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Abstract. The main topic of this paper is to show that in the 3-dimensional Minkowski spacetime, the
torsion of a null curve is equal to the Schwarzian derivative of a certain function appearing in a description
of the curve. As applications, we obtain descriptions of the slant helices, and null curves for which the
torsion is of the form τ = −2λs, s being the pseudo-arc parameter and λ = const , 0.

1. Introduction

There are very many papers about geometric properties of null curves in the Minkowski spacetimes.
We refer the monographs [4, 5], and the survey articles [3, 11, 12], etc.

On the other hand, there is the classical notion of the Schwarzian derivative in mathematical analysis.
This notion has many important applications in mathematical analysis (real and complex) and differential
geometry; see [6, 7, 13–15], etc. The author is specially inspired by the paper [7], where it is shown a strict
relation between the Schwarzian derivative and the curvature of worldlines in 2-dimenional Lorentzian
manifolds of constant curvature.

In the presented short paper, we will show that the torsion of a null curve in the 3-dimensional Minkowski
spacetime E3

1 is equal to the Schwarzian derivative of a certain function appearing in a description of the
curve. Descriptions of the slant helices are obtained, and null curves for which the torsion is given by
τ = −2λs, s being the pseudo-arc parameter and λ = const , 0.

2. Preliminaries

Let E3
1 be the 3-dimensional Minkowski spacetime, that is, the CartesianR3 endowed with the standard

Minkowski metric 1 given with respect to the Cartesian coordinates (x, y, z) by

1 = dx ⊗ dx + dy ⊗ dy − dz ⊗ dz, (1)

or as the symmetric 2-form 1 = dx2 + dy2
− dz2.
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Let α : I → E3
1 be a null (ligth-like) curve in E3

1, I being an open interval. Thus, 1(α ′, α ′) = 0, that is,
1(α ′(t), α ′(t)) = 0 for any t ∈ I. We also assume that the curve is non-degenerate, in the sense the three
vector fields α ′, α ′′, α ′′′ are linearly independent at every point of the curve.

Since 1(α ′, α ′) = 0 and 1(α ′, α ′′) = 0, it must be that 1(α ′′, α ′′) > 0. A parametrization of the null curve
is said to be pseudo-arc (or distinguished) if 1(α ′′, α ′′) = 1. A null curve can always be parametrized by a
pseudo-arc parameter. However, such a parameter is not uniquely defined. Precisely, for a null curve α, if
s1 is a pseudo-arc parameter, then s2 is a pseudo-arc parameter if and only if there exists a constant c such
that s2 = ±s1 + c.

In the sequel, we assume that the parametrization of a null curve is pseudo-arc, and we denote such a
parameter by s.

In the next section, we need the standard theorms concerning of null curves which can be formulated
in the following manner (see e.g. [3, 5, 11, 12]):

Let α be a null curve in the 3-dimensional Minkowski spacetime E3
1. Then, there exists the only one

Cartan moving frame (L = α ′,N,W) and the function τ defined along the curve α and such that

1(L,N) = 1(W,W) = 1, 1(L,L) = 1(L,W) = 1(N,N) = 1(N,W) = 0, (2)

and the following system of differential equations

L ′ = W, N ′ = τW, W ′ = − τL −N (3)

is satisfied. These vector fileds are given by

L = α ′, W = α ′′, N = − α ′′′ −
1
2
1(α ′′′, α ′′′)α ′, (4)

and the function τ by

τ =
1
2
1(α ′′′, α ′′′). (5)

From these results it can be deduced that a given function τ on an open interval I, there exists the only
one null curve α : I→ E3

1 realizing (2) and (3) up to the orientation of this curve and up to the isometries of
the Minkowski space E3

1.
The triple (L,N,W) defined in (4) is called the Frenet frame, the function τ defined in (5) is called the

torsion, and the equations (3) are called the Frenet equations of the null curve α. Since

det[L,N,W] = det[α ′, α ′′, α ′′′], (6)

the frames (L,N,W) and (α ′, α ′′, α ′′′) have the same orientations.
In the following section, we are going to expresse the torsion τ and the frame (L,N,W) with the help of

a special function related to a pseudo-arc parametrization of a null curve in E3
1.

3. A description of the torsion

Let α : I → E3
1 be a null curve. Simplifying denotations, we write α(s) = (x(s), y(s), z(s)), s ∈ I, where s is

a pseudo-arc parameter, and x(s), y(s), z(s) are certain functions of s. Then, we have

α ′ = x ′
∂
∂x

∣∣∣∣
α

+ y ′
∂
∂y

∣∣∣∣
α

+ z ′
∂
∂z

∣∣∣∣
α
.

For simplicity, instead of that, we will write α ′ = (x ′, y ′, z ′). And in the similar manner, the next derivatives
of α will be written, e.g., α ′′ = (x ′′, y ′′, z ′′).
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Using (1), our two assumptions: 1(α ′, α ′) = 0 (the nullity condition), and 1(α ′′, α ′′) = 1 (the pseudo-arc
parametrization) give the following two equalities

x ′ 2 + y ′ 2 − z ′ 2 = 0, (7)
x ′′ 2 + y ′′ 2 − z ′′ 2 = 1. (8)

One notes that the shapes of the equalities (7) and (8) exclude the situation when at least one of the functions
x ′, y ′, z ′ vanishes on an open subinterval of I. In the sequel, restricting slightly the assumptions, we will
consider only the case when x ′ , 0, y ′ , 0 and z ′ , 0 on I.

It is a standard and elementary idea that from (7), it follows that

x ′ = h, y ′ =
h
2

(
f −

1
f

)
, z ′ =

h
2

(
f +

1
f

)
, (9)

f and h being certain non-zero functions on I. Hence,

x ′′ = h′,

y ′′ =
f h′( f 2

− 1) + h f ′( f 2 + 1)
2 f 2 ,

z ′′ =
f h′( f 2 + 1) + h f ′( f 2

− 1)
2 f 2 .

In view of the above relations, the equality (8) turns into h2 f ′ 2 = f 2. Hence, f ′ is non-zero (and has constant
sign) on I. Consequently,

h = ε
f
f ′
, ε = ±1.

Thus, for the vector field L (cf. (4)), we have

L = α ′ =
ε

2 f ′
(
2 f , f 2

− 1, f 2 + 1
)
. (10)

Consequently, we get the following description of the curve α

α(s) = α(s0) +
ε
2

∫ s

s0

1
f ′(t)

(
2 f (t), f 2(t) − 1, f 2(t) + 1

)
dt, s, s0 ∈ I.

Conversely, if a curve α is given by the last formula, then (7) and (8) are fulfilled so that the curve is null
and not geodesic, and the parameter s is distinguish.

From (10), we obtain for the vector field W (cf. (4)),

W = α ′′ = −
ε f ′′

2 f ′ 2
(
2 f , f 2

− 1, f 2 + 1
)

+ ε
(
1, f , f

)
. (11)

From (11), we find

α ′′′ = ε
2 f ′′ 2 − f ′ f ′′′

2 f ′ 3
(
2 f , f 2

− 1, f 2 + 1
)
−
ε f ′′

f ′
(1, f , f ) + ε f ′(0, 1, 1). (12)

To compute 1(α ′′′, α ′′′), using (1), we find at first the following

1
((

2 f , f 2
− 1, f 2 + 1

)
,
(
2 f , f 2

− 1, f 2 + 1
))

= 0,

1
((

2 f , f 2
− 1, f 2 + 1

)
, (1, f , f )

)
= 0, 1

((
2 f , f 2

− 1, f 2 + 1
)
, (0, 1, 1)

)
= −2,

1
(
(1, f , f ), (1, f , f )

)
= 1, 1

(
(1, f , f ), (0, 1, 1)

)
= 0, 1 ((0, 1, 1), (0, 1, 1)) = 0.



Z. Olszak / Filomat 29:3 (2015), 553–561 556

Then, having (12) and applying the above formulas, we get

1(α ′′′, α ′′′) =
2 f ′ f ′′′ − 3 f ′′ 2

f ′ 2
. (13)

In view of (13) and (5), the torsion must be of the form

τ =
2 f ′ f ′′′ − 3 f ′′ 2

2 f ′ 2
=

(
f ′′

f ′

) ′
−

1
2

(
f ′′

f ′

)2

. (14)

Now, it is important to note that the right hand side of the formula (14) is just the Schwarzian derivative of
the function f , which is usually denoted by S( f ). Thus, τ = S( f ).

Finally, applying (10), (12) and (13) into (4), we find the vector field

N = −
ε f ′′ 2

4 f ′ 3
(
2 f , f 2

− 1, f 2 + 1
)

+
ε f ′′

f ′
(1, f , f ) − ε f ′(0, 1, 1). (15)

Summarizing the above considerations, we can formulate the following theorem.

Theorem 1. Let E3
1 be the 3-dimensional Minkowski spacetime. Any (non-degenerate) null curve α in E3

1 can be
parametrized in the following way

α(s) = α(s0) +
ε
2

∫ s

s0

1
f ′(t)

(
2 f (t), f 2(t) − 1, f 2(t) + 1

)
dt, s, s0 ∈ I, (16)

where s is a pseudo-arc parameter, I is a certain open interval, f is a non-zero function with non-zero derivative f ′ on
I. The torsion τ of such a curve is equal to the Schwarzian derivative of the function f , that is,

τ = S( f ) =

(
f ′′

f ′

) ′
−

1
2

(
f ′′

f ′

)2

. (17)

The vector fields forming the Frenet frame of the curve α are given by the formulas (10), (11) and (15).

Remark 1. Applying formulas (10), (11), (15), it can be verified that

det[L,N,W] = ε.

This together with (6) implies that the constant ε appering in (16) corresponds to the orientation of the curve α. Note
that the torsion does not depend on the orientation of the curve. Moreover, the torsion and the orientation does not
depend on the sign of the function f .

Remark 2. The Schwarzian derivative S is an invariant of a fractional-linear transformation T of the 1-dimensional
real projective spaceRP1 = R∪∞ (cf. e.g. [13]). That is, S(T◦ f ) = S( f ) if f is a function onRP1 and T : RP1

→ RP1

is given by

T(r) =
ar + b
cr + d

, r ∈ RP1, a, b, c, d ∈ R, ad − bc , 0. (18)

We can apply the above fact seeking for null curves with given torsion τ. However, we should be careful since the
domains of our functions f and T ◦ f may be defined only on some open subintervals lying on the real line R.
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4. Null Cartan helices

It is well-known that there are exactly three types of null curves with constant torsion in the Minkowski
spacetime E3

1 (cf e.g., [9]) up to the orientation of the curve and up to the isometries of the space. They are
often called the null Cartan helices.

As a first application of the results from the previous section, we demonstrate how these classes of
curves can be recovered from their torsions.

(a) For f (s) = s, it holds S( f ) = 0. In (16), we put f (s) = s, s0 = 0, α(s0) = (0, 0, 0), ε = 1. Then, we obtain
the curve

α(s) =
1
6

(
3s2, s3

− 3s, s3 + 3s
)
,

for which by (17) we have τ = 0. Thus, α is a positively oriented null Cartan helix of zero torsion.
(b) For f (s) = − cot(cs/2), it holds S( f ) = c2/2. In (16), we put

f (s) = − cot
cs
2
, α(0) =

( 1
c2 , 0, 0

)
, ε = 1, c = const . > 0.

Then, we obtain the curve

α(s) =
1
c2

(cos(cs), sin(cs), cs) ,

for which by (17) it holds τ = c2/2. Thus, α is a positively oriented null Cartan helix of constant positive
torsion.

(c) For f (s) = ecs, it holds S( f ) = −c2/2. In (16), we put

f (s) = ecs, α(0) =
(
0,

1
c2 , 0

)
, ε = 1, c = const . > 0.

Then, we obtain the curve

α(s) =
1
c2

(cs, cosh(cs), sinh(cs)) ,

for which by (17) we have τ = −c2/2. Thus, α is a positively oriented null Cartan helix of constant negative
torsion.

Thus, we have seen the following:

Corollary 1. Null helices in E3
1 form the three classes described in (a) – (c) in the above. The description is valid up

to the pseudo-arc parameter changies, up to the orientation of the curve, and up to the isometries of the space.

A curve α : I → E3
1 is called a general (or generalized) helix if there exists a non-zero vector V in E3

1
such that 1(α ′,V) = const .; cf. [8, 9, 17], etc. This means that tangent indicatrix is laid in a plane or,
equivalently, there exists a non-zero constant vector V in E3

1 for which 1(α ′′,V) = 0, that is, V is orthogonal
to the acceleration vector field α ′′.

For null curves, it is already proved that null general helices in E3
1 are precisely the null Cartan helices;

cf. ibidem.

5. Null slant helices

Following the ideas of [1, 2, 10], a slant helix is defined to be the curve (null as well as non-null) in E3
1

which satisfies the condition

1(α ′′,V) = c = const . (19)
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along the curve α, where V is a constant vector. Thus, a general helix is a slant helix with c = 0. Conversely,
a slant helix with c = 0 becomes a general helix. In [1, Theorem 1.4], it is proved that a null curve in E3

1 is a
slant helix if and only if its torsion is given by

τ =
a

(cs + b)2 , a, b, c = const ., (20)

where c is just the constant realizing (19).
As the second applications of the results from Section 3, we will describe the null slant helices in E3

1
which are different from the usual helices (a , 0 and c , 0 in (20)).

Note that moving the pseudo-arc parameter s into s− b/c and next modifying slightly the constant a, we
can write the condition (20) as

τ =
a

2s2 , a = const , 0. (21)

We can also assume that s > 0. Using (2) and (3), it can be checked that when the relation (21) is fulfilled,
then for the vector

V = −
a
2s

L + sN + W

it holds V ′ = 0 and 1(α ′′,V) = 1(W,V) = 1 (cf. ibidem).
(a) In (16), we put

f (s) = ln s, s0 = 1, α(s0) =
1
8

(−2,−1, 3), ε = 1.

Then, we obtain the curve

α(s) =
s2

8

(
2(2 ln s − 1), 2 ln2 s − 2 ln s − 1, 2 ln2 s − 2 ln s + 3

)
,

for which by (17) it holds

τ = S( f ) =
1

2s2 .

Thus, α is a slant helix realizing (21) with a = 1.
(b) Let a > 1 and b =

√
a − 1 > 0. In (16), we put

f (s) = tan
(1

2
ln sb

)
, s0 = 1, α(s0) =

1
b

(
−

b
b2 + 4

,−
2

b2 + 4
,

1
2

)
, ε = 1.

Then, we obtain the curve

α(s) =
s2

b

(
2 sin(ln sb) − b cos(ln sb)

b2 + 4
,−

2 cos(ln sb) + b sin(ln sb)
b2 + 4

,
1
2

)
,

for which by (17) it holds

τ = S( f ) =
1 + b2

2s2 =
a

2s2 .

Thus, α is a slant helix realizing (21) with a > 1.
(c) Let 0 , a < 1. Then for b =

√
1 − a, we have b > 0 and b , 1. Consider the case a , −3, that is, b , 2.

In (16), we put

f (s) = s−b, s0 = 1, α(s0) =
1
2b

(
−1,

2b
b2 − 4

,
4

b2 − 4

)
, ε = 1.
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Then, we obtain the curve

α(s) =
s2

2b

(
−1,

s−b

b − 2
+

sb

b + 2
,

s−b

b − 2
−

sb

b + 2

)
,

for which by (17) it holds

τ = S( f ) =
1 − b2

2s2 =
a

2s2 .

Thus, α is a slant helix realizing (21) with −3 , a < 1.
(d) In (16), we put

f (s) =
1
s2 , s0 = 1, α(s0) =

1
16

(−4, 1,−1), ε = 1.

Then, we obtain the curve

α(s) =
1

16

(
−4s2, s4

− 4 ln s, − s4
− 4 ln s

)
,

for which by (17) it holds

τ = S( f ) = −
3

2s2 .

Thus, α is a slant helix realizing (21) with a = −3.
Thus, we have shown the following:

Corollary 2. Null slant helices in E3
1 form the four classes described in (a) – (d) in the above. The description is valid

up to the pseudo-arc parameter changies, up to the orientation of the curve, and up to the isometries of the space.

6. Null curves with the torsion proportional to the pseudo-arc parameter

In this section, we determine the null curves in E3
1 for which τ = −2λs, λ = const . , 0. We will use the

formula (17).
According to our Theorem, we need at first to find a solution of the differential equation(

f ′′

f ′

) ′
−

1
2

(
f ′′

f ′

)2

= −2λs. (22)

We seek for solutions of this equation in the form

f (s) =

∫
ds
φ2(s)

, (23)

φ being an unknown fucntion. Then the equation (22) becomes the following differential equation

φ ′′ − λsφ = 0. (24)

The general solution of the above equation is

φ(s) = c1 Ai
(
µs

)
+ c2 Bi

(
µs

)
, µ =

3√

λ, c1, c2 = const .

where Ai and Bi are the Airy functions of the first and second kind, respectively. For the solutions of
(24) and for the special Airy functions, we refer [16], [18], etc. In the below calculations, we use the basic
properties of these functions.
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For our purpose, we take the only one solution of (24), say φ(s) = Ai
(
µs

)
. Then, from (23) we get

f (s) =
π
µ
·

Bi(µs)
Ai(µs)

. (25)

Next,

f ′(s) =
1

Ai 2(µs)
. (26)

Having (10) with ε = 1, and using (25) and (26), we can write α ′ as

α ′(s) =

(
π
µ

Ai(µs) Bi(µs),
1

2µ2

(
π2 Bi2(µs) − µ2 Ai2(µs)

)
,

1
2µ2

(
π2 Bi2(µs) + µ2 Ai2(µs)

))
.

The integration of the last equality gives the following curve

α(s) =

(
π

µ2

(
µs Ai(µs) Bi(µs) −Ai′(µs) Bi′(µs)

)
,

1
2µ3

(
π2

(
µs Bi2(µs) − Bi′2(µs)

)
− µ3s Ai2(µs) + µ2 Ai′2(µs)

)
,

1
2µ3

(
π2

(
µs Bi2(µs) − Bi′2(µs)

)
+ µ3s Ai2(µs) − µ2 Ai′2(µs)

) )
, (27)

if the the initial condition at s0 = 0 is

α(0) =
1

2 3√9µ3 Γ2( 1
3 )

(
2
√

3µπ, µ2
− 3π2, − µ2

− 3π2
)
.

Thus, we can formulate the following:

Corollary 3. Null curves in E3
1 for which τ = −2λs, λ = const . , 0, are given by the formula (27) with µ =

3√
λ up

to the pseudo-arc parameter changies, up to the orientation of the curve, and up to the isometries of the space.
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[17] B. Şahin, E. Kiliç and R. Güneş, Null helices in R3
1, Differential Geometry - Dynamical Systems 3 (2001), No. 2, 31–36.

[18] O. Vallée and M. Soares, Airy functions and applications to physics, Imperial College Press, London, 2004.


