µ(i) ∀i ∈ X; (3.24)

lim
n→∞

Sn(i, j)
|T(n)|

= µ(i)a(i, j) ∀(i, j) ∈ X2; (3.25)

lim
n→∞

Sn(α, i, j)
|T(n)|

= Λ(α)µ(i)Pα(i, j) ∀(α, i, j) ∈ Θ × X2; (3.26)

lim
n→∞

Sn(α, i, θ)
|T(n)|

= Λ(α)µ(i)Λ(θ) ∀(α, i, θ) ∈ Θ × X ×Θ; (3.27)

lim
n→∞

Sn(α, θ, j)
|T(n)|

= Λ(α)Λ(θ)
∑
i∈X

µ(i)Pα(i, j) ∀(α, θ, j) ∈ Θ2
× X; (3.28)

lim
n→∞

Sn(i, θ, j)
|T(n)|

= Λ(θ)µ(i)a(i, j) ∀(i, θ, j) ∈ X ×Θ × X. (3.29)

All above equations holds under the sense of convergence almost surely .
Proof of Corollary 3.2: Since Sn(i) =

∑
α∈Θ Sn(α, i), then (3.24) can be derived from (3.14) directly. Similarly,

Sn(i, j) =
∑
α∈Θ,θ∈Θ Sn(α, i, θ, j), we can easily arrive at (3.25) by using (3.15) and (3.12). At last, (3.26)− (3.29)

can also be derived from (3.15) without any difficulty.

4. Shannon-McMillan Theorem

Let T be an infinite Cayley tree and {Xt, t ∈ T} a Markov chain indexed by tree T in a random environment
{ξt, t ∈ T}. Since {ξt,Xt, t ∈ T} is a bichain indexed by tree T. Now we define

fn(ω) = −
1
|T(n)|

ln P(ξT(n)
,XT(n)

)

= −
1
|T(n)|

[ln q(ξ0,X0) +
∑

t∈T(n)\{0}

ln P(ξt,Xt|ξ1t,X1t)] (4.1)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in probability, a.s.
convergence) is called the Shannon-McMillan theorem in information theory.
Theorem 4.1 Let {Xt, t ∈ T} be a Markov chain indexed by an infinite Cayley tree T in an i.i.d environment {ξt, t ∈ T}
which is defined as definition 1.2. Suppose that the stochastic matrix P = (P(α, i; β, j)) satisfies the ergodic condition
and q(α, i) > 0 for all (α, i) ∈ Θ × X, then we have

lim
n→∞

fn(ω) = −
∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

Λ(α)Λ(θ)µ(i)Pα(i, j) ln P(α, i;θ, j) a.s.. (4.2)
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Proof of Theorem 4.1: At first, we assert that

lim
n→∞
{ fn(ω) +

1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

δα(ξ1t)δi(X1t)P(α, i;θ, j) ln P(α, i;θ, j)} = 0 a.s.. (4.3)

Taking b = 1
2 , 1t(ξ1t,X1t, ξt,Xt) = − ln P(ξt,Xt|ξ1t,X1t) in Lemma 2.2, by using the elementary inequality

(ln x)2x
1
2 ≤ 16e−2 for every 0 < x ≤ 1, then we have

M(ω) = lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ,i∈X

(ln P(ξ1t,X1t;α, i))2e
1
2 | ln P(ξ1 t,X1 t;α,i)|P(ξ1t,X1t;α, i)

= lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ,i∈X

(ln P(ξ1t,X1t;α, i))2(P(ξ1t,X1t;α, i))
1
2

≤ lim sup
n→∞

1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ,i∈X

16e−2

Noting that both Θ and X are finite sets, thus it follows that

M(ω) < ∞. (4.4)

This implies that D( 1
2 ) = Ω in (2.8). We also note that

Hn(ω) − Rn(ω)
|T(n)|

=
ln q(ξ0,X0)
|T(n)|

+ fn(ω)

+
1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

δα(ξ1t)δi(X1t)P(α, i;θ, j) ln P(α, i;θ, j) (4.5)

Combining (4.4),(4.5) and (2.10), we conclude that (4.3) is true.

Then we have

| fn(ω) +
∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

Λ(α)µ(i)P(α, i;θ, j) ln P(α, i;θ, j)|

≤ | fn(ω) +
1
|T(n)|

∑
t∈T(n)\{0}

∑
α∈Θ

∑
i∈X

∑
θ∈Θ

∑
j∈X

δα(ξ1t)δi(X1t)P(α, i;θ, j) ln P(α, i;θ, j)|

+
∑
α∈Θ

∑
i∈X

|
dSn−1(α, i) + δα(ξ0)δi(X0)

|T(n)|
−Λ(α)µ(i)| · |

∑
θ∈Θ

∑
j∈X

P(α, i;θ, j) ln P(α, i;θ, j)|

=: I1 + I2 (4.6)

On the one hand, I1 disappears as n tends to infinity by (4.3) with convergence almost surely. On the
other hand, by using (3.14) we have

lim
n→∞

dSn−1(α, i) + δα(ξ0)δi(X0)
|T(n)|

= lim
n→∞

Sn−1(α, i)
|T(n−1)|

= Λ(α)µ(i). a.s.

Both Θ and X are finite sets, it follows that I2 approximates to zero as n tends to infinity with convergence
almost surely. Thus we complete the proof of theorem 4.1.
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