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Regular Functions with Values in a Noncommutative
Algebra using Clifford Analysis

Su Jin Lim? Kwang Ho Shon?

?Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea

Abstract. We construct a noncommutative algebra C(2) that is a subalgebra of the Pauli matrices of M(2; C),
and investigate the properties of solutions with values in C(2) of the inhomogeneous Cauchy-Riemann
system of partial differential equations with coefficients in the associated Pauli matrices. In addition, we
construct a commutative subalgebra C(4) of M(4; C), obtain some properties of biregular functions with
values in C(2) on Q in C? x C?, define a J-regular function of four complex variables with values in C(4),
and examine some properties of J-regular functions of partial differential equations.

1. Introduction

Let A, be the universal Clifford algebra constructed over a real anti-Euclidean quadratic n-dimensional
vector space. Then A, is generalized by the field C of complex numbers and bases {¢; : j = 0,1,--- ,n -1},
where ¢y = id, 6]2. =-landejei +eej=0(j #k, jk=1,2,--- ,n—1). Sudbery [14] and Naser [9] developed
quaternionic function theory, and Noéno [10, 11] gave some properties of hyperholomorphic functions in
quaternion and octonion analysis. Gotd and N6no [1] constructed a commutative algebra as a commutative
subalgebra of the four-dimensional real matrix algebra and gave several properties of regular functions.
Stern [13] researched the boundary value problems for generalized Cauchy-Riemann systems in the space.
Kajiwara et al. [3, 4] regenerated hyperholomorphic functions in quaternion and Clifford analysis, and
examined the properties of solutions of the inhomogeneous Cauchy-Riemann system in Clifford analysis.
Koriyama etal. [5] obtained some properties of hyperholomorphic and holomorphic functions in quaternion
analysis. Song et al. [12] gave some concepts on quaternion matrix ans researched the iterative solution to
the coupled quaternion matrix equations. Lian and Chiang [6] formulated the maximal rank of a kind of
3 X 3 partial banded block matrix, by using properties of the set of all m X m matrices over the quaternion
algebra. In addition, we [7, 8] obtained some properties of hyperholomorphic functions and solved the
Cauchy theorem for hyperholomorphic functions of the quaternion product spaces and octonion variables.

In this paper, we define a noncommutative subalgebra C(2) of M(2; C) according to associated Pauli
matrices and examine the properties of solutions of the inhomogeneous generalized Cauchy-Riemann
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system for biregular functions on Q ¢ C? x C2. In addition, we construct a commutative subalgebra C(4) of
the four dimensional matrix algebra M(4; C) on the field C of complex numbers generated by eight bases
{ej:7=0,1,---,7}, give a J-regular function with values in C(4) and investigate the properties of J-regular
functions on Q c C*.

2. Biregular Functions with Values in C(2)

Letap = id, a1 = i, a, = j, and a3 = k be hypercomplex numbers. The field 7~ = C? of quaternions
zZ = Z?:o ajxj = z1 + 2242 (xo,X1,%2,X3 € R) is a four-dimensional noncommutative real field generated by
four bases a9, a1, a2, and a3 with the following rule:

2_ 2 _ 2 _ _ - - - —
111 = a2 = 113 = —1, ajdx; = —dpay = as, a3 = —Aaszdpy = dy, dzd; = —aids = dj.
Here this is said to satisfy the triple rule in Clifford analysis.

Consider the Pauli matrices of M(2; C) by

(10 (1 0 (0 i {01
9=Vo 1) 270 1) 27\i o) BT\1 0)

where i = V—-1. The multiplications of 1, 02 and o3 produces

2_ 22 =g2=]

0p=07=0,=0 00, = —i0y,,

where {l,m,n} is a cyclic permutation of {1,2,3}. The following matrices occur in the theory of Clifford
algebras:

(1/11,() = (; )lxyeR}EREBR,
7’10,1 = ( * )|x/y€R}EC1
. Xo + 1X1 Xy + iX3 .
Uy, = (—xz+zx3 xo_ixl)lxneR(n—O,l,Z,fi)}

{( o )IzneC(n_lz)}z

_ZZ

where H is the Hamilton’s algebra of quaternions.
Consider the associated Pauli matrices

(10 (i 0 {0 1 (0 i
©=\lo 1) 270 i) 27\ =1 0) ®7\i o]

Then these associated Pauli matrices satisfy the triple rule.

The algebra
3
CR)i={z=) epjlx;€R(j=0,1,2,3) =T
j=0

is a noncommutative subalgebra of M(2; C). Here C(2) can be identified with C?. The numbers of the field
C(2) are

3 . .

Xo +1X X + 1X;
ZZZEJ‘XJ‘Z 0 .1 2 .3 67/{02
— —X7 +1X3 Xg—1Xq1 .
]:
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|

The quaternionic conjugate z* of z is z* = 2]3-:0 ejxj, where ey = ¢p and ¢, = —¢x (k = 1,2,3). Let Q be an open

and

2 + iy3
Yo— 11

Yo + iy1
=2 + lyg

w=) ey =

3
) € (LIO,Z‘
j=0

subset of C2 x C2. Consider a function:
f:Q—C2)

satisfies
3
(z,w) € Q —> f(z,w) = Zejuj € C(2).
=0

We use quaternion differential operators:

2 _jd _0 ;4
axg dxy dxa dx3
Pr = 3 3 3 3 ’
 lom aw tlog
2 _jo _9 _jd
Mo I Iy 3
D, := ,
2 _j90 9 ;0
Iy dys  dyo I
and conjugate differential operators
9, :d d 29
a tlon o Tlom
Dx = 7
_9 459 9 _;d
ox, dxs  Ixg oxy
9 479 9 40
ayo l«9y1 9y2 + 19}/3
Dy =
92 49 2 _;0
ayz 8y3 Byg 8y1

The operators act for a function f(z, w) in C(2):
3

D f(z,w)

f(z, w)D*y

BXQ
(auz

8u1
&xl

k=0

8u3

i ) )

3u2
&xz
81/{0

8u3
8x3

8141 8u0
)+ (8x0 * (9x1 *
8u3 8u2

dus _ gz,
axz &x3 !

3142

8u1 Quo

83(3

g ox1

du
v, o)
8140

The point norm at p = (z, w) € Q is defined by

3
lIpll = % tr(z'z) + tr(w'w) = ;(sz, +3).

—+%)e2+(—+———+
ox;  Ox3 dxg Ix;  Ixy

0.~ )"

&yo &]/1 8]/2 &y3
(2 g ow
v Jdyr Iy

Je

Ity
&y?,

)63,

Jes
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Definition 1. Let Q be an open set of C2 x C2. A function f : Q —> C(2) is said to be bireqular on Q if the
following two conditions are satisfied:
(a) For each w € C(2) fixed, f is of class C' in z € Qy, = {z € C(2) | (z, w) € Q} and satisfies D, f(z,w) = 0 on Q.
(b) For each z € C(2) fixed, f is of class C' in w € Q, = {w € C(2) | (z,w) € Q} and satisfies f(z, w)D;, = 0 on Q.

Let (g, h) be a pair of C(2)-valued functions g and & of class C* on Q in C? x C. Consider the inhomo-
geneous Cauchy-Riemann system of partial differential equations

Dif=g, fDy=h. &)
If the system (1) has a solution f with values in C(2), then
gD, = DifD), = D;h.
For the system (1), the solvability condition
gDy, = Dih (2)

is necessary for the existence of a solution f with values in C(2) to the system (1). Let Q be a product
domain Q; x ), of simply connected domains in C* and C?, respectively, and let Tf := (D, f, fD}). Then
Tf = (g,h) = 0 satisfies gD = D}h. For Tf : (0 — C(2) of class C?, consider S(g,h) = gD}, — D;h. Then the
Cousin 1 problem according to C(2)-valued functions on Q has a solution.

Theorem 2. Ifa function f(z,w) is biregular on QQ C C* X C?, then each component of f(z,w) is harmonic on Q.

Proof. Consider

9 _;9 _9d _ ;9 9 4 ;0 9 4 ;9
o "l Tom o o Tl am tlaa
DD =
9 _ ;9 9 4 ;0 _9d 4;9 9 _ ;9
0x ZBX3 9% + laxl 0x + 18x3 Ixo laxl
3 2
j=0 Bx? 0
5 2
0 j=0 ijz.
and
9 4 ;9 9 4 ;0 9 _;9 _9 _;9
ayo + l&yl ayz + 19y3 3y0 layl 3y2 layg
DD, =
-2 4;9 9 _;9 2 _j9 2 49
A~ Tdys Iy In dy  “dys Iy TIn
3 2
Z}':O ay? 0
0 Yo b

Since f is biregular on Q, Ayug = 0 and Ayjuy = 0. Therefore, the function uy(z, w) is harmonic on Q.
Similarly, the functions u(z, w) (k = 1,2, 3) are also harmonicon Q. O

Theorem 3. Let Q be a domain in C* x C? of C(2) variables z and w, and let (g, h) be C(2)-valued functions on
Qof class C*. If f(z,w) = Y3 _, extiy is a locally integrable function with C(2) values satisfying the system (1) in the
sense of distribution, that is, f(z, w) as a weak solution of (1), then f(z, w) is of class C* and a strong solution of (1)
on Q.
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Proof. Because D.D;, = A, and D*yDy =Ay,
52 P
(Ax + Ay)uo = Z(— + —)Mo.

2 2
E S

Because ug, u1, ; and u3 are solutions of the elliptic equation
(Ax + Ay)uj = DxDiuj +u;DyDy = Dxg + hDy, (j =0,1,2,3)
and D.g + hD, is of class C*, each part u; of f is of class C* on Q. OO

Example 4. Let rjand s; (j = 0,1, 2,3) be positive numbers. Consider an ellipsoid

Q
N

{(zw)eCZXC2|Z—2 —é ) <1}.
5

Let g and h be C(2)-valued functions satisfying Dyh = gD;, on Q). Then there exists a C(2)-valued function f on )
of class C*, which is a solution of (1) .

3. J-regular Functions with Values in C(4)

The four-dimensional matrix algebra M(4; C) is on the field C of complex numbers generated by eight
bases ¢j(j =0,---,7). Here put

10 i 0 ‘ 0 1 0 i
60_(0 1)/ 61_(0 ')/ 62_(1 0)/ 63_(1 0)/
(6 O (61 0 (& 0 B

50‘( 0 & ) 51‘( 0 o ) “'2‘( 0 6 ) é3‘( 0 6 )

{0 & {0 & [0 & {0 &
“ s 0 ) BT, 0) T\, 0] 7\ s 0 )

Then the following rules are obtained:

-~

N
~
~

— N
™M
@WN
(S0 S)
NN
|

~
~

2_ .2 .2
Eg= & =8 =

1€ = €3 = &281, €284 = &6 = €482, E3E4 = €7 = £4E€3, €186 = €7 = E6€1,
€285 = &7 = E5E82, €184 = &5 = &€4&1, E5E¢ = €3 = &5, £381 = —& = £€1&€3.

The element ¢ is the identity and the element ¢; is the imaginary unit V-1 in the M(4;C) of complex
numbers.

The algebra C(4) = {z = ):1720 eixj|xj e R(j=0,1,---,7)} is a commutative subalgebra of M(4; C) and
represented by the following form:

4
C(4) = {Z = ZZ]'E2]'_2 |Z] eC (] = 1/2/3/4)}1
j=1

where z1 = €oXg + €1X1, Z2 = €0X2 + €1X3, Z3 = EoXg + €1X5 and zg = €oXg + €1x7. Here C(4) can be identified
with C2.
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Define the multiplication of z = 2]7:0 ejxjand w = 2]7-:0 €jyj by

ay dp d3 da
a a a a

2w = 2 1 4 3 ,
a a4 a1 4

ag ds dpy M

where A1 = Z1W1 + ZpWo + Z3W3 + Z4Wy, Ay = Z1Wy + ZoWy + Z3Wy + Z4W3, A3 = Z1W3 + ZoWy4 + 23W1 + 24wy and
Ay = Z1Wy + ZoW3 + Z3Wy + Z4W1 IN C(4)
The conjugation z* and the norm ||z|| of z in C(4) are defined, respectively, by

N
Il

Il

where z; (j =1,2,3,4) are usual conjugate numbers in C.
Consider two differential operators:

1.9 d P a)_(Dl Dz)
4

=105, T, T4, T4, T\ b, D
and
1,9 d D, D,
D' = + +es—=+ = —=
4(821 52822 848 6 4) ( D, D )

where 2 o g (k =1,2,3,4) are usual complex differential operators (see [2]) and

2 _i0 9 _;0 Q0 9 _;io

aX(] Bxl BXZ aX3 aX4 8X5 8x6 BJC7
D, = , D2=

Qi 2 _;0 9 _j0 9 _i0

Iz ox3 dxp ox1 0xe oxy x4 0xs

Then,

Let Q be an open set in C* and f(z) = Zézl fi(Z)ex—2 = 21720 ¢juj be a function defined on Q with
values in C(4), where z = (z1,22,23,24) and fi(z) (k = 1,2,3,4) are usual complex-valued functions and u;
(j=0,1,---,7) are real-valued functions.

Definition 5. Let Q) be an open set in C*. A function f(z) is said to be J-regqular on Q with values in C(4) if the
following two conditions are satisfied:
(a) fi(z) (k=1,2,3,4) are continuously differential functions on €3, and
(b)

D'f=0 on Q. (©)
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The system (3) for the J-regular function f(z) is equivalent to the following system of equations:

oh 9 O oh Oh i If

821 3Z2 823 324 - 0, 821 i 322 Y= 823 T 324 - 0,
o i Oh ok _ , i O b Oh _ "
321 &Zz 323 &2_4 B ! (921 &Zz 823 52_4 B ’

Definition 6. Let Q be a domain in C* and let
f=(uo,u1,-- ,u7) : Q — C(4).

This mapping is said to be harmonic if all its components u; (j = 0,1,---,7) of f are harmonic on Q. The system (3) is
called a generalized Cauchy-Riemann system if every solution f(z) has only harmonic components u; (j = 0,1,---,7).

Proposition 7. Let Q) be a domain in C* and f(z) be a J-reqular function on Q. If Ff(z) = 0, then the system (3)
is a generalized Cauchy-Riemann system on Q.

Proof. If Ff(z) = 0, then Z =0 g /; = 0. Therefore, the components ug, uy, - - - , 47 are harmonic on Q. That

is, the system (3) is a generalized Cauchy—Riemann systemon Q. O

Let f(z) be a J-regular function defined on Q of C*. Define the derivative f'(z) by f'(z) = Df(z)

Theorem 8. Let Q be a domain in C* and f(z) be a J-reqular function defined on Q with values in C(4). Then,

3

19 1 P
f@= A_L(Z 52]‘@)]((2) = _A_L(Z €2j+1m)f(z)- (5)
j=0

=0

Proof. Because the function f(z) is J-regular on Q,

bl b2 b3 b4 C1 C C3 C4 3
son | b2 b1 ba b3 | [0 a o oc
fe = by by by by | | s a o Zo‘ 2 0xa: (9x f @),
b4 b3 bz bl Cy C3 Cp (1 1=
where
b = {(éhto 8u1 &uz % % 8u5 8u6 Buy)
v 8x0 3JC1 &xz 8x3 8)(4 QX5 8x6 8x7
Qo Oy Oy Oty _ s, Oy sy
aX() 8x1 8x2 8x3 8x4 QX5 8x6 8X7

_ 8u2 8143 (9110 8u1 (91/[6 (91/{7 (9u4 9145
by = { Ixo 8x1 &xz * ox3 * x4 * o x5 8x6 8x7)

Qe gt O Oy Oup_ Ous , s Ol
8x0 8x1 axz aX3 &X4 &X5 8x6 8x7
3 8u4 8u5 3u6 % % duy 8142 8u3
b3 B { on 8x1 &xz * &X3 * &X4 * o &X5 Bx(, 8x7)
si( Qs Qs 07Oy, Ol _ Oy, Oy _ Oty
axo 8x1 axz 8X3 (QX4 &x5 (9.’Xf6 8.7C7
{(8146 8147 8u4 4 s 81/!5 + % L] (91/13 8u0 81/{1)
aXO axl 8x3 8x4 8x5 8x6 83(7
H(&uy 8u6 8u5 duy N dus B 8u2 &u1 dug )}

on 8361 XQ (9_x3 8_x4 8x5 8x6 8x7

b4:
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and
I (8f1 f 9f3 8f4) i (8f2 9f 8f4 8f3)
! on &xz 8x4 8x6 ! 27 8x0 8X2 8x4 (9x6 !
3 dfs dfs Jdfi df _1/0fs dfs dfs Ifi
o = 1t an ok =1t e ot ax)
Similarly, the result can be proved for the right-hand side of (5). O

Theorem 9. Let f(z) be a J-reqular function on a domain G of C* and let

w = dzy ANdzy Ndzzs Adzg ANdzy; Adzz A dzy
—dz1 ANdzy Adzz Adzy A dzq A dzz A dzger
+dzy Adzy Adzs ANdzy Adzi Adzy A dzgey
—dzy Ndzy Adzs AN dzy Adzi A dzy; A dzzeg.

Then, for any bounded domain Q C G with a smooth boundary bQ, be wf=0.

Proof. Let
wa = le /\de/\dZ3/\dZ4/\d5/\dZ_3/\dZ_4,
wpe) = le /\dzzAd23AdZ4AdE/\dZ/\dz_4,
wE) = le /\de/\dZ3/\dZ4/\dZ/\dZ/\dZ_4,
W = le /\de/\dZ3/\dZ4/\dZ/\d5/\dz.
Then,
wf = (wa—weeEr +wE)es — w@es)(fi + fre2 + f3e4 + face)
= (fiwq) - Loe) + froe) — fiww)
+(fowa) — fiwe) + fawe) — frow)e
+(fawq) — fawe) + fwe) — fLrww)es
+(fawq) — frwe) + Lwe) — fow)es.
Therefore,
J 0 0 J ) J 0 J
dwf) (i+£+ f f4)dV ( f2+£+ f4 f3)dV2

8_ 35 (923 324
(8f3 i
821 822 823 824

821 82_2 823 824
(&f4 L9 8f3 Loh &fz 8f1

)dV (921 &Zz 823 &24

)dV €6,

where dV = dz A dz. By the system (4), d(wf) = 0. By the Stokes’ theorem,

[ wr= [ den-

O

1754

Theorem 10. Let Q be a domain in C*. If the system (3) is a generalized Cauchy-Riemann system on Q, then it

is elliptic.

Proof. Assume that there exist a non-zero vector A = (Ag, Ay,-++ , A7) € R8 and a non-zero column vector
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v = (vq,va,v3,v4)" € C* such that

. Ao +iA1 Ay +id3 Ag+ids Ag +iAy V1
(Z /\'6‘)1/ _ Ay +ids Ag+id1 Ag+idy Ay +ils 1%
. %] Ag+ids Ag+idy Ag+id1 Ay +il3 V3
=0 Ao +idy Ag+ids Ay+ids Ag+idy ) vy
(Ao + iAl)Vl + (/\2 + i/\3)1/2 + (A4 + iA5)V3 + (/\6 + l./\7)1/4
(Az + iA3)V1 + (/\0 + i/\1)1/2 + (A@ + iA7)V3 + (/\4 + i/\5)1/4
(A4 + iA5)V1 + (/\6 + i/\7)1/2 + (AO + iAl)Vg + (/\2 + i/\3)1/4
(A6 + l'A7)V1 + (/\4 + i/\5)1/2 + (Az + iA3)V3 + (/\0 + i/\l)V4
_— ©6)

From the system (6) and by the rules of bases ¢; (j = 0,1,--- ,7) and A # 0, a solution f(z) of the system (3)
on Q is obtained:

f(z) = e,

where w = Z]lo Ajxj. However, Ff(z) # 0. Thatis, the function f(z) is notharmonic on Q. Itis a contradiction.

Therefore,

2]7-:0 Aje j| # 0. That is, the system (3) is elliptic. [

References

(1
[2]
(3]
[4]

[5]
(6]

[7]
(8]

[
[10]
[11]

[12]
[13]

[14]

S. Goto, K. Nono, Regular Functions with Values in a Commutative Subalgebra C(C) of Matrix Algebra M(4; R), Bull. Fukuoka
Univ. Ed. 61 part III (2012) 9-15.

L. Hérmander, An introduction to complex analysis in several variables, Elsevier, 1973.

J. Kajiwara, X.D. Li, K.H. Shon, Regeneration in complex, quaternion and Clifford analysis, Proc. the 9th International Conf. on
Finite or Infinite Dimensional Complex Analysis and Applications, Advances in Complex Analysis and Its Applications, Kluwer
Academic Pub., Hanoi 2(9) (2004) 287-298.

J. Kajiwara, X.D. Li, K.H. Shon, Function spaces in complex and Clifford analysis, Inhomogeneous Cauchy Riemann system
of quaternion and Clifford analysis in ellipsoid, Proc. the 14th International Conf. on Finite or Infinite Dimensional Complex
Analysis and Applications, National Univ. Pub., Hanoi, Vietnam, Hue Univ. 14 (2006) 127-155.

H. Koriyama, H. Mae, K. N6no, Hyperholomorphic fucntions and holomorphic functions in quaternionic analysis, Bull. Fukuoka
Univ. Ed. 60 part III (2011) 1-9.

D. Lian, J.Y. Chiang, The maximal rank of a kind of partial banded block matrix subject to linear equations, Filomat, 27(2) (2013)
381-389.

S.J. Lim, K.H. Shon, Properties of hyperholomorphic functions in Clifford analysis, East Asian Math. J. 28(5) (2012) 553-559.

S.J. Lim, K.H. Shon, Hyperholomorphic fucntions and hyperconjugate harmonic functions of octonion variables, J. Inequal. Appl.
77 (2013) 1-8.

M. Naser, Hyperholomorphic functions, Silberian Math. J. 12 (1971) 959-968.

K. Néno, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. 32 (1983) 21-37.

K. Noéno, Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Rev. Roumaine
Math. Pures Appl. 31(2) (1986) 159-161.

C. Song, G. Chen, X. Zhang, An iterative solution to coupled quaternion matrix equations, Filomat, 26(4) (2012) 809-826.

L. Stern, Boundary value problems for generalized Cauchy-Riemann systems in the space, Boundary value and Initial value
problems in complex analysis. Pitman Rec. Notes in Math. Ser. 256, Longman Sci. Tech., Harlow 1 (Halle, 1988) (1991) 159-183.
A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85(2) (1979) 199-225.



