New type of Lacunary Orlicz Difference Sequence Spaces Generated By Infinite Matrices

Ayhan Esia, Bipan Hazarikab, Ayten Esia

aAdıyaman University, Department of Mathematics, 02040, Adıyaman, Turkey
bDepartment of Mathematics, Rajiv Gandhi University, Rono Hills, Doimukh-791112, Arunachal Pradesh, India

Abstract. The main purpose of this paper is to introduce the spaces \(A[M,\Delta,p] \), \(p_0[A,M,\Delta,p] \) and \(w_0[A,M,\Delta,p] \) generated by infinite matrices defined by Orlicz functions. Some properties of these spaces are discussed. Also we introduce the concept of \(S[A,\Delta] \)–statistical convergence and derive some results between the spaces \(S[A,\Delta] \) and \(A[M,\Delta,p] \). Further, we study some geometrical properties such as order continuous, the Fatou property and the Banach-Saks property of the new space \(A[M,\Delta,p] \). Finally, we introduce the notion of \(S[A,\Delta] \)–statistical convergence of order \(\alpha \) of real number sequences and obtain some inclusion relations between the set of \(S[A,\Delta] \)–statistical convergence of order \(\alpha \).

1. Introduction

Let \(p = (p_k) \) be a bounded sequence of positive real numbers. If \(H = \sup_k p_k < \infty \), then for any complex numbers \(a_k \) and \(b_k \)

\[
|a_k + b_k|^p \leq C (|a_k|^p + |b_k|^p)
\]

where \(C = \max(1,2^{H-1}) \). Also, for any complex number \(\alpha \), (see [18])

\[
|\alpha|^p \leq \max(1,|\alpha|^H).
\]

We denote \(w, \ell_\infty, c \) and \(c_0 \), for the spaces of all, bounded, convergent, null sequences, respectively. Also, by \(\ell_1 \) and \(\ell_p \), we denote the spaces of all absolutely summable and \(p \)-absolutely summable series, respectively. Recall that a sequence \(\{x(i)\}_{i=1}^\infty \) in a Banach space \(X \) is called Schauder (or basis) of \(X \) if for each \(x \in X \) there exists a unique sequence \(\{a(i)\}_{i=1}^\infty \) of scalars such that \(x = \sum_{i=1}^\infty a(i)x(i) \), i.e. \(\lim_{n \to \infty} \sum_{i=1}^n a(i)x(i) = x \). A sequence space \(X \) with a linear topology is called a \(K \)-space if each of the projection maps \(P_i : X \to C \) defined by \(P_i(x) = x(i) \) for \(x = (x(i))_{i=1}^\infty \in X \) is continuous for each natural \(i \). A Fréchet space is a complete metric linear space and the metric is generated by a \(F \)-norm and a Fréchet space which is a \(K \)-space is called an \(FK \)-space i.e. a \(K \)-space \(X \) is called an \(FK \)-space if \(X \) is a complete linear metric space. In other words, \(X \) is an \(FK \)-space if \(X \) is a Fréchet space with continuous coordinatewise projections. All the sequence spaces mentioned above

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45.

Keywords. Lacunary sequence, infinite matrix, Orlicz function, statistical convergence

Received: 04 September 2014; Accepted: 08 July 2015

Communicated by Dragan S. Djordjević

Email addresses: aesi123@hotmail.com (Ayhan Esi), bh_rgu@yahoo.co.in (Bipan Hazarika), aytenesi@yahoo.com (Ayten Esi)
are FK-space except the space c_{00}. An FK-space X which contains the space c_{00} is said to have the property
AK if for every sequence $(x(i))_{i=1}^{\infty} \in X, x = \sum_{i=1}^{\infty} x(i)e(i)$ where $e(i) = (0,0,...1^{|i|_{place}},0,0,...)$.

A Banach space X is said to be a Köthe sequence space if X is a subspace of w such that

(a) if $x \in w, y \in X$ and $|x(i)| \leq |y(i)|$ for all $i \in \mathbb{N}$, then $x \in X$ and $||x|| \leq ||y||$
(b) there exists an element $x \in X$ such that $x(i) > 0$ for all $i \in \mathbb{N}$.

We say that $x \in X$ is order continuous if for any sequence $(x_n) \in X$ such that $x_n(i) \leq |x(i)|$ for all $i \in \mathbb{N}$ and $x_n(i) \to 0$ as $n \to \infty$ we have $||x_n|| \to 0$ as $n \to \infty$ holds.

A Köthe sequence space X is said to be order continuous if all sequences in X are order continuous. It is easy to see that $x \in X$ order continuous if and only if $||0,0,...,0,x(n+1),x(n+2),...|| \to 0$ as $n \to \infty$.

A Köthe sequence space X is said to have the Fatou property if for any real sequence x and (x_n) in X such that $x_n \uparrow x$ coordinatewisely and $\sup_n ||x_n|| < \infty$, we have that $x \in X$ and $||x_n|| \to ||x||$ as $n \to \infty$.

A Banach space X is said to have the Banach-Saks property if every bounded sequence (x_n) in X admits a subsequence (z_n) such that the sequence $(t_k(z))$ is convergent in X with respect to the norm, where

$$t_k(z) = \frac{z_1 + z_2 + ... + z_k}{k}$$

for all $k \in \mathbb{N}$.

Some of works on geometric properties of sequence space can be found in [1, 2, 16, 19].

An Orlicz function M is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, convex, nondecreasing function such that $M(0) = 0, M(x) > 0$ for $x > 0$ and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function is replaced by $M(x + y) \leq M(x) + M(y)$ then this function is called the modulus function and characterized by Nakano [20], followed by Ruckle [24]. An Orlicz function M is said to satisfy Δ_2-condition for all values u, if there exists $K > 0$ such that $M(2u) \leq KM(u), u \geq 0$.

Lemma 1.1. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ (x_k) : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{r}\right) < \infty, \text{ for some } r > 0 \right\},$$

which is a Banach space normed by

$$||x_k|| = \inf \left\{ r > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{r}\right) \leq 1 \right\}.$$

The space l_M is closely related to the space l_p, which is an Orlicz sequence space with $M(x) = |x|^p$, for $1 \leq p < \infty$.

In the later stage, different Orlicz sequence spaces were introduced and studied by Esi [3, 4, 6], Esi and Et [5], Güngör and Et [15], Parashar and Choudhary [22], Tripathy and Mahanta [26], Tripathy and Hazarika [27], and many others.
2. Classes of Lacunary Orlicz Difference Sequences

The strongly almost summable sequence spaces were introduced and studied by Maddox [18], Nanda [21], Gungor et al., [12], Esi [7], Gungor and Et [15] and many authors. For matrix maps on sequence spaces we refer to [23] and for difference sequence spaces we refer to [28–31] and references therein.

By lacunary sequence we mean a sequence \(k_0 \) of positive integers satisfying; \(0 = k_0 \) and \(h_r = k_r - k_{r-1} \rightarrow \infty \) as \(r \rightarrow \infty \). We denote the intervals, which \(\theta \) determines, by \(I_r = (k_{r-1}, k_r] \). Let \(A = (a_{ij}) \) be an infinite matrix of non-negative real numbers with all rows are linearly independent for all \(i, j = 1, 2, 3, ... \) and \(B_{kn}(x) = \sum_{i=1}^{\infty} a_{kn} x_{n+i} \) if the series converges for each \(k \) and \(n \). Now we define the following sequence spaces. Let \(M \) be an Orlicz function, \(p = (p_k) \) be a sequence of positive real numbers and \(\theta = (k_r) \) be a lacunary sequence, and for \(\rho > 0 \) then

\[
\tilde{w}_\theta^\rho [A, M, \Delta, p] = \left\{ x \in \omega : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x)}{\rho}\right)^{p_k} = 0, \text{ uniformly on } n \right\},
\]

\[
\tilde{w}_\theta [A, M, \Delta, p] = \left\{ x \in \omega : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x) - L}{\rho}\right)^{p_k} = 0, \text{ for some } L, \text{ uniformly on } n \right\}
\]

and

\[
\tilde{w}_\theta^\infty [A, M, \Delta, p] = \left\{ x \in \omega : \sup_{r} \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x)}{\rho}\right)^{p_k} < \infty, \text{ uniformly on } n \right\},
\]

where \(\Delta B_{kn}(x) = \sum_{i=1}^{\infty} (a_{ki} - a_{k+1,i}) x_{n+i} \).

Theorem 2.1. For any Orlicz function \(M \) and a bounded sequence \(p = (p_k) \) of positive real numbers, \(\tilde{w}_\theta^\rho [A, M, \Delta, p] \), \(\tilde{w}_\theta [A, M, \Delta, p] \) and \(\tilde{w}_\theta^\infty [A, M, \Delta, p] \) are linear spaces over the set of complex field.

Proof. We give the proof only for the space \(\tilde{w}_\theta^\rho [A, M, \Delta, p] \) and for other spaces follow by applying similar method. Let \(x = (x_k), y = (y_k) \in \tilde{w}_\theta^\rho [A, M, \Delta, p] \) and \(\alpha, \beta \in \mathbb{C} \). Then there exist \(\rho_1 > 0 \) and \(\rho_2 > 0 \) such that

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x)}{\rho_1}\right)^{p_k} = 0
\]

and

\[
\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(y)}{\rho_2}\right)^{p_k} = 0.
\]

Define \(\rho_3 = \max \left\{ 2|\alpha| \rho_1, 2|\beta| \rho_2 \right\} \). Since the operator \(\Delta B_{kn} \) is linear and \(M \) is non-decreasing and convex, we have

\[
\frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x) \alpha x + \beta y)}{\rho_3}\right)^{p_k} \leq \frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\alpha \Delta B_{kn}(x) + \beta \Delta B_{kn}(y)}{\rho_3}\right)^{p_k}
\]

and

\[
\frac{1}{h_r} \sum_{k \in I_r} M\left(\frac{\Delta B_{kn}(x)}{\rho_3}\right)^{p_k} + M\left(\frac{\beta \Delta B_{kn}(y)}{\rho_3}\right)^{p_k}
\]
\[\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho_{1}} \right) + M \left(\frac{\| \Delta B_{kn}(y) \|}{\rho_{2}} \right) \right]^{p_{s}} \leq \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho_{1}} \right) + M \left(\frac{\| \Delta B_{kn}(y) \|}{\rho_{2}} \right) \right]^{p_{s}} \leq C \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho_{1}} \right) \right]^{p_{s}} + C \left(\sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(y) \|}{\rho_{2}} \right) \right]^{p_{s}} \right) \rightarrow 0 \text{ as } r \rightarrow \infty, \]

where \(C = \max(1, 2^{H_{1}}) \), so \(\alpha x + \beta y \in \overline{w}_{\rho}^{p} \{A, M, \Delta, p\} \), hence it is a linear space. \(\Box \)

Theorem 2.2. For any Orlicz function \(M \) and a bounded sequence \(p = (p_{s}) \) of positive real numbers, \(\overline{w}_{\rho}^{p} \{A, M, \Delta, p\} \) is a topological paranormed space, paranormed by

\[g(x) = \inf \left\{ \rho^{p_{s}} : \left[\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho} \right) \right]^{p_{s}} \right]^{\frac{1}{r}} \leq 1, r = 1, 2, 3, ... \right\} \]

where \(T = \max(1, \sup_{k} p_{k} = H) \).

Proof. The subadditivity of \(g \) follows from the Theorem 2.1 by taking \(\alpha = \beta = 1 \) and it is clear that \(g(x) = g(-x) \). Since \(M(0) = 0 \), we get \(\inf \left\{ \rho^{p_{s}} \right\} = 0 \) for \(x = 0 \). Suppose that \(\chi_{k} \neq 0 \) for each \(k \in \mathbb{N} \). This implies that \(\Delta B_{kn}(x) \neq 0 \) for each \(k \) and \(n \). Let \(\varepsilon \rightarrow 0 \), then

\[\frac{\| \Delta B_{kn}(x) \|}{\varepsilon} \rightarrow \infty. \]

It follows that

\[\left(\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\varepsilon} \right) \right]^{p_{s}} \right)^{\frac{1}{r}} \rightarrow \infty \]

which is a contradiction. Now we prove that scalar multiplication is continuous. Let \(\lambda \) be any complex number, by definition

\[g(\lambda x) = \inf \left\{ \rho^{p_{s}} : \left[\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(\lambda x) \|}{\rho} \right) \right]^{p_{s}} \right]^{\frac{1}{r}} \leq 1, r = 1, 2, 3, ... \right\} \]

\[= \inf \left\{ \rho^{p_{s}} : \left[\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho} \right) \right]^{p_{s}} \right]^{\frac{1}{r}} \leq 1, r = 1, 2, 3, ... \right\}. \]

Suppose that \(s = \frac{p_{s}}{n} \), then \(\rho = s|\lambda| \) and since \(|\lambda|^{p_{s}} \leq \max(1, |\lambda|^{H}) \) we have

\[g(\lambda x) \leq |\lambda|^{p_{s}} \leq \max(1, |\lambda|^{H}) \inf \left\{ s^{p_{s}} : \left[\frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{s} \right) \right]^{p_{s}} \right]^{\frac{1}{r}} \leq 1, r = 1, 2, 3, ... \right\} \]

which converges to zero as \(x \) converges to zero in \(\overline{w}_{\rho}^{p} \{A, M, \Delta, p\} \). Now suppose that \(\lambda_{i} \rightarrow 0 \) as \(i \rightarrow \infty \) and \(x \) is fixed in \(\overline{w}_{\rho}^{p} \{A, M, \Delta, p\} \). For arbitrary \(\varepsilon > 0 \) and let \(r_{s} \) be a positive integer such that

\[\frac{1}{h_{r_{s}}} \sum_{k \in I_{r_{s}}} \left[M \left(\frac{\| \Delta B_{kn}(x) \|}{\rho} \right) \right]^{p_{s}} \leq \left(\frac{\varepsilon}{2} \right)^{T} \]
for some $\rho > 0$ and $r > r_o$. This implies that

$$\left(\frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{\left| A \varepsilon B_k \right|}{\rho} \right) \right] \right)^{\frac{1}{p}} < \frac{\varepsilon}{2}$$

for some $\rho > 0$ and $r > r_o$. Let $0 < |\lambda| < 1$. Using the convexity of Orlicz function M, for $r = r_o$, we get

$$\frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{|\lambda| A \varepsilon B_k (x)}{\rho} \right) \right]^{p} \leq \frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{|\lambda| A \varepsilon B_k (x)}{\rho} \right) \right]^{p} < \left(\frac{\varepsilon}{2} \right)^{T}.$$

Since M is continuous everywhere in $[0, \infty)$, then we consider the function, for $r \leq r_o$

$$f(t) = \frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{t A \varepsilon B_k (x)}{\rho} \right) \right]^{p}.$$

Then f is continuous at zero. So there is a $\delta \in (0, 1)$ such that $|f(t)| < \left(\frac{\varepsilon}{2} \right)^{T}$ for $0 < t < \delta$. Let A be such that $|\lambda| < \delta$ for $i > A$ and $r \leq r_o$

$$\left(\frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{|\lambda| A \varepsilon B_k (x)}{\rho} \right) \right]^{p} \right)^{\frac{1}{2}} < \frac{\varepsilon}{2}$$

for $i > A$ and all r, so that $g(\lambda x) \to 0$ as $\lambda \to 0$. This completes the proof.

Theorem 2.3. Let the sequence $p = (p_k)$ be bounded. Then $\tilde{w}^p_0 [A, M, \Delta, p] \subset \tilde{w}_0 [A, M, \Delta, p] \subset \tilde{w}^{\infty}_0 [A, M, \Delta, p]$.

Proof. Let $x = (x_k) \in \tilde{w}^p_0 [A, M, \Delta, p]$. Then we have

$$\frac{1}{h_r} \sum_{k \in I} \left[M \left(\frac{A \varepsilon B_k (x)}{2^p} \right) \right]^{p} \leq C \sum_{k \in I} \frac{1}{2^p} \left[M \left(\frac{|A \varepsilon B_k (x)|}{\rho} \right) \right]^{p} + \frac{C}{h_r} \sum_{k \in I} \frac{1}{2^p} \left[M \left(\frac{|\lambda|}{\rho} \right) \right]^{p} \leq C \sum_{k \in I} \frac{1}{2^p} \left[M \left(\frac{|A \varepsilon B_k (x)|}{\rho} \right) \right]^{p} + C \max \left(1, \sup \left[M \left(\frac{|\lambda|}{\rho} \right) \right] \right),$$

where $H = \sup p_k < \infty$ and $C = \max \left(1, 2^{q-1} \right)$. Thus we have $x = (x_k) \in \tilde{w}_0 [A, M, \Delta, p]$. The inclusion $\tilde{w}_0 [A, M, \Delta, p] \subset \tilde{w}^{\infty}_0 [A, M, \Delta, p]$ is obvious.

Theorem 2.4. If $0 < p_k < q_k$ and $\left(\frac{p_k}{q_k} \right)$ is bounded, then $\tilde{w}_0 [A, M, \Delta, p] \subset \tilde{w}_0 [A, M, \Delta, q]$.

Proof. If we take $M \left(\frac{|A \varepsilon B_k (x)|}{\rho} \right) = w_k$ for all $k \in \mathbb{N}$, then using the same technique employed in the proof of Theorem 2.9 of Güngör et al., [12].

Corollary 2.5. The following statements are valid.

(i) If $0 < \inf \lambda_k \leq 1$ for all $k \in \mathbb{N}$, then $\tilde{w}_0 [A, M, \Delta, p] \subset \tilde{w}_0 [A, M, \Delta]$.

(ii) If $1 \leq p_k \leq \sup \lambda_k = H < \infty$ for all $k \in \mathbb{N}$, then $\tilde{w}_0 [A, M, \Delta] \subset \tilde{w}_0 [A, M, \Delta, p]$.

The proof of the following result is a routine work, so we omitted.

Proposition 2.6. Let M be an Orlicz function satisfies Δ_2-condition. Then $\tilde{w}^p_0 [A, \Delta, p] \subset \tilde{w}^p_0 [A, M, \Delta, p]$, $\tilde{w}_0 [A, \Delta, p] \subset \tilde{w}_0 [A, M, \Delta, p]$ and $\tilde{w}^{\infty}_0 [A, \Delta, p] \subset \tilde{w}^{\infty}_0 [A, M, \Delta, p]$.
3. New Sequence Space of Order α

In this section let $\alpha \in (0, 1]$ be any real number, $\theta = (k_r)$ be a lacunary sequence, and p be a positive real number such that $1 < p < \infty$. Now we define the following sequence space.

$$\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p) = \left\{ x \in w : \sup_r \frac{1}{h_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p < \infty, \text{ uniformly on } n. \right\}$$

Special cases:

(a) For $p = 1$ we have $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p) = \widetilde{z}_{\theta}^{\alpha} [A, \Delta]$.

(b) For $\alpha = 1$ and $p = 1$ we have $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p) = \widetilde{z}_{\theta}^{\alpha} [A, \Delta]$.

Theorem 3.1. Let $\alpha \in (0, 1]$ and p be a positive real number such that $1 \leq p < \infty$. Then the sequence space $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p)$ is a BK-space normed by

$$||x||_a = \sup_r \frac{1}{h_r^p} \left(\sum_{k \in I_r} |\Delta B_{kn} (x)|^p \right)^{\frac{1}{p}}.$$

Proof. The proof of the result is straightforward, so omitted. \(\square \)

Theorem 3.2. Let $\alpha \in (0, 1]$ and p be a positive real number such that $1 \leq p < \infty$. Then $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] \subseteq \widetilde{w}_{\theta} [A, \Delta] (p)$.

Proof. The proof of the result is straightforward, so omitted. \(\square \)

Theorem 3.3. Let α and β be fixed real numbers such that $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. Then $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p) \subseteq \widetilde{w}_{\theta}^{\beta} [A, \Delta] (p)$.

Proof. The proof of the result is straightforward, so omitted. \(\square \)

Theorem 3.4. Let α and β be fixed real numbers with $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all r, then $\widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p) \subset \widetilde{w}_{\phi}^{\beta} [A, \Delta] (p)$ if and only if $\sup \left(\frac{h_r}{l_r^p} \right) < \infty$.

Proof. Let $x = (x_r) \in \widetilde{w}_{\theta}^{\alpha} [A, \Delta] (p)$ and $\sup_{r \geq 1} \left(\frac{h_r}{l_r^p} \right) < \infty$. Then

$$\sup_r \frac{1}{h_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p < \infty$$

and there exists a positive number K such that $h_r^p \leq K l_r^p$ and so that $\frac{1}{l_r} \leq \frac{K}{h_r^p}$ for all r. Therefore, we have

$$\frac{1}{l_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p \leq \frac{K}{h_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p.$$

Now taking supremum over r, we get

$$\sup \frac{1}{l_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p \leq \sup \frac{K}{h_r^p} \sum_{k \in I_r} |\Delta B_{kn} (x)|^p$$

and hence $x \in \widetilde{w}_{\phi}^{\beta} [A, \Delta] (p)$.

A. Esi, B. Hazarika, A. Esi / Filomat 30:12 (2016), 3195–3208

3200
Next suppose that $\overline{w}^{\infty}_{0a} [A, \Delta] (p) \subset \overline{w}^{\infty}_{\psi} [A, \Delta] (p)$ and $\sup_r \left(\frac{b_r^p}{r} \right) = \infty$. Then there exists an increasing sequence (r_i) of natural numbers such that $\lim_r \left(\frac{b_r^p}{r} \right) = \infty$. Let L be a positive real number, then there exists $i_0 \in \mathbb{N}$ such that $b_{r_i}^p > L$ for all $r_i \geq i_0$. Then $h_{r_i}^p > L_{r_i}^p$ and so $\frac{1}{r_i} > \frac{b_{r_i}^p}{r_i}$. Therefore we can write

$$\frac{1}{r_i} \sum_{k \in I_r} |AB_k (x)|^p > \frac{L}{h_{r_i}^p} \sum_{k \in I_r} |AB_k (x)|^p$$

for all $r_i \geq i_0$.

Now taking supremum over $r_i \geq i_0$ then we get

$$\sup_{r_i \geq i_0} \frac{1}{r_i} \sum_{k \in I_r} |AB_k (x)|^p > \sup_{r_i \geq i_0} \frac{L}{h_{r_i}^p} \sum_{k \in I_r} |AB_k (x)|^p. \tag{3}$$

Since the relation (3) holds for all $L \in \mathbb{R}^+$ (we may take the number L sufficiently large), we have

$$\sup_{r_i \geq i_0} \frac{1}{r_i} \sum_{k \in I_r} |AB_k (x)|^p = \infty$$

but $x = (x_l) \in \overline{w}^{\infty}_{0a} [A, \Delta, p]$ with

$$\sup_r \left(\frac{b_r^p}{r} \right) < \infty.$$

Therefore $x \notin \overline{w}^{\infty}_{0a} [A, \Delta] (p)$ which contradicts that $\overline{w}^{\infty}_{0a} [A, \Delta] (p) \subset \overline{w}^{\infty}_{\psi} [A, \Delta] (p)$. Hence $\sup_{r \geq 1} \left(\frac{b_r^p}{r} \right) < \infty$. \square

Corollary 3.5. Let α and β be fixed real numbers with $0 < \alpha \leq \beta \leq 1$ and p be a positive real number such that $1 \leq p < \infty$. For any two lacunary sequences $\theta = (h_r)$ and $\phi = (l_r)$ for all $r \geq 1$, then

(a) $\overline{w}^{\infty}_{0a} [A, \Delta] (p) = \overline{w}^{\infty}_{\phi} [A, \Delta] (p)$ if and only if $0 < \inf_r \left(\frac{b_r^p}{r} \right) < \sup_r \left(\frac{b_r^p}{r} \right) < \infty$.

(b) $\overline{w}^{\infty}_{0a} [A, \Delta] (p) = \overline{w}^{\infty}_{\psi} [A, \Delta] (p)$ if and only if $0 < \inf_r \left(\frac{b_r^p}{r} \right) < \sup_r \left(\frac{b_r^p}{r} \right) < \infty$.

(c) $\overline{w}^{\infty}_{0a} [A, \Delta] (p) = \overline{w}^{\infty}_{\psi} [A, \Delta] (p)$ if and only if $0 < \inf_r \left(\frac{b_r^p}{r} \right) < \sup_r \left(\frac{b_r^p}{r} \right) < \infty$.

We state the following results without proof.

Theorem 3.6. $\ell_p [A, \Delta] \subset \overline{w}^{\infty}_{0a} [A, \Delta] (p) \subset \ell_\infty [A, \Delta]$.

Proof. The proof of the result is straightforward, so omitted. \square

Theorem 3.7. If $0 < p < q$, then $\overline{w}^{\infty}_{0a} [A, \Delta] (p) \subset \overline{w}^{\infty}_{0a} [A, \Delta] (q)$.

Proof. The proof of the result is straightforward, so omitted. \square

4. Some Geometric Properties of the New Space

In this section we study some of the geometric properties like order continuous, the Fatou property and the Banach-Saks property of type p in this new sequence space.

Theorem 4.1. The space $\overline{w}^{\infty}_{0a} [A, \Delta] (p)$ is order continuous.
Theorem 4.2. The space \(\tilde{w}_0^{\alpha} [A, \Delta] (p) \) has the Fatou property.

Proof. Let \(x \) be a real sequence and \((x_i) \) be any nondecreasing sequence of non-negative elements form \(\tilde{w}_0^{\alpha} [A, \Delta] (p) \) such that \(x_j(i) \to x(i) \) as \(j \to \infty \) coordinatewisely and \(\sup_j \|x_j\|_\alpha < \infty \).

Let us denote \(T = \sup_j \|x_j\|_\alpha \). Since the supremum is homogeneous, then we have

\[
\frac{1}{T} \sup_r \left(\frac{1}{r^\alpha} \left(\sum_{k \in \mathbb{N}} |\Delta B_{k\alpha} (x_j(i))|^p \right)^{\frac{1}{p}} \right) \leq \frac{1}{r^\alpha} \left(\sum_{k \in \mathbb{N}} \frac{|\Delta B_{k\alpha} (x_j(i))|^p}{\|x_j\|_\alpha} \right)^{\frac{1}{p}} = \frac{1}{\|x_j\|_\alpha} = 1.
\]

Also by the assumptions that \((x_j) \) is non-decreasing and convergent to \(x \) coordinatewisely and by the Beppo-Levi theorem, we have

\[
\frac{1}{T} \lim_{j \to \infty} \sup_r \left(\frac{1}{r^\alpha} \left(\sum_{k \in \mathbb{N}} |\Delta B_{k\alpha} (x_j(i))|^p \right)^{\frac{1}{p}} \right) \leq \frac{1}{r^\alpha} \left(\sum_{k \in \mathbb{N}} \frac{|\Delta B_{k\alpha} (x(i))|^p}{T} \right)^{\frac{1}{p}} \leq 1,
\]

whence

\[
\|x\|_\alpha \leq T = \sup_j \|x_j\|_\alpha = \lim_{j \to \infty} \|x_j\|_\alpha < \infty.
\]

Therefore \(x \in \tilde{w}_0^{\alpha} [A, \Delta] (p) \). On the other hand, since \(0 \leq x_j \) for any natural number \(j \) and the sequence \((x_j) \) is non-decreasing, we obtain that the sequence \(\|x_j\|_\alpha \) is bounded form above by \(\|x\|_\alpha \). Therefore \(\lim_{j \to \infty} \|x_j\|_\alpha \leq \|x\|_\alpha \) which contradicts the above inequality proved already, yields that \(\|x\|_\alpha = \lim_{j \to \infty} \|x_j\|_\alpha \). □

Theorem 4.3. The space \(\tilde{w}_0^{\alpha} [A, \Delta] (p) \) has the Banach-Saks property.

Proof. The proof of the result follows from the standard technique. □

5. Lacunary Statistical Convergence

The notion of statistical convergence was introduced by Fast [8] and studied various authors (see [7, 9, 25]). The notion of lacunary statistical convergence was introduced by Fridy and Orhan [10] and has been investigated for the real case in [11]. For more details on lacunary statistical convergence we refer to [13, 14] and many others. In this section, we define the concept of \(\bar{S}_0 [A, \Delta] \)-statistical convergence and establish the relationship of \(\bar{S}_0 [A, \Delta] \) with \(\tilde{w}_0 [A, \Delta] \). Also we introduce the notion of \(\bar{S}_0 [A, \Delta] \)-statistical convergence of order \(\alpha \) of real number sequences and obtain some inclusion relations between the set \(S [A, \Delta] \)-statistical convergence of order \(\alpha \).

Definition 5.1. [8] A sequence \(x = (x_k) \) is said to be statistically convergent to \(L \), if for every \(\varepsilon > 0 \)

\[
\lim_{n} \frac{1}{n} \sum_{k \leq n} |x_k - L| \leq \varepsilon
\]

In this case we write \(S \)-lim \(x = L \) or \(x_k \to L(S) \).
Definition 5.2. [10] Let \(\theta = (k_r) \) be a lacunary sequence. A sequence \(x = (x_k) \) is said to be lacunary statistically convergent or \(S_0 \)-convergent to \(L \), if for every \(\epsilon > 0 \)

\[
\lim_{r \to \infty} \frac{1}{h_r} |\{ k \in I_r : |x_k - L| \geq \epsilon \}| = 0.
\]

In this case we write \(S_0 - \lim x = L \) or \(x_k \to L(S_0) \) and \(S_0 = \{ x \in w : S_0 - \lim x = L \ \text{for some} \ L \} \).

Definition 5.3. Let \(\theta = (k_r) \) be a lacunary sequence. A sequence \(x = (x_k) \) is said to be \(S_\theta [A, \Delta] \)-convergent to \(L \), if for every \(\epsilon > 0 \)

\[
\lim_{r \to \infty} \frac{1}{h_r} |\{ k \in I_r : |\Delta B_{k_n} (x) - L| \geq \epsilon \}| = 0.
\]

In this case we write \(S_\theta [A, \Delta] - \lim x = L \) or \(x_k \to L(S_\theta [A, \Delta]) \).

Theorem 5.4. Let \(\theta = (k_r) \) be a lacunary sequence.

(a) If \(x_k \to L(\widehat{w}_0 [A, \Delta]) \) then \(x_k \to L(S_\theta [A, \Delta]) \),

(b) If \(x \in l_\infty [A, \Delta] \) and \(x_k \to L(S_\theta [A, \Delta]) \), then \(x_k \to L(\widehat{w}_0 [A, \Delta]) \),

(c) \(\widehat{w}_0 [A, \Delta] \cap l_\infty [A, \Delta] = \widehat{S}_\theta [A, \Delta] \cap l_\infty [A, \Delta] \), where

\[
l_\infty [A, \Delta] = \left\{ x \in w : \sup_{k,n} |\Delta B_{k_n} (x)| < \infty \right\}.
\]

Proof. (a) Suppose that \(\epsilon > 0 \) and \(x_k \to L(\widehat{w}_0 [A, \Delta]) \), then we have

\[
\sum_{k \in I_r} |\Delta B_{k_n} (x) - L| \geq \sum_{k \in I_r, \ |\Delta B_{k_n} (x) - L| \geq \epsilon} |\Delta B_{k_n} (x) - L| \geq e |\{ k \in I_r : |\Delta B_{k_n} (x) - L| \geq \epsilon \}|
\]

Therefore \(x_k \to L(S_\theta [A, \Delta]) \).

(b) Suppose that \(x \in l_\infty [A, \Delta] \) and \(x_k \to L(S_\theta [A, \Delta]) \), i.e., for some \(K > 0 \), \(|\Delta B_{k_n} (x) - L| \leq K \) for all \(k \) and \(n \). Given \(\epsilon > 0 \), we get

\[
\frac{1}{h_r} \sum_{k \in I_r, \ |\Delta B_{k_n} (x) - L| \geq \epsilon} |\Delta B_{k_n} (x) - L| + \frac{1}{h_r} \sum_{k \in I_r, \ |\Delta B_{k_n} (x) - L| < \epsilon} |\Delta B_{k_n} (x) - L|
\]

\[
\leq \frac{K}{h_r} |\{ k \in I_r : |\Delta B_{k_n} (x) - L| \geq \epsilon \}| + \epsilon,
\]

as \(r \to \infty \), the right side goes to zero, which implies that \(x_k \to L(\widehat{w}_0 [A, \Delta]) \).

(c) Follows from (a) and (b). \(\square \)

Definition 5.5. Let \(0 < \alpha \leq 1 \) be given. A sequence \(x = (x_k) \) is said to be almost statistically \([A, \Delta] \)-convergent of order \(\alpha \) if \(S_\alpha [A, \Delta] \)-convergent of order \(\alpha \) if there is a real number \(L \) such that for every \(\epsilon > 0 \)

\[
\lim_{n \to \infty} \frac{1}{n^\alpha} |\{ k \leq n : |\Delta B_{k_n} (x) - L| \geq \epsilon \}| = 0.
\]

In this case we write \(S_\alpha [A, \Delta] - \lim x = L \) or \(x_k \to L(S_\alpha [A, \Delta]) \).
Definition 5.6. Let \(\theta = (k) \) be a lacunary sequence and \(0 < \alpha \leq 1 \) be given. A sequence \(x = (x_k) \) is said to be \(S^\alpha_0 [A, \Delta] \)–convergent of order \(\alpha \) if there is a real number \(L \) such that for every \(\varepsilon > 0 \)

\[
\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in I_r} |\Delta B_{kn}(x) - L| \geq \varepsilon = 0.
\]

(4)

In this case we write \(S^\alpha_0 [A, \Delta] \)–\(\lim x = L \) or \(x_k \to L(S^\alpha_0 [A, \Delta]) \).

Theorem 5.7. Let \(0 < \alpha \leq 1 \) and \(x = (x_k) \) and \((y) = (y_k) \) be sequences of real numbers.

(a) If \(S^\alpha_0 [A, \Delta] \)–\(\lim x_k = x_0 \) and \(c \in \mathbb{C} \), then \(S^\alpha [A, \Delta] \)–\(\lim c(x_k) = cx_0 \);

(b) If \(S^\alpha_0 [A, \Delta] \)–\(\lim x_k = x_0 \) and \(S^\alpha [A, \Delta] \)–\(\lim y_k = y_0 \), then \(S^\alpha [A, \Delta] \)–\(\lim (x_k + y_k) = x_0 + y_0 \).

Proof. (a) For \(\varepsilon = 0 \), the result is trivial. Suppose that \(\varepsilon \neq 0 \), then for every \(\varepsilon > 0 \) the result follows from the following inequality

\[
\frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(cx) - cx_0| \geq \varepsilon\| = \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - x_0| \geq \varepsilon|c|\|
\]

(b) For every \(\varepsilon > 0 \). The result follows from the from the following inequality.

\[
\frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x + y) - (x_0 + y_0)| \geq \varepsilon\| = \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - x_0| \geq \varepsilon\| + \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(y) - y_0| \geq \varepsilon\|
\]

\(\square \)

Theorem 5.8. Let \(0 < \alpha \leq 1 \) and \(x = (x_k) \) and \((y) = (y_k) \) be sequences of real numbers.

(a) If \(S^\alpha_0 [A, \Delta] \)–\(\lim x_k = x_0 \) and \(c \in \mathbb{C} \), then \(S^\alpha [A, \Delta] \)–\(\lim c(x_k) = cx_0 \);

(b) If \(S^\alpha_0 [A, \Delta] \)–\(\lim x_k = x_0 \) and \(S^\alpha [A, \Delta] \)–\(\lim y_k = y_0 \), then \(S^\alpha [A, \Delta] \)–\(\lim (x_k + y_k) = x_0 + y_0 \).

Proof. (a) For \(\varepsilon = 0 \), the result is trivial. Suppose that \(\varepsilon \neq 0 \), then for every \(\varepsilon > 0 \) the result follows from the following inequality

\[
\frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(cx) - cx_0| \geq \varepsilon\| = \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - x_0| \geq \varepsilon|c|\|
\]

(b) For every \(\varepsilon > 0 \). The result follows from the from the following inequality.

\[
\frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x + y) - (x_0 + y_0)| \geq \varepsilon\| = \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - x_0| \geq \varepsilon\| + \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(y) - y_0| \geq \varepsilon\|
\]

\(\square \)

Theorem 5.9. If \(0 < \alpha < \beta \leq 1 \), then \(S^\alpha_0 [A, \Delta] \subset S^\beta_0 [A, \Delta] \) and the inclusion is strict.

Proof. The proof of the result follows from the following inequality.

\[
\frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - L| \geq \varepsilon\| = \frac{1}{h_r^\alpha} \|k \leq n : |\Delta B_{kn}(x) - L| \geq \varepsilon|c|\|
\]

To prove the inclusion is strict, let \(\theta \) be given and we consider a sequence \(x = (x_k) \) be defined by

\[
\Delta B_{kn}(x_k) = \begin{cases} \lfloor \sqrt[n]{k} \rfloor, & \text{if } k = 1, 2, 3, ... \lfloor \sqrt[n]{r} \rfloor; \\
0, & \text{otherwise.}
\end{cases}
\]

Then we have \(x \in S^\alpha_0 [A, \Delta] \) for \(\frac{1}{2} < \beta \leq 1 \) but \(x \not\in S^\alpha_0 [A, \Delta] \) for \(0 < \alpha \leq \frac{1}{2} \). \(\square \)
Corollary 5.10. If a sequence is $\tilde{S}_0^\alpha [A, \Delta]$-convergent to L then it is $\tilde{S}_0 [A, \Delta]$-convergent to L.

Theorem 5.11. Let $0 < \alpha \leq 1$ and $\theta = (k_r)$ be a lacunary sequence. If $\lim \inf, q_r > 1$, then $\tilde{S}^\alpha [A, \Delta] \subset \tilde{S}_0^\alpha [A, \Delta]$.

Proof. Suppose that $\lim \inf, q_r > 1$, then there exists a $\delta > 0$ such that $q_r \geq 1 + \delta$ for sufficiently large r which implies that

$$\frac{h_r}{k_r} \geq \frac{\delta}{1 + \delta} \Rightarrow \left(\frac{h_r}{k_r}\right)^\alpha \geq \left(\frac{\delta}{1 + \delta}\right)^\alpha \Rightarrow \frac{1}{k_r^\alpha} \geq \frac{\delta^\alpha}{(1 + \delta)^\alpha} \frac{1}{h_r^\alpha}.$$

If $x_k \to L(\tilde{S}^\alpha [A, \Delta])$ then for every $\varepsilon > 0$ and for sufficiently large r we have

$$\frac{1}{k_r^\alpha} ||k \leq k_r : |\Delta B_{kn} (x) - L| \geq \varepsilon|| \geq \frac{1}{k_r^\alpha} ||k \in I_r : |\Delta B_{kn} (x) - L| \geq \varepsilon|| \geq \delta^\alpha \frac{1}{(1 + \delta)^\alpha} \frac{1}{h_r^\alpha} ||k \in I_r : |\Delta B_{kn} (x) - L| \geq \varepsilon||.$$

This complete the proof of the theorem. \qed

Theorem 5.12. Let $0 < \alpha \leq 1$ and $\theta = (k_r)$ be a lacunary sequence. If $\lim \sup, q_r < \infty$, then $\tilde{S}^\alpha [A, \Delta] \subset \tilde{S} [A, \Delta]$.

Proof. If $\lim \sup, q_r < \infty$, then there exists an $K > 0$ such that $q_r < K$ for all r. Suppose that $x_k \to L(\tilde{S}^\alpha [A, \Delta])$ and let $M_r = ||k \in I_r : |\Delta B_{kn} (x) - L| \geq \varepsilon||$. Then form relation (4) for given $\varepsilon > 0$ there is an $r_0 \in \mathbb{N}$ such that for $0 < \alpha \leq 1$

$$\frac{M_r}{h_r^\alpha} < \varepsilon \Rightarrow \frac{M_r}{h_r^\alpha} < \varepsilon \text{ for all } r > r_0.$$

The rest of the proof of the theorem follows by using the similar technique of Lemma 3 [10]. \qed

Theorem 5.13. If

$$\lim \inf_{r \to \infty} \frac{h_r^\alpha}{k_r} = 0,$$

then $\tilde{S} [A, \Delta] \subset \tilde{S}^\alpha [A, \Delta]$.

Proof. For a given $\varepsilon > 0$ we have

$$\{k \leq k_r : |\Delta B_{kn} (x) - L| \geq \varepsilon\} \supset \{k \leq k_r : |\Delta B_{kn} (x) - L| \geq \varepsilon\}.$$

Then we have

$$\frac{1}{k_r^\alpha} ||k \leq k_r : |\Delta B_{kn} (x) - L| \geq \varepsilon|| \geq \frac{1}{k_r^\alpha} ||k \in I_r : |\Delta B_{kn} (x) - L| \geq \varepsilon|| = \frac{h_r^\alpha}{k_r^\alpha} \frac{1}{h_r^\alpha} ||k \in I_r : |\Delta B_{kn} (x) - L| \geq \varepsilon||.$$

By taking limit as $r \to \infty$ and from relation (5) we have

$$x_k \to L(\tilde{S} [A, \Delta]) \Rightarrow x_k \to L(\tilde{S}^\alpha [A, \Delta]).$$

\qed
Definition 5.14. Let M be an Orlicz function, $p = (p_k)$ be a sequence of strictly positive real numbers, $\alpha \in (0, 1]$, $\theta = (\kappa)$ be a lacunary sequence, and for $p > 0$, now we define

$$\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$$

If $M(x) = x$ and $p_k = p$ for all $k \in \mathbb{N}$ then we shall write $\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

Theorem 5.15. Let (p_k) be a bounded and $0 < \inf_k p_k \leq p_k \leq \sup_k p_k = H < \infty$. Let $\alpha, \beta \in (0, 1]$ be real numbers such that $\alpha \leq \beta$, M be an Orlicz function and $\theta = (\kappa)$ be a lacunary sequence, then $\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

Proof. Let $x = (x_k) \in \lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

\[
\frac{1}{h_r^\beta} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p \leq \frac{1}{h_r^\beta} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p \leq \frac{1}{h_r^\beta} \sum_{k \in L_r} \min \left(\left(M(\epsilon_1) \right)^p, \left(M(\epsilon_1) \right)^p \right), \quad \epsilon_1 = \frac{\epsilon}{\rho}.
\]

From the above inequality we have $(x_k) \in \lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

Corollary 5.16. Let $0 < \alpha \leq 1, M$ be an Orlicz function and $\theta = (\kappa)$ be a lacunary sequence, then $\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

Theorem 5.17. Let M be an Orlicz function, $x = (x_k)$ be a sequence in $l_\infty [A, \Delta]$, and $\theta = (\kappa)$ be a lacunary sequence. If $\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$

Proof. Suppose that $x = (x_k)$ is a in $l_\infty [A, \Delta]$ and $\lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$ There exists $K > 0$ such that $\|A_{B_k} \| \leq K$ for all $k \in \mathbb{N}$ and n. For given $\epsilon > 0$ we have

\[
\frac{1}{h_r^\beta} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p \leq \frac{1}{h_r^\beta} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p \leq \max \left\{ \left(M \left(\frac{\epsilon_1}{\rho} \right) \right)^p, \left(M \left(\frac{\epsilon_1}{\rho} \right) \right)^p \right\}.
\]

Therefore we have $(x_k) \in \lim_{r \to \infty} \frac{1}{h_r^\alpha} \sum_{k \in L_r} \left(M \left(\frac{\|A_{B_k} \| - L}{\rho} \right) \right)^p = 0, \text{ for some } L, \text{ uniformly on } n.$
Theorem 5.18. Let M be an Orlicz function and if $\inf_k p_k > 0$, then limit of any sequence $x = (x_k)$ in $\mathcal{w}_M [A, M, \Delta, p]$ is unique.

Proof. Let $\lim_k p_k = s > 0$. Suppose that $(x_k) \to I_1 \left(\mathcal{w}_M [A, M, \Delta, p]\right)$ and $(x_k) \to I_2 \left(\mathcal{w}_M [A, M, \Delta, p]\right)$. Then there exist $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\lim_{r \to \infty} \frac{1}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_1|}{\rho} \right) \right]^{p_k} = 0, \text{ uniformly on } n$$

and

$$\lim_{r \to \infty} \frac{1}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_2|}{\rho} \right) \right]^{p_k} = 0, \text{ uniformly on } n.$$

Let $\rho = \max\{2\rho_1, 2\rho_2\}$. As M is nondecreasing and convex, we have

$$\frac{1}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|l_1 - l_2|}{\rho} \right) \right]^{p_k} \leq \frac{D}{H_r^p} \sum_{k \in I_r} \frac{1}{2^{p_k}} \left(\left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_1|}{\rho} \right) \right]^{p_k} + \left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_2|}{\rho} \right) \right]^{p_k} \right)$$

$$\frac{D}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_1|}{\rho} \right) \right]^{p_k} + \frac{D}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|\Delta B_{\rho_k}(x) - l_2|}{\rho} \right) \right]^{p_k} \to 0 \text{ as } r \to \infty,$$

where $\sup_k p_k = H$ and $D = \max(1, 2^{l-1})$. Therefore we get

$$\lim_{r \to \infty} \frac{1}{H_r^p} \sum_{k \in I_r} \left[M \left(\frac{|l_1 - l_2|}{\rho} \right) \right]^{p_k} = 0.$$

As $\lim_k p_k = s$, we have

$$\lim_{k \to \infty} \left[M \left(\frac{|l_1 - l_2|}{\rho} \right) \right]^{p_k} = \left[M \left(\frac{|l_1 - l_2|}{\rho} \right) \right]^{s}$$

and so $l_1 = l_2$. Hence the limit is unique. □

6. Acknowledgement

The authors would like to thank Prof. Dragan S. Djordjević and the referees for his/her much encouragement, support, constructive criticism, careful reading and making a useful comment which improved the presentation and the readability of the paper.

References