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Abstract. In S.G. Matthews [Partial metric topology, in: Proc. 8th Summer Conference on General
Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197], the author
introduced and studied the concept of partial metric space, and obtained a Banach type fixed point theorem
on complete partial metric spaces. The present paper forms part of the study of possible extensions of
metric fixed point results to the context of partial metric spaces, in particular two theorems due to Fisher.
The theory is illustrated by some examples.

1. Introduction

Amongst the many generalizations of the concept of metric spaces that can be found in literature, a
relatively recently introduced one is that of partial metric spaces. The notion was introduced by Matthews
([9]) as a part of the study of denotational semantics of dataflow networks, showing that the Banach
contraction mapping theorem can be generalized to the partial metric context for applications in program
verification. Ever since, fixed point results in partial metric spaces have been studied by a large number
of other authors. References [1], [2] [8], [12], [18] are some works in this line of research. The existence of
several connections between partial metrics and topological aspects of domain theory have been pointed
in, e,g., [2], [8], [3], [10], [17], [19].

The purpose of present paper is to extend the results of [7] to the context of partial metric spaces. The
theory is illustrated by some examples.

2. Preliminaries

Let us recall [9] that a mapping p : X × X→ R+, where X is a nonempty set, is said to be a partial metric
on X if for any x, y, z ∈ X the following four conditions hold true:

(P1) x = y if and only if p(x, x) = p(y, y) = p(x, y)

(P2) p(x, x) ≤ p(x, y)
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(P3) p(x, y) = p(y, x)

(P4) p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

The pair (X, p) is then called a partial metric space. A sequence {xm}
∞

m=0 of elements of X is called p-Cauchy
if the limit lim

m,n
p(xn, xm) exists and is finite. The partial metric space (X, p) is called complete if for each

p-Cauchy sequence {xm}
∞

m=0 there is some z ∈ X such that

p(z, z) = lim
n

p(z, xn) = lim
n,m

p(xn, xm). (1)

If (X, p) is a partial metric space, then ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), x, y ∈ X, is a metric on X, {xn}n≥1
converges to z ∈ X with respect to ps if and only if (1) holds, and (X, p) is a complete partial metric space if
and only if (X, ps) is a complete metric space (see [9, 12]).

A sequence xn in a partial metric space (X, p), is called 0-Cauchy ([18]) if lim
m,n

p(xn, xm) = 0. We say that

(X, p) is 0-complete if every 0-Cauchy sequence in X converges, with respect to p, to a point x ∈ X such that
p(x, x) = 0. Note that every 0-Cauchy sequence in (X, p) is Cauchy in (X, ps), and that every complete partial
metric space is 0-complete. A paradigm for partial metric spaces is the pair (X, p) where X = Q ∩ [0,+∞)
and p(x, y) = max{x, y} for x, y ≥ 0, which provides an example of a 0-complete partial metric space which
is not complete.

Bellow we give two more examples of partial metrics both of which are taken from [9].

Example 2.1. If X := {[a, b]| a, b ∈ R, a ≤ b} then p([a, b], [c, d]) = max{b, d} −min{a, c} defines a partial metric
p on X. �

Example 2.2. Let X := RN0 ∪

⋃
n≥1

R{0,1,...,n−1}, whereN0 is the set of nonnegative integers.

By L(x) denote the set {0, 1, . . . ,n} if x ∈ R{0,1,...,n−1} for some n ∈ N, and the set N0 if x ∈ RN0 . Then a
partial metric is defined on X by

p(x, y) = inf{2−i
|i ∈ L(x) ∩ L(y) and ∀ j ∈N0 ( j < i =⇒ x( j) = y( j))}. �

We proceed by recalling that quasi-contractions on metric spaces were introduced and studied by Ćirić
[5] (see also [6], [16]) as one of the most general types of contractive maps. Given a metric space (X, ρ), a
map T : X 7→ X such that for some constant λ ∈ (0, 1) and for every x, y ∈ X there is the inequality

ρ(Tx,Ty) ≤ λ · max
{
ρ(x, y), ρ(x,Tx), ρ(y,Ty), ρ(x,Ty), ρ(y,Tx)

}
(2)

is called a quasi-contraction. A well-known result of Ćirić says that every quasi-contraction on a complete
metric space has a unique fixed point.

In 1979 Fisher [7] came up with a generalization of Ćirić’s result as follows. He calls a quasi-contraction
any mapping T : X→ X, of a metric space (X, ρ) to itself, for which there are α ∈ [0, 1) and positive integers
l, q such that for each x, y ∈ X the following condition holds

ρ(Tlx,Tqy) ≤ αmax
{
ρ(Tix,T jy), ρ(Tix,Ti′x), ρ(T jy,T j′ y)

}
.

for some 0 ≤ i, i′ ≤ l and 0 ≤ j, j′ ≤ q. His results about such mappings then go as follows.

Theorem 2.3. ([7]) Suppose a mapping T is given on a complete metric space. If T is either a continuous quasi-
contraction or one for which q = 1, then it necessarily has a unique fixed point and for each point x ∈ X the sequence
(Tnx : n ∈N) converges to it.
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He also provides an example showing that in general, the continuity assumption cannot be removed
from the result.

In the next section we will partially generalize Theorem 2.3 to the context of partial metric spaces, and
to do that we need suitable modifications of the notions of both a quasi-contraction and of continuity.

Definition 2.4. Let (X, p) be a partial metric space and T : X → X a given mapping. If there are α ∈ [0, 1) and
positive integers l, q such that for each x, y ∈ X the following condition holds

p(Tlx,Tqy) ≤ αp(Tix,T jy) (3)

for some 0 ≤ i ≤ l, 0 ≤ j ≤ q, then we shall say that T is a Fisher quasicontraction. If q = 1, in the preceding
definition, then we will call T a strict Fisher quasicontraction.

Definition 2.5. A mapping T : X1 → X2 is said to be continuous if it is a continuous mapping from the metric space(
X1, ps

1

)
to the metric space

(
X2, ps

2

)
, which amounts to saying that

p(a, a) = lim
n

p(xn, a) = lim
n,m

p(xn, xm)

implies
p(Ta,Ta) = lim

n
p(Txn,Ta) = lim

n,m
p(Txn,Txm) .

It is said to be p-metrically continuous if p1(xn, a)→ p(a, a) implies p2(Txn,Ta)→ p(Ta,Ta) (i.e. if it is continuous
with respect to the topologies that the two partial metrics induce – see [9]). �

The following example shows that neither of the notions of (metric) continuity and p-metric continuity
implies the other.

Example Let X = [0, 1] and p(x, y) = max{x, y} for x, y ∈ X. It is easy to see that every p-metrically continuous
mapping must be monotonically nondecreasing. Thus any continuous mapping T : X → X that fails to
be monotonically nondecreasing is automatically not p-metrically continuous (take e.g. Tx = 1 − x). The
mapping S : X→ X defined by

Sx =

{
x/2 , if 0 ≤ x < 1/2
x , if 1/2 ≤ x ≤ 1

is p-metrically continuous but not continuous. �

3. The results

Lemma 3.1. If T is a Fisher quasicontraction and x ∈ X, then sup
{
p(Tix,T jx) : i, j ≥ 0

}
< ∞.

Proof. Set r := max{l, q}. Replacing α by max{1/2, α} if needed, we may assume without loss of generality
that 1/2 ≤ α, so that 1 ≤

α
1 − α

. To prove the assertion it suffices to show that for each nonnegative integer i
there is the inequality

p(Trx,Tix) ≤
α

1 − α
max

{
p(Tsx,Trx) : 0 ≤ s ≤ r

}
. (4)

The proof of this is by induction on i. Set Mx := max
{
p(Tsx,Trx) : 0 ≤ s ≤ r

}
. For 0 ≤ i ≤ r the

inequality (4) follows from the fact that 1 > α ≥ 1/2. Suppose now that (4) holds for all 0 ≤ i < k
for some k > r and suppose, to the contrary, that the inequality fails for i = k. Then we must have
p(Trx,Tkx) >

α
1 − α

Mx ≥ p(Trx,Tix) for all 0 ≤ i < k.
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Suppose that 0 ≤ i, j ≤ k are such that p(Trx,Tkx) ≤ αp(T jx,Tix). Assume that j ≤ r. Then p(Trx,Tkx) ≤
αp(T jx,Trx) + αp(Trx,Tix) ≤ αMx + αp(Trx,Tkx) i.e. p(Trx,Tkx) ≤

α
1 − α

Mx, which is not possible.

Thus if 0 ≤ i, j ≤ k are such that p(Trx,Tkx) ≤ αp(T jx,Tix), then we must i, j > r. Using this and (3)
repeatedly we can find sequences of positive integers ( jn : n ∈ N) and (in : n ∈ N) with r < in ≤ k and
r < jn ≤ k such that p(Trx,Tkx) ≤ αnp(T jn x,Tin x) ≤ αn max

{
p(Tsx,Tlx) : 0 ≤ s, l ≤ k

}
, leading to p(Trx,Tkx) = 0

– a contradiction. �

Now we can state and prove our first result.

Theorem 3.2. Suppose (X, p) is a 0-complete partial metric space and T : X → X is either a continuous or a p-
metrically continuous Fisher quasicontraction. Then there is a unique fixed point a ∈ X of the mapping T. Furthermore
p(a, a) = 0 and for each x ∈ X the sequence (Tnx : n ∈N) converges to the point a with respect to the metric ps.

Proof. By Lemma 3.1 we can choose some S > 0 such that p(Tnx,Tmx) ≤ S for all n,m ∈ N. We prove that
lim
n,m

p(Tnx,Tmx) = 0.

Given ε > 0 let k ∈N be such that αkS < ε. Set r := max{p, q} and let n,m > kr be arbitrary. Applying (3)
consecutively k many times we get that p(Tnx,Tmx) ≤ αkp(Tix,T jx), for some i ≥ n− kr and j ≥ m− kr, hence
p(Tnx,Tmx) ≤ αkS < ε.

Now, (X, p) is 0-complete, so there must be some a ∈ X with

p(a, a) = lim
n

p(Tnx, a) = lim
n,m

p(Tnx,Tmx) = 0 . (5)

If T is continuous then from lim
n

ps(Tnx, a) = 0 it follows lim
n

ps(Tnx,Ta) = 0 and we immediately have
a = Ta.

Suppose now that T is p-metrically continuous. From (5) it follows that lim
n

p(Tnx,Ta) = p(Ta,Ta).
Proceeding inductively, we conclude that

lim
n

p(Tnx,Tia) = p(Tia,Tia) for all i ≥ 0 . (6)

For any i ≥ 0 we have p(a,Tia) ≤ p(a,Tnx) + p(Tnx,Tia), whence using (5) and (6) we obtain

p(a,Tia) = p(Tia,Tia) for all i ≥ 0 . (7)

Fix an i ≥ 0. (7) means that lim
n

p(yn,Tia) = p(Tia,Tia) where yn = a for every n ∈ N. By p-metric

continuity of T we must therefore have lim
n

p(Tyn,Ti+1a) = p(Ti+1a,Ti+1a), i.e.

p(Ta,Ti+1a) = p(Ti+1a,Ti+1a) (8)

Since (8) holds for any i ≥ 0, we can now use (6) and the fact that lim
n,m

p(Tna,Tma) = 0 (note that when

proving (5) we did not impose any particular assumptions on the point x ∈ X) to conclude p(Ta,Ta) = 0.
But by (7) this means that p(a,Ta) = 0, i.e. a = Ta.

That a is the unique fixed point of T follows in the usual way: if Tb = b then p(a, b) = p(Tla,Tqb) ≤
αp(Tia,T jb) = αp(a, b) for some i ≤ l, and j ≤ q, so p(a, b) = 0 and a = b. �

As shown in the example below, the preceding theorem fails to hold even for complete partial metric
spaces, if the assumption of p-metric continuity is weakened to that of 0-partial continuity, where T : X→ X
is said to be 0-partially continuous if whenever it happens that lim

n
p(xn, a) = p(a, a) = 0, then it must also be

that lim
n

p(Txn,Ta) = p(Ta,Ta).
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Example Let X = [0, 1] ∪ {2} and let p be given by

p(x, y) =

{
|x − y| , if 2 < {x, y}

1 , if 2 ∈ {x, y} .

Then (X, p) is a partial metric space as can easily be verified. To see that it is a complete one suppose
that lim

n,m
p(xn, xm) = r. As p(xn, xm) ∈ [0, 1] for all n,m, we have r ∈ [0, 1].

If r < 1 then there is some n0 such that p(xn, xn) < 1 for all n ≥ n0. Thus xn ∈ [0, 1] for n ≥ n0. Consequently
p(xn, xm) = |xn − xm| for n,m ≥ n0 and thus r = lim

n,m
p(xn, xn) = 0, so the sequence is a Cauchy one with respect

to the usual Euclidean metric of the segment [0, 1]. This in turn implies that there is some a ∈ [0, 1] such
that 0 = lim

n
|xn − a| = lim

n
p(xn, a).

If on the other hand r = 1, then there is some n0 such that p(xn, xn) > 0 for all n ≥ n0. So xn = 2 for all
n ≥ n0 and thus r = 1 and also lim

n
p(xn, 2) = 1 = p(2, 2).

Now we define a mapping T : X→ X by

Tx =

{
x/2 , if x , 0

2 , if x = 0 .

We see that Tix ∈ (0, 1] for all x ∈ X and all i ≥ 2. So Ti+1x =
1
2

Tix and p(Tix,Tiy) = |Tix− Tiy| if i ≥ 2 and
hence

p(T3x,T3y) = |T3x − T3y| =
1
2
|T2x − T2y| =

1
2

p(T2x,T2y) .

So T is a Fisher quasicontraction with no fixed points.
However, T is 0-partially continuous with respect to p. To see this let lim

n
p(xn, a) = p(a, a) = 0. Clearly

a , 2. We distinguish two cases:

Case 1 a = 0. Here we have lim
n

p(Txn,Ta) = 1 = p(Ta,Ta).

Case 2 a ∈ (0, 1]. There is some n0 such that p(xn, a) < 1 for all n ≥ n0. So xn ∈ [0, 1] for n ≥ n0 and
thus p(xn, a) = |xn − a| for such n. It follows that lim

n
|xn − a| = 0. As a ∈ (0, 1] this means that there

is some n1 such that xn ∈ (0, 1] and thus Txn =
1
2

xn ∈ [0, 1] for all n ≥ n1. Also Ta =
a
2

and hence

lim
n

p(Txn,Ta) = lim
n
|Txn − Ta| =

1
2

lim
n
|xn − a| = 0 = p(Ta,Ta).

Of course, T is not p-metrically continuous since it has no fixed points (or simply look at the sequence
xn = 1/n and the point a = 2). �

Theorem 3.3. Suppose (X, p) is a 0-complete partial metric space and T : X→ X is a strict Fisher quasicontraction.
Then there is a unique fixed point a ∈ T of the mapping T. Furthermore p(a, a) = 0 and for each x ∈ X the sequence
(Tnx : n ∈N) converges to the point a with respect to the metric ps.

Proof. Given x ∈ X we can prove, the same way we did in Theorem 3.2, that there is a point a ∈ X for
which (5) holds true. By Lemma 3.1 there is some S > 0 such that S ≥ p(Ta,Tnx) for all n ∈ N. Fix a
positive integer m ∈ N with αmS < ε/2 and then one k ≥ ml such that p(a,Tnx) < ε/2 for all n ≥ k −ml. We
have p(Ta, a) ≤ p(Ta,Tkx) + p(Tkx, a). Applying (3) with q = 1 at most m many times starting with the pair
p(Tkx,Ta), we obtain that for some i ≥ k −ml it must be

p(Ta,Tkx) ≤ max
{
αmp(Ta,Tix), αp(a,Tix)

}
and thus p(Ta, a) ≤ p(Tkx, a) + max{αmS, p(a,Tix)} < ε. This proves that p(Ta, a) = 0, i.e. a = Ta. As before,
the fixed point of T is readily seen to be unique. �
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The potentially nonzero self-distance, that is built into Matthew’s definition of partial metrics, was
taken into account in [13] in an essential way by a rather mild variation of the classical Banach’s contractive
condition, and in [14] further considerations in this direction were carried out which were in turn generalized
by Chi et al. in [4]. As an example of that type of extensions of metric fixed point results to partial metric
spaces we state the following theorem.

Theorem 3.4. ([13]) Suppose (X, p) is a complete partial metric space and T : X → X is a mapping such that there
is such that for some α ∈ [0, 1) there is inequality

p(Tx,Ty) ≤ max{αp(x, y), p(x, x), p(y, y)} (9)

for all x, y ∈ X, then T must have a fixed point.

We end the paper with a simple example showing that one possible attempt of a generalization of this
sort of Theorem 2.3 is doomed to fail.

Example Let X = {1, 2, 3} and p(x, y) = max{x, y} for x, y ∈ X. Then (X, p) is a complete partial metric space.
Define a mapping T : X→ X by setting T1 = 2, T2 = 3 and T3 = 1. It is trivial to see that the inequality

p(T3x,T3y) ≤ max{αp(x, y), p(x, x), p(y, y)}

holds true for all x, y ∈ X. T is a continuous mapping without fixed points. �

However, the mapping T in the preceding example was not p-metrically continuous. This leaves us
with the following two questions.

Suppose that (X, p) is a complete partial metric space and T : X→ X a given mapping. Suppose further
that there are α ∈ [0, 1) and positive integers l, q such that for each x, y ∈ X the following condition holds

p(Tlx,Tqy) ≤ max
{
αp(Tix,T jy), p(x, x), p(y, y)

}
for some 0 ≤ i ≤ l, 0 ≤ j ≤ q. If T is p-metrically continuous, must there be a fixed point of T? The same
question can be asked in the case when q = 1 regardless of any assumptions on continuity (we note that
this indeed is the case if also l = 1, as shown in [15]).
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