

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

New Hermite-Hadamard-Type Inequalities and Their Applications

Kuei-Lin Tsenga, Shiow-Ru Hwangb,

^a Department of Applied Mathematics, Aletheia University, Tamsui, New Taipei City 25103, Taiwan
^b China University of Science and Technology, Nankang, Taipei, Taiwan 11522

Abstract. In this paper, we establish some new Hermite-Hadamard-type inequalities for differentiable functions. Several applications for special means are given as well.

1. Introduction

Throughout in this paper, let $a \le c < d \le b$ in \mathbb{R} with a + b = c + d. The inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2} \tag{1}$$

which holds for all convex functions $f : [a, b] \to \mathbb{R}$, is known in the literature as Hermite-Hadamard inequality [7].

For some results which generalize, improve, and extend the inequality (1), see [1]-[6] and [8]-[18].

In [4], Dragomir and Agarwal established the following results connected with the second inequality in the inequality (1).

Theorem 1.1. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function on (a,b) with a < b. If |f'| is convex on [a,b], then we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{b - a}{8} \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \tag{2}$$

which is the trapezoid inequality provided |f'| is convex on [a,b].

In [12], Kirmaci and Özdemir established the following results connected with the first inequality in the inequality (1).

Keywords. Hermite-Hadamard Inequality, Differentiable Function, Convex Function, Concave Function, Special mean.

Received: 08 September 2014; Accepted: 29 November 2014

Communicated by Hari M. Srivastava

Email addresses: kltseng@mail.au.edu.tw (Kuei-Lin Tseng), hsru@cc.cust.edu.tw (Shiow-Ru Hwang)

²⁰¹⁰ Mathematics Subject Classification. Primary 26D15; Secondary 26A51

^{*} Corresponding author

Theorem 1.2. *Under the assumptions of Theorem 1.1, we have*

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{b-a}{8} \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \tag{3}$$

which is the midpoint inequality provided |f'| is convex on [a,b].

In [14], Pearce and Pečarić established the following Hermite-Hadamard-type inequalities for differentiable functions:

Theorem 1.3. If $f: I^o \subseteq R \to R$ is a differentiable mapping on I^o , $a, b \in I^o$ with a < b, $f' \in L_1[a, b]$, $q \ge 1$ and $|f'|^q$ is convex on [a, b], then the following inequalities hold:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{b - a}{4} \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}. \tag{4}$$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{b-a}{4} \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}. \tag{5}$$

Theorem 1.4. If $f: I^o \subseteq R \to R$ is a differentiable mapping on I^o , $a, b \in I^o$ with a < b, $f' \in L_1[a, b]$, $q \ge 1$ and $|f'|^q$ is concave on [a, b], then the following inequalities hold:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \le \frac{b - a}{4} \left| f'\left(\frac{a + b}{2}\right) \right|. \tag{6}$$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{b-a}{4} \left| f'\left(\frac{a+b}{2}\right) \right|. \tag{7}$$

Remark 1.5. *In Theorem 1.3, let* q = 1*. Then Theorem 1.3 reduces to Theorems 1.1 and 1.2.*

In this paper, we establish some results which refine Hermite-Hadamard inequality (1) and generalize Theorems 1.1-1.4. Some applications for special means are given.

2. Hermite-Hadamard-Type Inequalities for Convex Functions

In this section, we establish some Hermite-Hadamard-type inequalities which refine Hermite-Hadamard inequality (1).

Theorem 2.1. (1) Let $f:[a,b] \to \mathbb{R}$ be a convex function. Then we have Hermite-Hadamard-type inequality

$$f\left(\frac{a+b}{2}\right) \leq \frac{a+b-2c}{b-a} f\left(\frac{a+b}{2}\right) + \frac{c-a}{b-a} [f(c)+f(d)]$$

$$\leq \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$\leq \frac{a+b-2c}{2(b-a)} [f(c)+f(d)] + \frac{c-a}{b-a} [f(a)+f(b)]$$

$$\leq \frac{f(a)+f(b)}{2}.$$
(8)

(2) Let $f:[a,b] \to \mathbb{R}$ be a concave function. Then the inequality (8) is reversed.

Proof. (1) Suppose *f* is convex. It is easily observed from the convexity of *f* that the first and last inequalities

Using simple computation, we have the following identities:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{b-a} \int_{a}^{c} \left[f(x) + f(a+b-x) \right] dx + \frac{1}{b-a} \int_{c}^{\frac{a+b}{2}} \left[f(x) + f(a+b-x) \right] dx. \tag{9}$$

$$c = \frac{a+b-x-c}{a+b-2x}x + \frac{c-x}{a+b-2x}(a+b-x) = \frac{d-x}{c+d-2x}x + \frac{c-x}{c+d-2x}(a+b-x)$$
(10)

and

$$d = \frac{a+b-x-d}{a+b-2x}x + \frac{d-x}{a+b-2x}(a+b-x) = \frac{c-x}{c+d-2x}x + \frac{d-x}{c+d-2x}(a+b-x)$$
(11)

where $x \in [a, c]$ with $0 \le \frac{c - x}{c + d - 2x}, \frac{d - x}{c + d - 2x} \le 1$.

$$\frac{a+b}{2} = \frac{1}{2} \left[x + (a+b-x) \right] \tag{12}$$

where $x \in \left[c, \frac{a+b}{2}\right]$.

$$x = \frac{b-x}{b-a}a + \frac{x-a}{b-a}b\tag{13}$$

and

$$a + b - x = \frac{x - a}{b - a}a + \frac{b - x}{b - a}b\tag{14}$$

where $x \in [a, c]$.

$$x = \frac{d-x}{d-c}c + \frac{x-c}{d-c}d\tag{15}$$

and

$$a + b - x = \frac{d - a - b + x}{d - c}c + \frac{a + b - x - c}{d - c}d = \frac{x - c}{d - c}c + \frac{d - x}{d - c}d$$
(16)

where $x \in \left[c, \frac{a+b}{2}\right]$ with $0 \le \frac{x-c}{d-c}, \frac{d-x}{d-c} \le 1$. Now, using the above identities and the convexity of f, we have the following inequalities:

$$\frac{c-a}{b-a} [f(c) + f(d)] = \frac{1}{b-a} \int_{a}^{c} [f(c) + f(d)] dx
\leq \frac{1}{b-a} \int_{a}^{c} \left[\frac{d-x}{c+d-2x} f(x) + \frac{c-x}{c+d-2x} f(a+b-x) + \frac{c-x}{c+d-2x} f(x) + \frac{d-x}{c+d-2x} f(a+b-x) \right] dx
= \frac{1}{b-a} \int_{a}^{c} [f(x) + f(a+b-x)] dx$$
(17)

by the identities (10) and (11).

$$\frac{a+b-2c}{b-a}f\left(\frac{a+b}{2}\right) = \frac{1}{b-a}\int_{c}^{\frac{a+b}{2}} 2f\left(\frac{a+b}{2}\right)dx$$

$$\leq \frac{1}{b-a}\int_{c}^{\frac{a+b}{2}} \left[f(x) + f(a+b-x)\right]dx$$
(18)

by the identity (12).

$$\frac{1}{b-a} \int_{a}^{c} \left[f(x) + f(a+b-x) \right] dx \tag{19}$$

$$\leq \frac{1}{b-a} \int_{a}^{c} \left[\frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b) + \frac{x-a}{b-a} f(a) + \frac{b-x}{b-a} f(b) \right] dx$$

$$= \frac{1}{b-a} \int_{a}^{c} \left[f(a) + f(b) \right] dx$$

$$= \frac{c-a}{b-a} \left[f(a) + f(b) \right]$$

by the identities (13) and (14).

$$\frac{1}{b-a} \int_{c}^{\frac{a+b}{2}} \left[f(x) + f(a+b-x) \right] dx
\leq \frac{1}{b-a} \int_{c}^{\frac{a+b}{2}} \left[\frac{d-x}{d-c} f(c) + \frac{x-c}{d-c} f(d) + \frac{x-c}{d-c} f(c) + \frac{d-x}{d-c} f(d) \right] dx
= \frac{1}{b-a} \int_{c}^{\frac{a+b}{2}} \left[f(c) + f(d) \right] dx
= \frac{a+b-2c}{2(b-a)^{\alpha}} \left[f(c) + f(d) \right]$$
(20)

by the identities (15) and (16).

The second and third inequalities of (8) follow from the identity (9) and the inequalities (17) - (20).

(2) In case f is concave, so -f is convex, we obtain that the inequality (8) is reversed.

This completes the proof. \Box

Remark 2.2. In Theorem 2.1, the inequality (8) refines Hermite-Hadamard inequality (1).

Corollary 2.3. In Theorem 2.1, let $c = (1 - \beta)a + \beta b$ and $d = \beta a + (1 - \beta)b$ with $0 \le \beta < \frac{1}{2}$. Then we have the Hermite-Hadamard-type inequality

$$f\left(\frac{a+b}{2}\right) \leq (1-2\beta) f\left(\frac{a+b}{2}\right) + \beta \left[f\left((1-\beta)a+\beta b\right) + f\left(\beta a + (1-\beta)b\right)\right]$$

$$\leq \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$\leq \left(\frac{1}{2} - \beta\right) \left[f\left((1-\beta)a + \beta b\right) + f\left(\beta a + (1-\beta)b\right)\right] + \beta \left[f\left(a\right) + f\left(b\right)\right]$$

$$\leq \frac{f\left(a\right) + f\left(b\right)}{2}.$$

3. Hermite-Hadamard-Type Inequalities for Differentiable Functions

In this section, we establish some results connected with the second and third inequalities in the inequality (8).

Theorem 3.1. *Under the assumptions of Theorem 1.3, we have the following Hermite-Hadamard-type inequality:*

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{2(b-a)} \left[f(c) + f(d) \right] + \frac{c-a}{b-a} \left[f(a) + f(b) \right] \right\} \right|$$

$$\leq H(c,d) (b-a) \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}$$
(21)

where

$$H(c,d) := \left(\frac{c-a}{b-a}\right)^2 + \frac{1}{4} \left(\frac{d-c}{b-a}\right)^2.$$

Proof. Define

$$h_1(x) = \begin{cases} c - x, & x \in [a, c) \\ \frac{a + b}{2} - x, & x \in [c, d) \\ d - x, & x \in [d, b] \end{cases}$$

Using the integration by parts, we have the following identities:

$$\frac{1}{b-a} \int_{a}^{b} h_{1}(x) f'(x) dx = \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{2(b-a)} \left[f(c) + f(d) \right] + \frac{c-a}{b-a} \left[f(a) + f(b) \right] \right\}. \tag{22}$$

$$P_{1} := \int_{a}^{c} \frac{(c-x)(b-x)}{b-a} \left| f'(a) \right|^{q} dx + \int_{d}^{b} \frac{(x-d)(b-x)}{b-a} \left| f'(a) \right|^{q} dx$$

$$= \int_{a}^{c} \frac{(c-x)(b-x)}{b-a} \left| f'(a) \right|^{q} dx + \int_{a}^{c} \frac{(c-x)(x-a)}{b-a} \left| f'(a) \right|^{q} dx$$

$$= \left| f'(a) \right|^{q} \int_{a}^{c} (c-x) dx = \frac{(c-a)^{2}}{2} \left| f'(a) \right|^{q}.$$
(23)

$$P_{2} := \int_{a}^{c} \frac{(c-x)(x-a)}{b-a} |f'(b)|^{q} dx + \int_{d}^{b} \frac{(x-d)(x-a)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{c} \frac{(c-x)(x-a)}{b-a} |f'(b)|^{q} dx + \int_{a}^{c} \frac{(c-x)(b-x)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{c} (c-x) dx |f'(b)|^{q} = \frac{(c-a)^{2}}{2} |f'(b)|^{q}.$$
(24)

$$P_{3} := \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{b-x}{b-a} |f'(a)|^{q} dx + \int_{\frac{a+b}{2}}^{d} \left(x - \frac{a+b}{2}\right) \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{b-x}{b-a} |f'(a)|^{q} dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) dx |f'(a)|^{q}$$

$$= \frac{(a+b-2c)^{2}}{8} |f'(a)|^{q} = \frac{(d-c)^{2}}{8} |f'(a)|^{q}.$$
(25)

$$P_{4} := \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{x-a}{b-a} |f'(b)|^{q} dx + \int_{\frac{a+b}{2}}^{d} \left(x - \frac{a+b}{2}\right) \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{x-a}{b-a} |f'(b)|^{q} dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) dx |f'(b)|^{q}$$

$$= \frac{(a+b-2c)^{2}}{8} |f'(b)|^{q} = \frac{(d-c)^{2}}{8} |f'(b)|^{q}.$$
(26)

$$\int_{a}^{b} |h_{1}(x)| dx = (c - a)^{2} + \frac{(d - c)^{2}}{4}.$$
(27)

Now, using Power mean inequality, the convexity of $\left|f'\right|^q$ and the identities (15) and (23) – (27) , we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} h_{1}(x) f'(x) dx \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} |h_{1}(x)| |f'(x)| dx$$

$$\leq \frac{1}{b-a} \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{1}(x)| |f'(x)|^{q} dx \right]^{\frac{1}{q}}$$

$$= \frac{1}{b-a} \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{c} (c-x) |f'(x)| dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x \right) |f'(x)|^{q} dx \right]$$

$$+ \int_{\frac{a+b}{2}}^{d} \left(x - \frac{a+b}{2} \right) |f'(x)|^{q} dx + \int_{d}^{b} (x-d) |f'(x)|^{q} dx \right]^{\frac{1}{q}}$$

$$\leq \frac{1}{b-a} \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left(P_{1} + P_{2} + P_{3} + P_{4} \right)^{\frac{1}{q}}$$

$$= \frac{1}{b-a} \left[(c-a)^{2} + \frac{(d-c)^{2}}{4} \right]^{\frac{q-1}{q}} \left[\left(\frac{(c-a)^{2}}{2} + \frac{(d-c)^{2}}{8} \right) \left(|f'(a)|^{q} + |f'(b)|^{q} \right)^{\frac{1}{q}}$$

$$= \frac{1}{b-a} \left[(c-a)^{2} + \frac{(d-c)^{2}}{4} \right] \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{\frac{1}{q}}$$

$$= H(c,d) (b-a) \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{\frac{1}{q}}.$$

The inequality (21) follows from the identity (22) and the inequality (28). This completes the proof. \Box

Remark 3.2. In Theorem 3.1, let c = a and d = b. Then the inequality (21) reduces to the inequality (4).

Corollary 3.3. In Theorem 3.1, let $c = (1 - \beta)a + \beta b$ and $d = \beta a + (1 - \beta)b$ with $0 \le \beta < \frac{1}{2}$. Then we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{1-2\beta}{2} \left[f((1-\beta)a + \beta b) + f(\beta a + (1-\beta)b) \right] + \beta \left[f(a) + f(b) \right] \right\} \right|$$

$$\leq \left(2\beta^{2} - \beta + \frac{1}{4} \right) (b-a) \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}.$$

Remark 3.4. *In Corollary 3.3, let* $\beta = 0$ *and* q = 1. *Then Corollary 3.3 reduces to Theorem 1.1.*

Theorem 3.5. *Under the assumptions of Theorem 1.3, we have the following Hermite-Hadamard-type inequality:*

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{b-a} f\left(\frac{a+b}{2}\right) + \frac{c-a}{b-a} \left[f(c) + f(d) \right] \right\} \right|$$

$$\leq H(c,d) (b-a) \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}$$
(29)

where H(c,d) is defined as in Theorem 3.1.

Proof. Define

$$h_2(x) = \begin{cases} a - x, & x \in [a, c) \\ c - x, & x \in \left[c, \frac{a + b}{2}\right) \\ d - x, & x \in \left[\frac{a + b}{2}, d\right) \\ b - x, & x \in [d, b] \end{cases}.$$

Using the integration by parts, we have the following identities:

$$\frac{1}{2(b-a)^{a}} \int_{a}^{b} h_{2}(x) f'(x) dx \tag{30}$$

$$= \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{b-a} f\left(\frac{a+b}{2}\right) + \frac{c-a}{b-a} [f(c) + f(d)] \right\}.$$

$$Q_{1} := \int_{a}^{c} \frac{(x-a)(b-x)}{b-a} |f'(a)|^{q} dx + \int_{d}^{b} \frac{(b-x)^{2}}{b-a} |f'(a)|^{q} dx$$

$$= \int_{a}^{c} \frac{(x-a)(b-x)}{b-a} |f'(a)|^{q} dx + \int_{a}^{c} \frac{(x-a)^{2}}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{a}^{c} (x-a) dx = \frac{(c-a)^{2}}{2} |f'(a)|^{q}.$$

$$Q_{2} := \int_{a}^{c} \frac{(x-a)^{2}}{b-a} |f'(b)|^{q} dx + \int_{d}^{b} \frac{(b-x)(x-a)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{c} \frac{(x-a)^{2}}{b-a} |f'(b)|^{q} dx + \int_{a}^{c} \frac{(x-a)(b-x)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{c} (x-a) dx |f'(b)|^{q} dx + \int_{a}^{c} \frac{(x-a)(b-x)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{c} (x-a) dx |f'(b)|^{q} dx + \int_{a}^{c} \frac{(x-a)(b-x)}{b-a} |f'(b)|^{q} dx$$

$$Q_{3} := \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(b-x)}{b-a} |f'(a)|^{q} dx + \int_{\frac{a+b}{2}}^{d} \frac{(d-x)(b-x)}{b-a} |f'(a)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(b-x)}{b-a} |f'(a)|^{q} dx + \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(x-a)}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{c}^{\frac{a+b}{2}} (x-c) dx = \frac{(d-c)^{2}}{8} |f'(a)|^{q} .$$

$$Q_{4} := \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(x-a)}{b-a} |f'(b)|^{q} dx + \int_{\frac{a+b}{2}}^{d} \frac{(d-x)(x-a)}{b-a} |f'(b)|^{q} dx$$

$$= \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(x-a)}{b-a} |f'(b)|^{q} dx + \int_{c}^{\frac{a+b}{2}} \frac{(x-c)(b-x)}{b-a} |f'(b)|^{q} dx$$

$$= |f'(b)|^{q} \int_{c}^{\frac{a+b}{2}} (x-c) dx = \frac{(d-c)^{2}}{8} |f'(b)|^{q} .$$

$$\int_{c}^{b} |h_{2}(x)| dx = (c-a)^{2} + \frac{(d-c)^{2}}{4} .$$

$$(35)$$

Now, using Power mean inequality, the convexity of $|f'|^q$ and the identities (15) and (31) – (35), we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} h_{2}(x) f'(x) dx \right| \leq \frac{1}{b-a} \int_{a}^{b} |h_{2}(x)| |f'(x)| dx$$

$$\leq \frac{1}{b-a} \left[\int_{a}^{b} |h_{2}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{2}(x)| |f'(x)|^{q} dx \right]^{\frac{1}{q}}$$

$$= \frac{1}{b-a} \left[\int_{a}^{b} |h_{2}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{c} (x-a) |f'(x)| dx + \int_{c}^{\frac{a+b}{2}} (x-c) |f'(x)|^{q} dx \right]^{\frac{1}{q}}$$

$$+ \int_{\frac{a+b}{2}}^{d} (d-x) |f'(x)|^{q} dx + \int_{d}^{b} (b-x) |f'(x)|^{q} dx \right]^{\frac{1}{q}}$$

$$\leq \frac{1}{b-a} \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left[\left(\frac{c-a}{2} + \frac{c-a}{2} + \frac{c-a}{2} \right) \left(|f'(a)|^{q} + |f'(b)|^{q} \right) \right]^{\frac{1}{q}}$$

$$= \frac{1}{b-a} \left[(c-a)^{2} + \frac{(d-c)^{2}}{4} \right] \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{\frac{1}{q}}$$

$$= H(c,d) (b-a) \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{\frac{1}{q}} .$$

The inequality (29) follows from the identity (30) and the inequality (36).

This completes the proof. \Box

Remark 3.6. In Theorem 3.5, let c = a and d = b. Then the inequality (29) reduces to the inequality (5).

Remark 3.7. In Theorems 3.1 and 3.5, let c = a and d = b. Then Theorems 3.1 and 3.5 reduce to Theorem 1.3.

Corollary 3.8. In Theorem 3.5, let $c = (1 - \beta)a + \beta b$ and $d = \beta a + (1 - \beta)b$ with $0 \le \beta < \frac{1}{2}$. Then we have the inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ (1-2\beta) \left[f\left(\frac{a+b}{2}\right) + \beta \left[f\left((1-\beta) a + \beta b\right) + f\left(\beta a + (1-\beta) b\right) \right] \right\} \right|$$

$$\leq \left(2\beta^{2} - \beta + \frac{1}{4} \right) (b-a) \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}.$$

Remark 3.9. *In Corollary 3.8, let* $\beta = 0$ *and* q = 1. *Then Corollary 3.8 reduces to Theorem 1.2.*

Remark 3.10. In Corollaries 3.3 and 3.8, let $\beta = \frac{1}{4}$. Then we obtain the following inequalities:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{4} \left[f(a) + f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) + f(b) \right] \right| \le \frac{b-a}{8} \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}$$

and

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{4} \left[f\left(\frac{3a+b}{4}\right) + 2f\left(\frac{a+b}{2}\right) + f\left(\frac{a+3b}{4}\right) \right] \right| \le \frac{b-a}{8} \left[\frac{\left| f'(a) \right|^{q} + \left| f'(b) \right|^{q}}{2} \right]^{1/q}$$

which are similar extensions of Theorem 1.3.

Theorem 3.11. Under the assumptions of Theorem 1.4, we have the following Hermite-Hadamard-type inequalities:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{2(b-a)} \left[f(c) + f(d) \right] + \frac{c-a}{b-a} \left[f(a) + f(b) \right] \right\} \right| \le H(c,d) (b-a) \left| f'\left(\frac{a+b}{2}\right) \right|$$
(37)

and

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{b-a} f\left(\frac{a+b}{2}\right) + \frac{c-a}{b-a} \left[f(c) + f(d) \right] \right\} \right| \le H(c,d) (b-a) \left| f'\left(\frac{a+b}{2}\right) \right| \tag{38}$$

hold where H(c,d) is defined as in Theorem 3.1.

Proof. We observe that $|f'|^q$ is concave on [a,b] implies $|f'| = (|f'|^q)^{\frac{1}{q}}$ is also concave on [a,b]. Using the identities (22), (30) and Jensen integral inequality, we have the inequalities

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{2(b-a)} \left[f(c) + f(d) \right] + \frac{c-a}{b-a} \left[f(a) + f(b) \right] \right\} \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} |h_{1}(x)| \left| f'(x) \right| dx$$

$$\leq \frac{1}{b-a} \left| f' \left(\frac{\int_{a}^{b} |h_{1}(x)| x dx}{\int_{a}^{b} |h_{1}(x)| dx} \right) \right| \int_{a}^{b} |h_{1}(x)| dx$$
(39)

and

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left\{ \frac{a+b-2c}{b-a} f\left(\frac{a+b}{2}\right) + \frac{c-a}{b-a} \left[f(c) + f(d) \right] \right\} \right|$$

$$\leq \frac{1}{b-a} \int_{a}^{b} |h_{2}(x)| \left| f'(x) \right| dx$$

$$\leq \frac{1}{b-a} \left| f'\left(\frac{\int_{a}^{b} |h_{2}(x)| x dx}{\int_{a}^{b} |h_{2}(x)| dx} \right) \right| \int_{a}^{b} |h_{2}(x)| dx.$$
(40)

In Theorems 3.1 and 3.5, we have

$$|h_1(x)| = \begin{cases} c - x, & x \in [a, c) \\ \frac{a+b}{2} - x, & x \in \left[c, \frac{a+b}{2}\right) \\ x - \frac{a+b}{2}, & x \in \left[\frac{a+b}{2}, d\right) \\ x - d, & x \in [d, b] \end{cases}$$

and

$$|h_{2}(x)| = \begin{cases} x - a, & x \in [a, c) \\ x - c, & x \in [c, \frac{a + b}{2}) \\ d - x, & x \in \left[\frac{a + b}{2}, d\right) \\ b - x, & x \in [d, b] \end{cases}.$$

Using simple computation, we obtain that

$$\int_{a}^{c} |h_{1}(x)| dx = \int_{a}^{c} (c - x) dx = \int_{d}^{b} (x - d) dx = \int_{d}^{b} |h_{1}(x)| dx,$$

$$\int_{c}^{\frac{a+b}{2}} |h_{1}(x)| dx = \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) dx = \int_{\frac{a+b}{2}}^{d} \left(x - \frac{a+b}{2}\right) dx = \int_{\frac{a+b}{2}}^{d} |h_{1}(x)| dx,$$

$$\int_{a}^{c} |h_{2}(x)| dx = \int_{a}^{c} (x - a) dx = \int_{d}^{b} (b - x) dx = \int_{d}^{b} |h_{2}(x)| dx$$

and

$$\int_{c}^{\frac{a+b}{2}} |h_{2}(x)| \, dx = \int_{c}^{\frac{a+b}{2}} (x-c) \, dx = \int_{\frac{a+b}{2}}^{d} (d-x) \, dx = \int_{\frac{a+b}{2}}^{d} |h_{2}(x)| \, dx$$

which provide

$$\int_{a}^{b} |h_{1}(x)| x dx \tag{41}$$

$$= \int_{a}^{c} (c-x) x dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) x dx + \int_{\frac{a+b}{2}}^{d} \left(x - \frac{a+b}{2}\right) x dx + \int_{d}^{b} (x-d) x dx$$

$$= \int_{a}^{c} (c-x) x dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) x dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) (a+b-x) dx + \int_{a}^{c} (c-x) (a+b-x) dx$$

$$= (a+b) \left[\int_{a}^{c} (c-x) dx + \int_{c}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - x\right) dx \right]$$

$$= (a+b) \int_{a}^{\frac{a+b}{2}} |h_{1}(x)| dx = \frac{a+b}{2} \int_{a}^{b} |h_{1}(x)| dx$$

and

$$\int_{a}^{b} |h_{2}(x)| x dx = \int_{a}^{c} (x-a) x dx + \int_{c}^{\frac{a+b}{2}} (x-c) x dx + \int_{\frac{a+b}{2}}^{d} (d-x) x dx + \int_{d}^{b} (b-x) x dx$$

$$= \int_{a}^{c} (x-a) x dx + \int_{c}^{\frac{a+b}{2}} (x-c) x dx$$

$$= \int_{c}^{\frac{a+b}{2}} (x-c) (a+b-x) dx + \int_{a}^{c} (x-a) (a+b-x) dx$$

$$(42)$$

$$= (a+b) \left[\int_{a}^{c} (x-a) dx + \int_{c}^{\frac{a+b}{2}} (x-c) dx \right]$$
$$= (a+b) \int_{a}^{\frac{a+b}{2}} |h_2(x)| dx = \frac{a+b}{2} \int_{a}^{b} |h_2(x)| dx.$$

The inequalities (37) and (38) follow from the identities (27), (35), (41), (42) and the inequalities (39), (40). This completes the proof. \Box

Remark 3.12. In Theorems 3.1 and 3.5, let c = a and d = b. Then Theorem 3.11 reduces to Theorem 1.4.

4. Applications for Special Means

Throughout this section, let H(c,d) is defined as in Theorem 3.1. Let us recall the following special means of the two non-negative number u and v with $\alpha \in [0,1]$:

1. The weighted arithematic mean

$$A(u, v; \alpha) := \alpha u + (1 - \alpha) v, u, v \ge 0.$$

2. The arithmetic mean

$$A(u,v) := \frac{u+v}{2}, \ u,v \ge 0.$$

3. The geometric mean

$$G(u, v) := \sqrt{uv}, u, v > 0.$$

4. The power mean

$$M_p(u,v) = \left(\frac{u^p + v^p}{2}\right)^{\frac{1}{p}}, \ u,v > 0 \text{ and } p \in (-\infty,\infty) \setminus \{0\}.$$

5. The logarithmic mean

$$L\left(u,v\right):=\left\{\begin{array}{ll} \frac{v-u}{\ln v-\ln u} & \text{if } u\neq v\\ u & \text{if } u=v \end{array}\right., u,v>0.$$

6. The identric mean

$$I = I(u,v) := \begin{cases} \frac{1}{e} \left(\frac{v^v}{u^u}\right)^{\frac{1}{v-u}} & \text{if } u \neq v \\ u & \text{if } u = v \end{cases}, u, v > 0.$$

7. The *p*-logarithmic mean

$$L_{p}(u,v) := \begin{cases} \left[\frac{v^{p+1} - u^{p+1}}{(p+1)(v-u)} \right]^{\frac{1}{p}} & \text{if } u \neq v \\ u & \text{if } u = v \end{cases}, \ u,v > 0 \text{ and } p \in (-\infty,\infty) \setminus \{0,-1\}.$$

Using Theorems 2.1-3.11, we have the following propositions:

Proposition 4.1. Let $r \in (-\infty, 1] \cup \left[1 + \frac{1}{q}, \infty\right) \setminus \{0, -1\}$ and $[a, b] \subset (0, \infty)$. Then the following ineqality holds in *Theorem 3.1*:

$$\left| L_r^r(a,b) - A\left(M_r^r(a,b), M_r^r(c,d); \frac{2c - 2a}{b - a} \right) \right|$$

$$\leq |r| H(c,d) (b - a) M_q \left(a^{r-1}, b^{r-1} \right).$$
(43)

Proof. In Theorem 3.1, let $f:[a,b]\to (0,\infty)$ with $f(x)=x^r$ ($x\in [a,b]$). Then the inequality (21) deduces the inequality (43). This completes the proof.

Remark 4.2. In Proposition 4.1, let $r \in (-\infty, 0) \cup \left[1 + \frac{1}{q}, \infty\right) \setminus \{-1\}$. Then f is convex on [a, b]. By the inequality (43) and Theorem 2.1, we get the inequality

$$0 \leq A\left(M_{r}^{r}(a,b), M_{r}^{r}(c,d); \frac{2c-2a}{b-a}\right) - L_{r}^{r}(a,b)$$

$$\leq |r|H(c,d)(b-a)M_{q}(a^{r-1},b^{r-1}).$$

Remark 4.3. In Proposition 4.1, let $0 < r \le 1$. Then f is concave on [a,b]. By the inequality (43) and Theorem 2.1, we get the inequality

$$0 \leq L_{r}^{r}(a,b) - A\left(M_{r}^{r}(a,b), M_{r}^{r}(c,d); \frac{2c - 2a}{b - a}\right)$$

$$\leq rH(c,d)(b - a)M_{q}\left(a^{r-1}, b^{r-1}\right).$$

Proposition 4.4. Let $r \in (-\infty, 1] \cup \left[1 + \frac{1}{q}, \infty\right) \setminus \{0, -1\}$ and $[a, b] \subset (0, \infty)$. Then the following ineqality holds in Theorem 3.5:

$$\left| L_r^r(a,b) - A\left(M_r^r(c,d), A^r(a,b); \frac{2c - 2a}{b - a} \right) \right| \le |r| H(c,d) (b - a) M_q \left(a^{r-1}, b^{r-1} \right). \tag{44}$$

Proof. In Theorem 3.5, let $f:[a,b]\to (0,\infty)$ with $f(x)=x^r$ ($x\in [a,b]$). Then the inequality (29) deduces the inequality (44). This completes the proof. \square

Remark 4.5. In Proposition 4.4, let $r \in (-\infty, 0) \cup \left[1 + \frac{1}{q}, \infty\right) \setminus \{-1\}$. Then f is convex on [a, b]. By the inequality (43) and Theorem 2.1, we get the inequality

$$0 \leq L_r^r(a,b) - A\left(M_r^r(c,d), A^r(a,b); \frac{2c - 2a}{b - a}\right)$$

$$\leq |r| H(c,d) (b - a) M_q\left(a^{r-1}, b^{r-1}\right).$$

Remark 4.6. In Proposition 4.4, let $0 < r \le 1$. Then f is concave on [a,b]. By the inequality (43) and Theorem 2.1, we get the inequality

$$0 \leq A\left(M_{r}^{r}(c,d), A^{r}(a,b); \frac{2c-2a}{b-a}\right) - L_{r}^{r}(a,b)$$

$$\leq rH(c,d)(b-a)M_{q}\left(a^{r-1}, b^{r-1}\right).$$

Proposition 4.7. *Let* $r \in (1, 1 + \frac{1}{q})$ *and* $[a, b] \subset (0, \infty)$. *Then the following ineqalities hold:*

$$0 \leq A\left(M_r^r(a,b), M_r^r(c,d); \frac{2c - 2a}{b - a}\right) - L_r^r(a,b)$$

$$\leq rH(c,d)(b - a)A^{r-1}(a,b).$$

$$(45)$$

$$0 \leq L_r^r(a,b) - A\left(M_r^r(c,d), A^r(a,b); \frac{2c - 2a}{b - a}\right)$$

$$\leq rH(c,d)(b - a)A^{r-1}(a,b).$$
(46)

Proof. In Theorem 3.11, let $f : [a,b] \to [0,\infty)$ with $f(x) = x^r$ ($x \in [a,b]$). Then f is convex and $|f'|^q$ is concave on [a,b]. By the inequalities (37) − (38) and Theorem 2.1, we get the inequalities (45) and (46). This completes the proof. \Box

Proposition 4.8. *Let* $[a,b] \subset (0,\infty)$ *in Theorem 3.1. Then the following ineqality holds:*

$$0 \leq \ln I(a,b) - A\left(\ln G(a,b), \ln G(c,d); \frac{2c - 2a}{b - a}\right)$$

$$\leq H(c,d)(b - a)M_q(a^{-1}, b^{-1}).$$
(47)

Proof. In Theorem 3.1, let $f:[a,b]\to (0,\infty)$ with $f(x)=-\ln x$ ($x\in [a,b]$). Then by the inequality (21) and Theorem 2.1, we get the inequality (47). This completes the proof.

Proposition 4.9. *Let* $[a,b] \subset (0,\infty)$ *in Theorem 3.5. Then the following ineqality holds:*

$$0 \leq A\left(\ln G(c,d), \ln A(a,b); \frac{2c-2a}{b-a}\right) - \ln I(a,b)$$

$$\leq H(c,d)(b-a)M_q(a^{-1},b^{-1}). \tag{48}$$

Proof. In Theorem 3.5, let $f:[a,b]\to (0,\infty)$ with $f(x)=-\ln x$ ($x\in [a,b]$). Then by the inequality (29) and Theorem 2.1, we get the inequality (48). This completes the proof.

Proposition 4.10. *The following inequality holds in Theorem 3.1:*

$$0 \leq A\left(A\left(e^{a}, e^{b}\right), A\left(e^{c}, e^{d}\right); \frac{2c - 2a}{b - a}\right) - \frac{e^{b} - e^{a}}{b - a}$$

$$\leq H\left(c, d\right) (b - a) M_{q}\left(e^{a}, e^{b}\right). \tag{49}$$

Proof. In Theorem 3.1, let $f:[a,b]\to (0,\infty)$ with $f(x)=e^x$ ($x\in [a,b]$). Then f and $|f'|^q$ are convex on [a,b]. By the inequality (21) and Theorem 2.1, we get the inequality (49). This completes the proof. \square

Proposition 4.11. *The following inequality holds in Theorem 3.5:*

$$0 \leq \frac{e^{b} - e^{a}}{b - a} - A\left(A\left(e^{c}, e^{d}\right), e^{A(a,b)}; \frac{2c - 2a}{b - a}\right)$$

$$\leq H\left(c, d\right) (b - a) M_{q}\left(e^{a}, e^{b}\right).$$
(50)

Proof. In Theorem 3.5, let $f : [a, b] \to (0, \infty)$ with $f(x) = e^x$ ($x \in [a, b]$). Then f and $|f'|^q$ are convex on [a, b]. By the inequality (29) and Theorem 2.1, we get the inequality (50). This completes the proof. □

References

- [1] M. Alomari and M. Darus, On the Hadamard's inequality for log-convex functions on the coordinates, *J. Ineq. Appl.* Article ID 283147 (2009), 13 pages.
- [2] S. S. Dragomir, Two Mappings in Connection to Hadamard's Inequalities, J. Math. Anal. Appl. 167 (1992), 49-56.
- [3] S. S. Dragomir, On the Hadamard's Inequality for Convex on the Co-ordinates in a Rectangle from the Plane, *Taiwanese J. Math.*, 5 (4) (2001), 775-788.
- [4] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, *Appl. Math. Lett.* 11 (5) (1998), 91-95.
- [5] S. S. Dragomir, Y.-J. Cho and S.-S. Kim, Inequalities of Hadamard's type for Lipschitzian Mappings and Their Applications, J. Math. Anal. Appl. 245 (2000),489-501.
- [6] L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24 (1906), 369-390 (In Hungarian).
- [7] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.

- [8] S.-R. Hwang, K.-C. Hsu and K.-L. Tseng, Hadamard-type Inequalities for Lipschitzian Functions in One and Two Variables with Their Applications, J. Math. Anal. Appl. 405 (2013), 546-554.
- [9] S.-R. Hwang, K.-L. Tseng and K.-C. Hsu, New Inequalities for Fractional Integrals and Their Applications. (Submitted)
- [10] S.-R. Hwang, K.-L. Tseng and K.-C. Hsu, New Hermite-Hadamard-type Inequalities for Fractional Integrals and Their Applications. (Submitted)
- [11] S.-R. Hwang, S.-Y. Yeh and K.-L. Tseng, Refinements and Similar Extensions of Hermite-Hadamard Inequality for Fractional Integrals and Their Applications, *Appl. Math. Comp.* 249 (2014), 103-113.
- [12] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, *Appl. Math. Comp.* 147 (2004), 137-146.
- [13] U. S. Kirmaci, M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. *Appl. Math. Comp.* 153 (2004), 361-368.
- [14] C. E. M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, *Appl. Math. Lett.* **13** (2), 51-55, (2000).
- [15] H. M. Srivastava, Z.-H. Zhang and Y.-D. Wu, Some further refinements and extensions of the Hermite–Hadamard and Jensen inequalities in several variables, *Math. Comput. Model.*, 54 (2011), 2709–2717
- [16] G.-S. Yang and K.-L. Tseng, On Certain Integral Inequalities Related to Hermite-Hadamard Inequalities, J. Math. Anal. Appl. 239 (1999), 180-187.
- [17] G.-S. Yang and K.-L. Tseng, Inequalities of Hadamard's Type for Lipschitzian Mappings, J. Math. Anal. Appl. 260 (2001), 230-238.
- [18] C. Zhu, M. Fečkan and J.-R. Wang, Fractional Integral Inequalities for Differentiable Convex Mappings and Applications to Special Means and a Midpoint Formula, *JAMSI* 8 (2) (2012), 21-28.