Filomat 30:14 (2016), 3667-3680
DOI 10.2298/FIL1614667T

Published by Faculty of Sciences and Mathematics,
University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

New Hermite-Hadamard-Type Inequalities and Their Applications
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Abstract. In this paper, we establish some new Hermite-Hadamard-type inequalities for differentiable
functions. Several applications for special means are given as well.

1. Introduction

Throughout in this paper,leta <c <d <bin Rwitha+b=c+d.
The inequality

b b
f(#)s o [ o< IO )

which holds for all convex functions f : [2,b] — R, is known in the literature as Hermite-Hadamard
inequality [7].

For some results which generalize, improve, and extend the inequality (1), see [1]-[6] and [8]-[18].

In [4], Dragomir and Agarwal established the following results connected with the second inequality in
the inequality (1).

Theorem 1.1. Let f : [a,b] — R be a differentiable function on (a, b) with a < b. If |f’| is convex on [a, b], then we
have
@+f® 1 [(° b—ay., ’
L0 L [ e < 222 (1 @]+ o) @

which is the trapezoid inequality provided

is convex on [a, D] .

fl

In [12], Kirmaci and Ozdemir established the following results connected with the first inequality in the
inequality (1).
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Theorem 1.2. Under the assumptions of Theorem 1.1, we have
1 b a+b
‘rf f(">d"‘f(T)

In [14], Pearce and Pecari¢ established the following Hermite-Hadamard-type inequalities for differen-
tiable functions:

f 0))) 3)

b— ’
<5

I]'

Theorem 1.3. If f : I° C R — R is a differentiable mapping on I°, a,b € I
is convex on [a, b, then the following inequalities hold:

F@+f® 1 [t b—allf @ +|F @
‘ > —b_afaf(x)dxs [ . : 4)

b _ / )'7 /(b)ql/q
‘ﬁfﬂﬂx)dx—f(”;b)’sbf[ - ‘}. ®)

Theorem 1.4. If f : I° C R — Ris a differentiable mapping on I°, a,b € I
is concave on [a, b], then the following inequalities hold:

b
‘f(a);f() ff()dx (mz-b)‘ ©

b —
‘ﬁfﬂf(x)dx_f(a;b)lsbglaf/(a;b)" -

Remark 1.5. In Theorem 1.3, let q = 1. Then Theorem 1.3 reduces to Theorems 1.1 and 1.2.

In this paper, we establish some results which refine Hermite-Hadamard inequality (1) and generalize
Theorems 1.1-1.4. Some applications for special means are given.
2. Hermite-Hadamard-Type Inequalities for Convex Functions

In this section, we establish some Hermite-Hadamard-type inequalities which refine Hermite-Hadamard
inequality (1).

Theorem 2.1. (1) Let f : [a,b] — R be a convex function. Then we have Hermite-Hadamard-type inequality

(50 < BEEASY) o+ fal ®)
b
< Lj‘f(x)dx
< ”;;bb 2C[f(c +f(d)]+—[f(a)+f(b)]
f ﬂ)+f(b)
< 202

(2) Let f : [a,b] = R be a concave function. Then the inequality (8) is reversed.
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Proof. (1) Suppose f is convex. It is easily observed from the convexity of f that the first and last inequalities
of (8) hold.
Using simple computation, we have the following identities:

a+b
—ff(x)dx——f f@)+f@a+b-x)] dx+—f [f(x)+ f(a+b—x)]dx )
a+b—x-c c— d—x c—
€= a+b-2x +a+b 2x (@+b-x)= +d—2x c+d 2 (@+b-x) (10)
and
a+b—x—-d d—x c—Xx d—x
a+b-2x x+a+b—2x(a+b_x)_c+d—2xx+c+d—2x(a+b_x) (11)
. c—Xx d—x
wherexe[a,c]wﬁhOSC+d_2x,c+d_2xs
a+b 1
5 _E[x+(a+b—x)] (12)
wherexe[c,ﬂ].
b—x xX—a
X—mﬂ+mb (13)
and
—-a b—x
a+b—x—bTa b—ab (14)
where x € [g,c]
d—x xX—c
Al I (15)
and
d—a-b+x a+b—-x-c xX—c d—x
a+b—-x= i c+ i d_d—cc+d—cd (16)
ath cd-x
wherexe[c, +]w1th0_d_ Esl.

Now, using the above identities and the convexity of f, we have the following inequalities:

O @] = g [ O+ s@l 7)

‘| d-x c
b—af[c+d—2xf(x)+c+d 2f(a+b *)

————f@a+b-x)|d

IN

+c+d fo( c+d 2

- m‘fﬂ[f(x)+f(a+b—x)]dx
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by the identities (10) and (11).

a+b—-2c [a+b 1 g a+b
() - e (e a

a

< biaf;z[f(x)+f(a+b—x)]dx
by the identity (12).
blTafac[f(x)+f(a+b—x)]dx (19)
1 b b
< [—xf( W)+ o f O+ @)+ f(0)]d

- [ @+ fola

c—a

= 2 @+ F O]

by the identities (13) and (14).

blTafz[f(x)+f(a+b—x)]dx (20)

1 o d—x xX—c xX—c d—x
*5=al, [mf“)*d_cf(d’*d_cf@*d_cf<d)d

e IGRIL

a
_a+b-2c

= So o O+ f @]

by the identities (15) and (16) .
The second and third inequalities of (8) follow from the identity (9) and the inequalities (17) — (20).

(2) In case f is concave, so —f is convex, we obtain that the inequality (8) is reversed.
This completes the proof. [J

Remark 2.2. In Theorem 2.1, the inequality (8) refines Hermite-Hadamard inequality (1) .

Corollary 2.3. In Theorem 2.1, let ¢ = (1—B)a + pband d = pa+ (1 — )b with 0 < p < 3. Then we have the
Hermite-Hadamard-type inequality

1)

a+b

IA

(1- 2ﬁ)f( )+ﬁ[f((1—ﬁ)u+ﬁb)+f(ﬁﬂ+(1—ﬁ)b)]

1
< mﬁf(x)dx

< (3-B)F(@=pra+pe)+ f(ga+ 1L -pB)]+Lf @)+ f O]

f@)+f®)
T
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3. Hermite-Hadamard-Type Inequalities for Differentiable Functions

In this section, we establish some results connected with the second and third inequalities in the
inequality (8).

Theorem 3.1. Under the assumptions of Theorem 1.3, we have the following Hermite-Hadamard-type inequality:
a+b-2c c—a
i [rwa- (SR o s o+ sol @

a)
z/z)|L7 +

<H(c,d)(b—a) [fl

where

—a\2 —c\?
H(c d) = (%) n }L(H) .
Proof. Define
c—x, x € [a,c)
hy (x) = -x, x€]cd) .
d-x, x €[d,b]

Using the integration by parts, we have the following identities:

b b B
i [ mwrwn- i o {SEER o ool @

o [0
£<b—
qu(c x)dx—

f f% ") dx

fc—x)dx)f(b| %f’(b))q.

dx + )| dx (23)

b-a
mf 060,

dx

dx (24)

N S la+b b—x,, .4 4 a+b
Py = j; (T—x) — f (@) dx+ﬁ2+b(x—T) dx (25)
B £ a+b q 5 a+b x
= f (T_ ) f(a)| dx+f (T—x)—b dx
_ k2 a+b d , )q
=] 7 X x|f’ (a)
_ la+b=20", q_W@d=-0" ., 4
= "= == @)
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u B i
Py = Lf (a;b—x)z_af%mrdx+11(x 552) dx (26)
= fz(a;-b_x)z: dx+f2(a;b )b ad dx
%17 a+b q
_ f ( - —x)dx £ )|
(@+b=200 ., n_(d=0
= —lfol=—==
' @-o?
f Iy (x)| dx = (c — a)* + ——— Y (27)
Now, using Power mean inequality,
the inequality
1 b
‘;Efmwﬁmw 28)
f{fwwm}[ x|
53—[fﬁmuww4y[j"w— [ (5] r e

dx +

+
N\Z 3

55

dx]
- : 1
IWWW]@HEWHMV
1 [ (d-c)zg1 (c — a)? L a-
[t G S

_ 1] 2 @@= +f’ T
S|V ][ 2 l

I @[ +|f o |
—11) f .

IA
S
|-
S

q)r

= Hc,d) (b

The inequality (21) follows from the identity (22) and the inequality (28).
This completes the proof. [J

Remark 3.2. In Theorem 3.1, let ¢ = a and d = b. Then the inequality (21) reduces to the inequality (4) .
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Corollary 3.3. In Theorem 3.1, let ¢ = (1—B)a + pband d = pa+ (1 — )b with 0 < B < 1. Then we have the
inequality

! 1-2
o [ o= {2 @ pae
+f B+ (1=p)H]+ BLf @ + F O]
rl + el T
< @ﬁ—ﬁ+i)w_aﬂﬁfﬂL§MflLl.
Remark 3.4. In Corollary 3.3, let p = 0 and q = 1. Then Corollary 3.3 reduces to Theorem 1.1.

Theorem 3.5. Under the assumptions of Theorem 1.3, we have the following Hermite-Hadamard-type inequality:

b —_ p—
‘b%f f(x)dx—{”zb_fcf(”;b)+;_Z[f<c>+f<d>]}| 9)
fwwr”

£ @)+
2

<H(c,d)(b—a)

where H (c, d) is defined as in Theorem 3.1.

Proof. Define
hy (x) =

Using the integration by parts, we have the following identities:
ﬁ f " @ f @ dx (30)
- ;Taf:f(x)dx—{”zb_;ch(a;b)+ — [f(c)+f(d)]}-
o [T o e [ ED
_ f (x—Z)_(l;—x) f/(a)|qu+fac (9;—_522
f @[ fac (c—aydr= ¢ _za)z

o (Cx—a? " (b-x)(x—a)
Q= [ Gy ol [ S0

A PO Y S T
- [ GF I orac [ E200

f(x—a)dx

£ @) dx (31)

' @)|" dx

f/ (a)|q )

£ )| dx (32)

£ @) dx

2
rof =2 of.




K.-L. Tseng, S.-R. Hwang / Filomat 30:14 (2016), 3667-3680 3674

Q:: f(" (a)|qu+j;%f
f% dx+f =S
f NPRRICEL 3
i

f (x—c)dx = _T|f’(b)|q.

"(a)| dx (33)

dx

dx (34)

(d)

flhz(x)ldx—(c a) + ——— 1 (35)
(15) and (31) — (35), we have
the inequality
b
ﬁ f hy (x) f (x)dx| < (36)

IA

- a
1 b b i
m[[ |l (x)ldx] [ dx]
1 b % c ot
= bTa[f |ho (x)|dx] - ! f (x ! dx
b i
dx + f b-x) dx}
d

—— ’4;1 )
f [y (x)| dx] (Q1+ Q2+ Q3+ Qy)1

2 Y H
(5% ST 1 @l + 1 o)
f'<b>|qr

IA
<

| |~
S

q-1

i 2L
= p _(c—a)2+ (d;C) ]

£ @)+
2

‘ -

S
|

[ 2
- oz
()| + f’(b)|qr

2

S

= H(c,d)(b—a)[

The inequality (29) follows from the identity (30) and the inequality (36) .
This completes the proof. [

Remark 3.6. In Theorem 3.5, let ¢ = a and d = b. Then the inequality (29) reduces to the inequality (5) .
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Remark 3.7. In Theorems 3.1 and 3.5, let ¢ = a and d = b. Then Theorems 3.1 and 3.5 reduce to Theorem 1.3.

Corollary 3.8. In Theorem 3.5, let ¢ = (1—B)a + pband d = pa+ (1 — )b with 0 < p < 3. Then we have the
inequality

‘ﬁj;bf(x)dx—{(l—2/3)[f(a+b)+ﬁ[f((1 Ba-+Bb) + £ (Ba-+ (1 - ﬁ)b)]}’

< (2ﬁ2—ﬁ+ %)(b—a)[+l

Remark 3.9. In Corollary 3.8, let B = 0 and q = 1. Then Corollary 3.8 reduces to Theorem 1.2.

Remark 3.10. In Corollaries 3.3 and 3.8, let B = §. Then we obtain the following inequalities:

ﬁfﬂbf(x)dx—_f() f(3a+b) f(a+3b) f(b” ;a[ ’ er/ qll/"

%aff(x)dx——_f(%*b) 2f(“+b) f(afb)lfbga[ ' ; , rﬂ

which are similar extensions of Theorem 1.3.
Theorem 3.11. Under the assumptions of Theorem 1.4, we have the following Hermite-Hadamard-type inequalities:

—ff()d {a+b zc[f(c) f(d)]+%[f(a)+f(b)]} f/(b%b)

,(a+b
)

and

< H(c,d) (b -a) (37)

and

<H(c,d)(b—-a)
a

o [ {2 (1) 2 )

hold where H (c, d) is defined as in Theorem 3.1.

1
Proof. We observe that | f’|q is concave on [a,b] implies |f'| = ( f’ q)” is also concave on [a,b]. Using the
identities (22), (30) and Jensen integral inequality, we have the inequalities

‘— f Foe- {5 zc[f(>+f(d)]+g—[f<a)+f(b)]}‘ 9)

|, [ INZ (x)|xdx]
i ] dx

f |l ()| dx

b — f—
‘bljfaf(x)dx—{“bb_ach(”;b)+;_Z[f<c>+f<d>]}| (40)
b
<5 [ e

1 f[ Ihz x>|xdx]
[ 1 ()1 dx

_b

and

f |l (x)] dx.
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In Theorems 3.1 and 3.5, we have

c—x, X €a,c)
iy ()] = #—x, X € c,a;h)
x—%, xe€ “;b,d

x—d, x €[d,b]
and
x—a, xé€lac)
x-c, xe[c,”gh)
d-—x, x¢€

lho (x)| = st g
b—x, xeldb]

Using simple computation, we obtain that

fﬂclh1(x)ldx=fuc(C—x)dx:jj(x—d)dx:fdb|h1(x)|dx,

b a+b i

[t 2 [
j;lhz(x)ldxzfac(x—a)dx=ﬁb(b—x)dxzﬁ Iy (x)| dx

3676

(41)

and
f Ihz(x)ldx:f (x—c)dx:fd(d—x)dx:fdlhz(x)ldx
c c # %
which provide
b
IZCES
. ash 4 b
:f(c—x)xdx+‘[2 (a+b—x)xdx+f (x—a+b)xdx+f(x—d)xdx
a c 2 b 2 d
¢ Fla+b Fla+b
:f (c—x)xdx+f 2 - x xdx+f 2 —-x (a+b—x)dx+f(c—x)(a+b—x)dx
a Cc 2 c 2 a
T (a+b
=(a+b)[f(c—x)dx+f (a2 —x)dx}
a+b
=@+ b) |h1 (ldx = —— |h1 ()l dx
and

a+b d

fablhz(x)lxdxzfac(x—a)xci.’x+fc2 (x—c)xdx+fm (d—x)xdx+fdb(b—x)xdx

a+b

=j:(x—a)xdx+fcz (x — ¢) xdx

atb
2

=f (x—c)(a+b—x)dx+fc(x—a)(u+b—x)dx

c

(42)
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+b

f(x—a)dx+f (x—c)dx}

<a+b>f |hz(x|dx—ﬂf s ()] dx.

The inequalities (37) and (38) follow from the identities (27) , (35) , (41) , (42) and the inequalities (39) , (40) .
This completes the proof. [J

=(a+b)

Remark 3.12. In Theorems 3.1 and 3.5, let c = a and d = b. Then Theorem 3.11 reduces to Theorem 1.4.

4. Applications for Special Means

Throughout this section, let H (c, d) is defined as in Theorem 3.1.
Let us recall the following special means of the two non-negative number « and v with a € [0,1] :

1. The weighted arithematic mean
Aw,v;a) =au+ (1 -a)v, u,v>0.

2. The arithmetic mean

+
Au,v):= MZ U, u,v=0.

3. The geometric mean
G (u,v) := Vuv, u,v>0.
4. The power mean

1
P4 oP \p
4 ;U )p,u,0>0andp€(—oo,oo)\{0}.

M, (u,v) = (
5. The logarithmic mean

ot ifu+v

L (Ll, U) = { Inv-Inu

u ifu:U’u’v>0'

6. The identric mean

1

1 v\ v-u .
I:I(u,v)::{E(Z_") %fu#v,u,v>0.
u fu=v

7. The p-logarithmic mean

1

ELETo (T #0
L, (u,0) = (p+1)0-w) , u,v>0and p € (—o0,00)\ {0,-1}.
u ifu=v

Using Theorems 2.1-3.11, we have the following propositions:

Proposition 4.1. Lef r € (—o0,1] U [1 + %, oo) \ {0, -1} and [a,b] C (0,00). Then the following ineqality holds in
Theorem 3.1:
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(43)

L7 (a,b) - A(M’ (a,b), M (c,d); > 2”)

< I H(c,d)(b-a)My (", b7).

Proof. In Theorem 3.1, let f : [a,b] — (0, 00) with f (x) = x” (x € [a,b]) . Then the inequality (21) deduces the
inequality (43). This completes the proof. [

Remark 4.2. In Proposition 4.1, let r € (—0c0,0) U [1 + %, oo) \{=1}. Then f is convex on [a,b]. By the inequality
(43) and Theorem 2.1, we get the inequality

0

IN

(Mr(a by, M (c,d); > 2) L’ (a,b)

IA

["|H (c,d) (b —a) q(a’ 1,br 1).

Remark 4.3. In Proposition 4.1, let 0 < v < 1. Then f is concave on [a, b] . By the inequality (43) and Theorem 2.1,
we get the inequality

0

IN

L' (a,b) - A(M’ (a,b), M (c,d); > i")

IN

rH(c,d) (b —a) M, (ar Ly~ 1).

Proposition 4.4. Let r € (—o0,1] U [1 + %, oo) \ {0, -1} and [a,b] C (0, 00). Then the following ineqality holds in
Theorem 3.5:

Ll (a,b) - A(M’ (), A" a,b); > 2”)

< | H (c,d) (b - a) My (", "), (44)

Proof. In Theorem 3.5, let f : [a,b] — (0, 00) with f (x) = x” (x € [a,b]) . Then the inequality (29) deduces the
inequality (44) . This completes the proof. [

Remark 4.5. In Proposition 4.4, let r € (—c0,0) U [1 + %, oo) \{=1}. Then f is convex on [a,b]. By the inequality
(43) and Theorem 2.1, we get the inequality

0

IA

L (a,b) - A(Mf(c ), A (@) 2 i“)

IA

INH (¢, d) (0 — a) My (", "),

Remark 4.6. In Proposition 4.4, let 0 < v < 1. Then f is concave on [a, b] . By the inequality (43) and Theorem 2.1,
we get the inequality

0

IN

(Mr(c d), A" (a,b); 2 2") L (a,b)

IA

rH(c,d) (b —a) M, (ar 1,br 1).

Proposition 4.7. Letr € (1, 1+ l) and [a, b] C (0, o) . Then the following ineqalities hold:

0 < (M’(a b), M. (c, d),fza) L (a,b) (45)
< rH(c,d)(b—a)A (a,b).

0 < Li(ab)- A(M’ (c,d), A (a,b); > 2”) (46)
< rH(c,d)(b—a)A (a,b).
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Proof. In Theorem 3.11, let f : [a,b] — [0, 00) with f (x) = x" (x € [a,]]) . Then f is convex and l f’|q is concave
on [a, b] . By the inequalities (37) — (38) and Theorem 2.1, we get the inequalities (45) and (46) . This completes
the proof. [

Proposition 4.8. Let [a,b] C (0, c0) in Theorem 3.1. Then the following ineqality holds:

lnl(a,b)—A(lnG(a,b),lnG(c,d);M) 47)

0 b—a

IA

IN

H (c,d) (b—a)M, (a',b7").

Proof. In Theorem 3.1, let f : [a,b] — (0, o) with f (x) = —Inx (x € [4,b]). Then by the inequality (21) and
Theorem 2.1, we get the inequality (47) . This completes the proof. [

Proposition 4.9. Let [a,b] C (0, 00) in Theorem 3.5. Then the following ineqality holds:

0

IA

A(lnG(c,d),lnA(u,b);%)—lnl(a,b) (48)

IA

H(c,d)(b-a)M,(a™',b7").

Proof. In Theorem 3.5, let f : [a,b] — (0, ) with f(x) = —Inx (x € [4,b]). Then by the inequality (29) and
Theorem 2.1, we get the inequality (48) . This completes the proof. [

Proposition 4.10. The following ineqality holds in Theorem 3.1:
2c—2a\ e —¢
a b c ).
A(A(e,e),A(e,e), - )— b2 (49)
H (c,d) (b - a) M, (¢",¢").

o
IA

IA

Proof. In Theorem 3.1, let f : [a,b] — (0, 0) with f (x) = ¢* (x € [a,b]). Then f and | f 7 are convex on [a,b].
By the inequality (21) and Theorem 2.1, we get the inequality (49) . This completes the proof. [

Proposition 4.11. The following ineqality holds in Theorem 3.5:

el — e ¢ A\ Awp.2c—2a
0 < - —A(A(e,e),eA A ) (50)
< H(c,d)(b-a)M, (e",eb) .

Proof. In Theorem 3.5, let f : [a,b] — (0, 00) with f (x) = €* (x € [4,b]). Then f and |f’ 7 are convex on [a,b].
By the inequality (29) and Theorem 2.1, we get the inequality (50) . This completes the proof. [
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