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Abstract. In this article, we first determine a sequence { fn(τ)}n∈N of modular forms with weight

2nk + 4(2n−1
− 1) (n ∈N; k ∈N \ {1}; N := {1, 2, 3, · · · }).

We then present some applications of this sequence which are related to the Eisenstein series and the cusp
forms. We also prove that higher-order derivatives of the Weierstrass type ℘2n-functions are related to the
above-mentioned sequence { fn(τ)}n∈N of modular forms.

1. Introduction, Definitions and Preliminaries

Throughout this paper, we let

N := {1, 2, 3, · · · } and Z := {0,±1,±2, · · · }.

We also let R and C denote the sets of real and complex numbers, respectively. We shall make use of the
following definitions and notations. LetH denotes the right-half complex plane, that is,

H :=
{
z : z ∈ C and =(z) > 0

}
.

Let z1, z2 ∈ C \ {0}with z1
z2
< R. Then

Ω = Ω(z1, z2) := {w : w = m1z1 + m2z2 (m1,m2 ∈ Z)}

be a lattice in C, z1
z2
∈H and

Ω∗ = Ω∗(z1, z2) = Ω(z1, z2) \ {0, 0} .
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Then the Weierstrass ℘-function is defined by (see, for example, [1], [11] and [20])

℘(u; w) =
1
u2 +

∑
w∈Ω∗

(
1

(u − w)2 −
1

w2

)
. (1.1)

Next, if we define the Eisenstein series G(2k,w) of weight 2k by the series:

G(2k,w) =
∑
w∈Ω∗

w−2k (k ∈N \ {1}), (1.2)

the following relation involving Laurent series holds true between the Eisenstein series G(2k,w) and the
Weierstrass ℘-function ℘(u; w):

℘(u; w) =
1
u2 +

∞∑
k=1

(2k + 1)G(2k + 2,w)u2k (1.3)

(0 < |u| < min{|w| : w , 0}) .

In Section 2, we shall find it to be convenient to recall a family of Weierstrass-type functions which
were introduced and investigated by Chang et al. (see, for details, [3] [4]; see also [21]). The above-defined
Weierstrass ℘-function ℘(u; w) will then turn out to be a special case of the Weierstrass-type functions.
Naturally, therefore, our aim will be to find a relationship between the r th derivative of the Weierstrass-
type functions and the inhomogeneous Eisenstein series GN,k,a for fixed a, which was defined by Schoeneberg
[11]. As a matter of fact, Simsek [15] already gave a special relation between the (k − 2)th derivative of the
Weierstass ℘-function and the inhomogeneous Eisenstein series GN,k,a (see also [14]).

In Section 3, we derive a general formula involving functional sequences which consist of modular
forms with weight

2n+1k + 4(2n
− 1) (n ∈N; k ∈N \ {1}).

Finally, in Section 4, we consider an interesting special case of the formula (derived in Section 4) which
involves functional sequences consisting of modular forms with weight 4k + 4. By using this special case,
we obtain Fourier series expansions of modular forms with weights 12 and 16.

2. The Derivatives of the Weierstrass-Type Functions

Following the earlier investigations by Chang et al. ([3] and [4]) (see also Wu et al. [21]), the Weierstrass-
type functions ℘2n are defined by

℘2n(u; w) =
1

u2n +
∑
w∈Ω∗

(
1

(u − w)2n −
1

w2n

)
(n ∈N).

The function ℘2n(u; w) is a Mittag-Leffler meromorphic function in the complex u-plane and has poles of
the second order at the points of Ω.

Recently, Aygunes and Simsek [2] investigated the behavior of the Weierstrass-type functions ℘2n under
the Hecke operators.

We now compute the first-, the second- and the third-order derivatives of ℘2n (u; w) as follows:

℘
′

2n (u; w) = −
2n

u2n+1 −

∑
w∈Ω∗

2n
(u − w)2n+1 ,

℘′′2n (u; w) =
2n(2n + 1)

u2n+2 +
∑
w∈Ω∗

2n(2n + 1)

(u − w)2n+2
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and

℘′′′2n (u; w) = −
2n(2n + 1)(2n + 2)

u2n+3 −

∑
w∈Ω∗

2n(2n + 1)(2n + 2)

(u − w)2n+3 ,

respectively. Here, as usual, the rth derivative of ℘2n (u; w) with respect to the argument u is denoted by
℘(r)

2n (u; w). By induction, we obtain the following theorem.

Theorem 1. Let n, r ∈N \ {1}. Then

℘(r)
2n (u; w) = (−1)r (2n + r − 1)!

(2n − 1)!

∑
w∈Ω∗

1

(u − w)2n+r . (2.1)

Let N and k be natural numbers with N = 1 and k = 3. Following the notations of Schoeneberg [11],
suppose also that m, a and z are matrices given by

m =

[
m1
m2

]
, a =

[
a1
a2

]
and z =

[
z1
z2

]
,

where

m1,m2, a1, a2 ∈ Z and z1, z2 ∈ C.

Also let

mT =
[

m1 m2

]
,

so that, obviously,

w = mTz =
[

m1 m2

] [ z1
z2

]
= m1z1 + m2z2.

Thus, as a function of u, the above definition of the Weierstrass-type function ℘2n(u; w) can be rewritten as
follows:

℘2n(u; w) =
1

u2n +

∗∑
m1,m2∈Z×Z

(
1

(u −mTz)2n −
1

(mTz)2n

)
,

where
z1

z2
∈H

and the prime (*) on the above summation sign indicates that the term corresponding to

mTz = 0

is to be omitted.
For a fixed a, the homogeneous Eisenstein-type series GN,k,a can be defined by

GN,k,a(z) =
∑

m≡a(N)
(m,0)

1
(mTz)k

(N ∈N; k ∈N \ {1, 2}), (2.2)

where we have used the notation m ≡ a(N) in the following sense:[
m1
m2

]
≡

[
a1
a2

]
(mod N)
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or, equivalently,

m1 ≡ a1 (mod N) and m2 ≡ a2 (mod N).

Schoeneberg [11, p. 155, Theorem 1] proved that, for natural numbers N = 1 and k = 3, the Eisenstein
series GN,k,a(z) defined by (2.2) is an entire modular form of level N and weight k. Moreover, the series in
(2.2) converges absolutely for all z (see, for details, [11]). If, in the equation (2.1), we replace u by aTz

N with

a . 0(N)
(
0 :=

[
0
0

])
,

then we find that

℘(r)
2n

(
aTz
N

; w
)

= (−1)r (2n + r − 1)!
(2n − 1)!

∗∑
m1,m2∈Z×Z

1[
a1z1+a2z2

N − (m1z1 + m2z2)
]2n+r .

Hence we have

℘(r)
2n

(
aTz
N

; w
)

= (−1)rN2n+r (2n + r − 1)!
(2n − 1)!

·

∗∑
m1,m2∈Z×Z

1
[(a1 + m1N)z1 + (a2 + m2N)z2]2n+r .

The prime (*) on each of the above the above summation signs indicates that the term corresponding to

(a1 + m1N)z1 + (a2 + m2N)z2 = 0

is to be omitted.
By setting

`1 = a1 + m1N and `2 = a2 + m2N

in the above equation, we get

℘(r)
2n

(
aTz
N

; w
)

= (−1)rN2n+r (2n + r − 1)!
(2n − 1)!

∑
w∈Ω∗

1
w2n+r ,

which readily yields

℘(r)
2n

(
aTz
N

; w
)

= (−1)rN2n+r (2n + r − 1)!
(2n − 1)!

∑
L≡a(N)

1
(LTz)2n+r ,

where, for convenience,

L :=
[
`1
`2

]
and LT =

[
`1 `2

]
.

We are thus led to the following theorem.

Theorem 2. Let n, r ∈N \ {1}. If

u =
aTz
N

and a . 0(N),

then

℘(r)
2n

(
aTz
N

; w
)

= (−1)rN2n+r (2n + r − 1)!
(2n − 1)!

GN,2n+r,a(z) (2n + r ∈N \ {1, 2}). (2.3)
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Remark 1. If we take n = 1 in the assertion (2.3) of Theorem 2, then we arrive at the following result (cf.
[11, p. 157, Eq. (6)]; see also [15]):

℘(r)

(
aTz
N

; w
)

= (−1)r(r + 1)!Nr+2GN,r+2,a(z).

3. The Set of Main Theorems

By using the derivative of modular forms, it is possible to obtain several useful formulas which can then
be applied in order to derive various other modular forms. In recent years, many authors have investigated
and studied this subject-area (see, for example, [7], [10] and [16]). In particular, Koblitz [7] gave a formula
which leads to the modular form of weight k + 2 for the following modular group:

Γ(1) = SL2(Z)

as asserted by Theorem 3 below (see [7] and [16]).

Theorem 3. Let f (z) be a modular form of weight k for the modular group

Γ(1) = SL2(Z).

If

h(z) =
1

2πi
d
dz
{ f (z)} −

k
12

E2(z) f (z),

then h(z) is a modular form of weight k + 2 for the modular group Γ(1), where E2(z) is an Eisenstein series.

Rankin [10] proved the following result.

Theorem 4. (cf. [10, p. 114, Theorem 3]) For an even integer k ∈N \ {1},

(
k + 3
k + 1

)
Gk+2(τ) = 2

d
dτ
{Gk(τ)} + 2

k
2∑

v=1

(
k

2v − 1

)
G2v(τ)Gk+2−2v(τ).

Remark 2. For even integer k = 6, we get (cf. [1] and [10])

(
(k + 3) (k − 4)

12k(k − 1)

)
Gk+2(τ) =

k
2−2∑
v=1

(
k − 2

2v

)
G2v+2(τ)Gk−2v(τ), (3.1)

which can indeed be proven by means of the differential equation satisfied by the Weierstrass ℘-function
(see, for details, [1] and [10]).

Theorem 5. (cf. [10, p. 114, Theorem 3]) If the integer k is even and greater than 2, then( 1
k + 1

)
G′′k (τ) + 4G2(τ)G′k(τ) − 2kG′2(τ)Gk(τ)

=
1
3

G′′′k−2(τ) + 2
∑

1<v< k
2

(
k

2v − 1

)
G′′2v−2(τ)Gk−2v+2(τ) −

∑
0<v< k

2

(
k

2v

)
G′2v(τ)G′k−2v(τ).
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Rankin’s form of the normalized Eisenstein series can be written as follows (see [10]):

Gk(τ) = −
Bk

2k
Ek(τ) (k ∈N), (3.2)

where Bk denotes the Bernoulli number of order k (see, for details, [19]; see also the recent investigations
[17] and [18]). It is easily seen from (3.2) that

E2k(τ) =

(
2(−1)k (2π)2k

(2k − 1)!

)
·

1
2ζ(2k)

G2k(τ) (k ∈N) (3.3)

in terms of the Riemann zeta function ζ(s) given by (see, for details, [19])

ζ(s) :=


∞∑

n=1

1
ns =

1
1 − 2−s

∞∑
n=1

1
(2n − 1)s

(
<(s) > 1

)
1

1 − 21−s

∞∑
n=1

(−1)n−1

ns

(
<(s) > 0; s , 1

)
and

ζ(2k) =

(
(−1)k+1(2π)2k

2 · (2k)!

)
B2k (k ∈N). (3.4)

It should be remarked in passing that the factor(
2(−1)k (2π)2k

(2k − 1)!

)
is dropped from the right-hand side of (3.3) in the normalization of the Eisenstein series used by many
authors including (for example) Apostol [1], Eichler and Zagier [6], Koblitz [7] and Silverman [13].

In this section, we need the following definitions and theorems which will be used to prove Theorem 6.
Our Theorem 6 provides us with a general formula answering a question of Silverman [13, p. 90, Exercise
1.20 (a)].

Definition 1. (see [13, p. 24]) Let k ∈ Z and let f (τ) be a function defined on H. We say that f is weakly
modular of weight 2k [for Γ(1)] if the following two conditions are satisfied:
(i) The function f (τ) is meromorphic onH;

(ii) The function f (τ) is such that

f (Aτ) = (cτ + d)2k f (τ),

where

A =

[
a b
c d

]
∈ Γ(1), τ ∈H and Aτ =

aτ + b
cτ + d

.

Definition 2. (see [13, p. 24]) A weakly modular function that is meromorphic at ∞ is called a modular
function. Furthermore, a modular function which is everywhere holomorphic onH (including also at∞) is
called a modular form. If, in addition, f (∞) = 0, then the function f is called a cusp form.

Remark 3. According to the work of Silverman [13, p. 24, Remark 3.3], one can see that

f (τ + 1) = f (τ) and f
(
−

1
τ

)
= τ2k f (τ).
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Therefore, f is a function of q := e2πiτ. This function f is meromorphic in{
q : 0 <

∣∣∣q∣∣∣ < 1
}

and f has the following Fourier expansion:

∞∑
n=−∞

anqn.

Remark 4. If the function f is meromorphic at∞, then it has the following Fourier expansion:

∞∑
n=−n0

anqn,

where n0 is a positive integer. If the function f is holomorphic at ∞, then it has the following Fourier
expansion:

∞∑
n=0

anqn.

In this section, we are interested in addressing the following question which is raised in the book of
Silverman [13, p. 90, Exercise 1.20 (a)]:

Let f1(τ) be a modular form of weight 2k. The prove that

f2(τ) = (2k + 1)
( d

dτ
{
f1(τ)

})2

− 2k f1(τ)
d2

dτ2 { f1(τ)} (3.5)

is a modular form of weight 4k + 4.
Motivated essentially by Silverman’s question (3.5), we give our main result in this section, which is

stated as Theorem 6 below. For some closely-related earlier works on this subject, the interested reader
may be referred to the works by (for example) Cohen [5] and Rankin ([8] and [9]). Indeed, by suitably
specializing Theorem 6 below, we deduce a number of interesting consequences including (3.2). We also
give some examples and corollaries related to Theorem 6.

The main theorem of our present investigation can now be stated as follows.

Theorem 6. Let n ∈ N and τ ∈ H. Suppose also that f1(τ) be a modular form with weight 2k. Then the sequence(
fn(τ)

)
n∈N of modular forms satisfies the following recurrence relation:

fn+1(τ) =
[
2nk + 4(2n−1

− 1) + 1
] [

f ′n(τ)
]2
−

[
2nk + 4(2n−1

− 1)
]

fn(τ) f ′′n (τ),

where

f ′n(τ) =
d

dτ
{
fn(τ)

}
and f ′′n (τ) =

d2

dτ2

{
fn(τ)

}
.

Proof. Since fn(τ) is a modular form with weight

2nk + 4(2n−1
− 1) (n ∈N),

we have

fn

(
aτ + b
cτ + d

)
= (cτ + d)2nk+4(2n−1

−1) fn(τ).
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We now compute the derivative of each member of this last equation with respect to τ to prove that fn+1(τ)
is a modular forms with the following weight:

2n+1k + 4(2n
− 1).

We thus find that

d
dτ

{
fn

(
aτ + b
cτ + d

)}
=

a(cτ + d) − c(aτ + b)
(cτ + d)2 f ′n

(
aτ + b
cτ + d

)
and

d
dτ

{
fn

(
aτ + b
cτ + d

)}
=

[
2nk + 4(2n−1

− 1)
]

c(cτ + d)2nk+4(2n−1
−1)−1 fn(τ)

+ (cτ + d)2nk+4(2n−1
−1) f ′n(τ).

Next, since ad − bc = 1, we have

f ′n

(
aτ + b
cτ + d

)
=

[
2nk + 4(2n−1

− 1)
]

c(cτ + d)2nk+4(2n−1
−1)+1 fn(τ)

+ (cτ + d)2nk+4(2n−1
−1)+2 f ′n(τ). (3.6)

On the other hand, we easily see that

d2

dτ2

{
fn

(
aτ + b
cτ + d

)}
= −

2c
(cτ + d)3 f ′n

(
aτ + b
cτ + d

)
+

1
(cτ + d)4 f ′′n

(
aτ + b
cτ + d

)
.

We thus obtain

d2

dτ2

{
fn

(
aτ + b
cτ + d

)}
=

[
2nk + 4(2n−1

− 1)
] [

2nk + 4(2n−1
− 1) − 1

]
c2(cτ + d)2nk+4(2n−1

−1)−2 fn(τ)

+ 2c
[
2nk + 4(2n−1

− 1)
]

(cτ + d)2nk+4(2n−1
−1)−1 f ′n(τ)

+ (cτ + d)2nk+4(2n−1
−1) f ′′n (τ).

or, equivalently,

− 2c(cτ + d) f ′n

(
aτ + b
cτ + d

)
+ f ′′n

(
aτ + b
cτ + d

)
=

[
2nk + 4(2n−1

− 1)
] [

2nk + 4(2n−1
− 1) − 1

]
c2(cτ + d)2nk+4(2n−1

−1)+2 fn(τ)

+ 2c
[
2nk + 4(2n−1

− 1)
]

(cτ + d)2nk+4(2n−1
−1)+3 f ′n(τ)

+ (cτ + d)2nk+4(2n−1
−1)+4 f ′′n (τ).

By using (3.6), we have

f ′′n

(
aτ + b
cτ + d

)
=

[
2nk + 4(2n−1

− 1)
] [

2nk + 4(2n−1
− 1) + 1

]
c2(cτ + d)2nk+4(2n−1

−1)+2 fn(τ)

+ 2c
[
2nk + 4(2n−1

− 1) + 1
]

(cτ + d)2nk+4(2n−1
−1)+3 f ′n(τ)

+ (cτ + d)2nk+4(2n−1
−1)+4 f ′′n (τ). (3.7)
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Moreover, by using (3.6) and (3.7), we get

[
2nk + 4(2n−1

− 1) + 1
] [

f ′n

(
aτ + b
cτ + d

)]2

=
[
2nk + 4(2n−1

− 1) + 1
]
{

[
2nk + 4(2n−1

− 1)
]2

c2(cτ + d)2n+1k+8(2n−1
−1)+2 [

fn(τ)
]2

+ 2c
[
2nk + 4(2n−1

− 1)
]

(cτ + d)2n+1k+8(2n−1
−1)+3 fn(τ) f ′n(τ)

+ (cτ + d)2n+1k+8(2n−1
−1)+4 [

f ′n(τ)
]2
} (3.8)

and

−

[
2nk + 4(2n−1

− 1)
]

fn

(
aτ + b
cτ + d

)
f ′′n

(
aτ + b
cτ + d

)
= −

[
2nk + 4(2n−1

− 1)
]
{

[
2nk + 4(2n−1

− 1)
] [

2nk + 4(2n−1
− 1) + 1

]
c2(cτ + d)2n+1k+8(2n−1

−1)+2 [
fn(τ)

]2

+ 2c
[
2nk + 4(2n−1

− 1) + 1
]

(cτ + d)2n+1k+8(2n−1
−1)+3 fn(τ) f ′n(τ)

+ (cτ + d)2n+1k+8(2n−1
−1)+4 fn(τ) f ′′n (τ) } . (3.9)

Consequently, by applying these last results (3.6) to (3.9), we arrive at the desired assertion given by

fn+1

(
aτ + b
cτ + d

)
= (cτ + d)2n+1k+8(2n−1

−1)+4
{

[
2nk + 4(2n−1

− 1) + 1
] [

f ′n(τ)
]2
−

[
2nk + 4(2n−1

− 1)
]

fn(τ) f ′′n (τ) }

= (cτ + d)2n+1k+4(2n
−1) fn+1(τ).

Remark 5. By replacing n by n + 1 in the weight of the modular form fn(τ) in Theorem 6, we readily see
that the modular form fn+1(τ) has the following weight:

2n+1k + 4(2n
− 1).

4. Applications of Theorem 6

Theorem 6 can be shown to have many applications in the theory of the elliptic modular forms. Here
we give a few applications related to Theorem 6.

Upon setting n = 1 in Theorem 6, we get the following corollary, which was given by Silverman [13, p.
90] and (more recently) also by Sebbar and Sebbar [12, p. 408].

Corollary 1. Let f1(τ) be a modular form with weight 2k. Then f2(τ) defined by

f2(τ) = (2k + 1)
( d

dτ
{
f (τ)

})2

− 2k f (τ)
d2

dτ2 { f (τ)} (4.1)

is a modular form with weight 4k + 4.

Remark 6. If we put

f1(τ) = E4(τ)

in (4.1), we have

f2(τ) = 5
( d

dτ
{E4(τ)}

)2

− 4E4(τ)
d2

dτ2 {E4(τ)} . (4.2)
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Next, by substituting the following well-known derivative formulas for E4(τ) (cf. [6], [10] and [12] ):

d
dτ
{E4(τ)} =

2πi
3

[E2(τ)E4(τ) − E6(τ)]

and

d2

dτ2 {E4(τ)} = −
5π2

9

[
{E2(τ)}2 E4(τ) + {E4(τ)}2 − 2E2(τ)E6(τ)

]
into the equation (4.2), one can easily see that f2(τ) is a cusp form for the function f1(τ) given by

f1(τ) = G4(τ),

that is, we have (cf. [13, p. 90, Exercise 1.20 (c)] and [12])

f2(τ) =
∆(τ)

24 · 33 · 52 · π2 .

Similarly, if f2(τ) is a cusp form for the function f1(τ) given by

f1(τ) = E4(τ),

then we can readily find that (cf. [13, p. 90, Exercise 1.20 (c)] and [12])

f2(τ) =
5π2

3888
∆(τ).

Thus, if f1(τ) is a modular form, then f2(τ) is a cusp form (cf. [13, p. 90, Exercise 1.20 (b)]).
If we set

f1(τ) = E6(τ)

in the equation (4.1), we have

f2(τ) = 7
( d

dτ
{E6(τ)}

)2

− 6E6(τ)
d2

dτ2 {E6(τ)} . (4.3)

By substituting the following well-known derivative formulas for E6(τ) (cf. [6], [10] and [12]):

d
dτ
{E6(τ)} = πi

[
E2(τ)E6(τ) − {E4(τ)}2

]
and (cf. [6])

d2

dτ2 {E6(τ)} = −
7π2

6

[
{E2(τ)}2 E6(τ) + E4(τ)E6(τ) − 2E2(τ) {E4(τ)}2

]
into the equation (4.3), we arrive at the following results.

Corollary 2. It is asserted that

f2(τ) = 7π2
[
{E6(τ)}2 E4(τ) − {E4(τ)}4

]
.

Corollary 3. Let n, r ∈N and k ∈N \ {1, 2}. Suppose also that

a . 0(N) and N ∈N \ {1}.

If

2m + r = 2nk + 4(2n−1
− 1),

then the sequence {
℘(r)

2m

(
aTz
N

; w
)}

m∈N
,

which is a modular form with weight 2m + r, satisfies Theorem 6.
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