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Abstract. In this paper, the multiplicative perturbation bounds of the group inverse and related oblique
projection under general unitarily invariant norm are presented by using the decompositions of B#

− A#

and BB#
− AA#.

1. Introduction

Let Cn×n be the set of all n× n complex matrices. For a given matrix A ∈ Cn×n, the symbols A∗, ‖A‖2, ‖A‖,
A#, and Ind(A) will stand for the conjugate transpose, the spectral norm, general unitarily invariant norm,
the group inverse, and the index of A, respectively. I denotes the n × n identity matrix. Also, for the sake
of the simplicity in the later discussion, we will adopt the following notations with A ∈ Cn×n:

PA = AA# = A#A, P̃A = I − PA.

In addition, we always assume that D1 and D2 are n × n nonsingular matrices throughout this paper.
We recall that the group inverse A# of a matrix A ∈ Cn×n is the unique solution X, if exists, to the following

three equations [1]:
(1) AXA = A, (2) XAX = X, (3) AX = XA.

A square matrix A has a group inverse if and only if rank(A) = rank(A2), i.e., Ind(A) = 1. When A# exists,
PA = AA# is the projector which projects a vector on R(A) along N(A), i.e., AA# = PR(A),N(A), where R(A) and
N(A) are the range and null space of A, respectively. For the details of group inverse, we refer the readers
to the book by Ben-Israel and Greville [1].

The group inverse plays an important role in numerical analysis, Markov chains, etc. see [2, 8, 9].
However, in most numerical applications the elements of A will seldom be known exactly, so it is necessary
to know how its group inverse is perturbed when A is perturbed. There are extensive studies in this regard,
e.g., [6, 9, 10], for the so-called additive perturbations, namely A is perturbed to B = A + E. Since the matrix
scaling technique is often used to yield better-conditioned problems [3], the multiplicative perturbation
model B = D∗1AD2 with both D1 and D2 are nonsingular matrices and near the identities has been received
much attention. Notice that B = D∗1AD2 can be rewritten as B = A + E with E = −(I − D∗1)A − D∗1A(I − D2)
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or E = −A(I − D2) − (I − D∗1)AD2, the multiplicative perturbation is a special additive perturbation. Hence
the existing additive perturbation bounds can be applied directly to give the multiplicative perturbation
bounds. But in general this technique may produce unideal perturbation bounds because it overlooks the
nature of the multiplicative perturbation. Various multiplicative perturbation analysis have been done to
many problems, such as the polar decomposition [4], the singular value decomposition [5], and the Moore-
Penrose inverse [7] when A is multiplicatively perturbed. In this paper, we will study the multiplicative
perturbation bounds to the group inverse and the related oblique projection under unitarily invariant norm.

2. Multiplicative Perturbation Bounds of the Oblique Projection

In this section, we study the multiplicative perturbation bounds of the oblique projection related to
group inverse under general unitarily invariant norm. Let A ∈ Cn×n , B = D∗1AD2 and Ind(A) = 1, then B#

may not exist (see Example 1). After a simple analysis, we can get the following theorem.

Theorem 2.1. Let A ∈ Cn×n and B = D∗1AD2, then B# exists if and only if rank(AD2D∗1A) = rank(A).

Example 1. Let A =

(
1 0
0 0

)
, D1 = I2 and D2 =

(
0 1
1 0

)
. Then

B = D∗1AD2 =

(
0 1
0 0

)
.

It is easy to see that rank(A2) = rank(A) = 1 and 0 = rank(B2) < rank(B) = 1. Hence, B# does not exist.
In order to get the multiplicative perturbation bounds of the oblique projection, we fist give a decom-

position of BB#
− AA#.

Lemma 2.2. Let A ∈ Cn×n , B = D∗1AD2 and Ind(A) = 1. If rank(AD2D∗1A) = rank(A), then

PB − PA = PB(I −D−1
2 )P̃A + P̃B(D∗1 − I)PA. (2.1)

Proof. Since

PB − PA = B#(B − A)(I − AA#) + (I − BB#)(B − A)A# (2.2)

and

B − A = B(I −D−1
2 ) + (D∗1 − I)A, (2.3)

combining (2.2) and (2.3), we immediately get (2.1).
Based on the above lemma, we can give a multiplicative perturbation bound for ‖PB − PA‖. But before

stating this result, we mention another lemma which will be used.

Lemma 2.3. [10] Let A ∈ Cn×n with Ind(A) = 1. Then

‖AA#
‖2 = ‖I − AA#

‖2.

Theorem 2.4. Let A ∈ Cn×n , B = D∗1AD2 and Ind(A) = 1. If rank(AD2D∗1A) = rank(A), then

‖PB − PA‖ ≤ ‖PA‖2‖PB‖2(‖I −D1‖ + ‖I −D−1
2 ‖). (2.4)

If the used norm is the spectral norm, we have

‖PB − PA‖2

‖PA‖2
≤ ‖PB‖2(‖I −D1‖2 + ‖I −D−1

2 ‖2). (2.5)
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Proof. Note that the spectral norm is a special unitarily invariant norm and (2.5) is a direct consequence
of (2.4). So we only prove (2.4).

Taking the unitarily invariant norm on both sides of (2.1) and using Lemma 2.2, we get the estimate

‖PB − PA‖ ≤ ‖PB‖2‖P̃A‖2‖I −D−1
2 ‖ + ‖PA‖2‖P̃B‖2‖I −D1‖

= ‖PA‖2‖PB‖2(‖I −D1‖ + ‖I −D−1
2 ‖).

The proof is completed.

Corollary 2.5. Under the assumptions of Theorem 2.4, if rank(AD2D∗1A) = rank(A) and γ = ‖PA‖2(‖I−D1‖2 + ‖I−
D−1

2 ‖2) < 1, then we have

‖PA‖2

1 + γ
≤ ‖PB‖2 ≤

‖PA‖2

1 − γ
(2.6)

and

‖PB − PA‖ ≤
‖PA‖

2
2

1 − γ
(‖I −D1‖ + ‖I −D−1

2 ‖). (2.7)

Proof. From (2.4), we have

‖PB‖2 − ‖PA‖2 ≤ ‖PB − PA‖2 ≤ ‖PA‖2‖PB‖2(‖I −D1‖2 + ‖I −D−1
2 ‖2),

i.e.,
(1 − γ)‖PB‖2 ≤ ‖PA‖2,

since 1 − γ > 0, we get the right inequality of (2.6). Similarly, from ‖PA‖2 − ‖PB‖2 ≤ ‖PB − PA‖2, we can get
the left inequality of (2.6). It is obvious that, (2.7) is the direct consequence of (2.4) and (2.6).

3. Multiplicative Perturbation Bounds of the Group Inverse

In this section, we will provide multiplicative perturbation bounds of the group inverse under general
unitarily invariant norm. To this end, we need the following lemma.

Lemma 3.1. Let A ∈ Cn×n, B = D∗1AD2 such that Ind(A) = 1 and rank(AD2D∗1A) = rank(A), then we have

B# = PBD−1
2 A#D−∗1 PB (3.1)

= (I + Θ1(D1,D2))A#(I + Θ2(D1,D2)), (3.2)

where Θ1(D1,D2) = P̃B(D∗1 − I) − PB(I −D−1
2 ), Θ2(D1,D2) = (D2 − I)P̃B − (I −D−∗1 )PB and D−∗1 denotes the inverse

of the conjugate transpose of D1.

Proof. Let Z be the matrix on the right side of equation (3.1). From B = D∗1AD2, we have

BZ = BD−1
2 A#D−∗1 BB# = D∗1AA#AD2B# = BB#

and
ZB = B#BD−1

2 A#D−∗1 B = B#D∗1AD2 = B#B.

Hence, BZB = B, ZBZ = Z and BZ = ZB, i.e., B# = Z. To prove (3.2), it is only needed to prove

(I + Θ1(D1,D2))A# = PBD−1
2 A# and A#(I + Θ2(D1,D2)) = A#D−∗1 PB.
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In fact, we have

(I + Θ1(D1,D2))A# = [I + (I − B#B)(D∗1 − I) − B#B(I −D−1
2 )]AA#A#

= A#
− (I − B#B)A#

− B#B(I −D−1
2 )A#

= PBD−1
2 A#.

Similarly, we can prove A#(I + Θ2(D1,D2)) = A#D−∗1 PB.
Obviously, Lemma 3.1 is valid both for full rank and rank deficient matrices. Combining (2.6) and (3.1),

we can get the following corollary.

Corollary 3.2. With the same assumptions as in Lemma 3.1. If γ = ‖PA‖2(‖I − D1‖2 + ‖I − D−1
2 ‖2) < 1 and

max{‖I −D1‖2, ‖I −D2‖2} < 1, we have

‖B#
‖ ≤

‖PA‖
2
2

(1 − γ)2Φ(D1,D2)
‖A#
‖,

where Φ(D1,D2) = (1 − ‖I −D1‖2)(1 − ‖I −D2‖2).

The following corollary presents an expression for B#
−A# that follows directly from (3.2), which is very

important to get the perturbation bound of group inverse.

Corollary 3.3. Let Θ1(D1,D2) and Θ2(D1,D2) be the same as in Lemma 3.1. With the same assumptions as in
Lemma 3.1, we have

B#
− A# = Θ1(D1,D2)A# + A#Θ2(D1,D2) + Θ1(D1,D2)A#Θ2(D1,D2). (3.3)

Next, we state the main result in this section.

Theorem 3.4. With the same assumptions as in Lemma 3.1, then

‖B#
− A#
‖ ≤ ‖A#

‖2[‖PB‖2(‖I −D1‖ + ‖I −D−1
2 ‖ + ‖I −D−1

1 ‖ + ‖I −D2‖)

+‖PB‖
2
2(‖I −D1‖ + ‖I −D−1

2 ‖)(‖I −D−1
1 ‖ + ‖I −D2‖)]. (3.4)

If γ = ‖PA‖2(‖I −D1‖2 + ‖I −D−1
2 ‖2) < 1, we have

‖B#
− A#
‖ ≤ ‖A#

‖2[
‖PA‖2

1 − γ
(‖I −D1‖ + ‖I −D−1

2 ‖ + ‖I −D−1
1 ‖ + ‖I −D2‖)

+
‖PA‖

2
2

(1 − γ)2 (‖I −D1‖ + ‖I −D−1
2 ‖)(‖I −D−1

1 ‖ + ‖I −D2‖)]. (3.5)

Proof. From Lemma 2.2, we can get

‖Θ1(D1,D2)‖ ≤ ‖PB‖2(‖I −D1‖ + ‖I −D−1
2 ‖) (3.6)

and

‖Θ2(D1,D2)‖ ≤ ‖PB‖2(‖I −D2‖ + ‖I −D−1
1 ‖). (3.7)

Hence, (3.4) follows directly from (3.3), (3.6) and (3.7). Substituting (2.6) into (3.4), we can get (3.5)
immediately.
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4. Numerical Comparison

In this section, we give an example to illustrate that the multiplicative perturbation bound is much
better, in some cases, than the additive perturbation bound.

To compare the multiplicative perturbation bound with the additive perturbation bound, we first
mention the additive perturbation bounds of group inverse and related oblique projection which were
obtained in [10]. Let A, B = A + E ∈ Cn×n and Ind(A) = Ind(B) = 1, then

‖B#
− A#
‖2 ≤ (1 + 2 max{‖PA‖2, ‖PB‖2}) max{‖A#

‖
2
2, ‖B

#
‖

2
2}‖E‖2 (4.1)

and

‖PB − PA‖2 ≤ 2 max{‖PA‖2, ‖PB‖2}max{‖A#
‖2, ‖B#

‖2}‖E‖2. (4.2)

Example 2. Let A =

 2 0 0
0 0.01 0
0 0 0

, D2 =

 1.001 0 0
0 1 0
0 0 1

 and D1 = I3. Then

B = D∗1AD2 =

 2.002 0 0
0 0.01 0
0 0 0

 and E = B − A =

 0.002 0 0
0 0 0
0 0 0

 .
The estimates of the additive and multiplicative perturbation bounds of group inverse and associated
oblique projector can be found in the following table (we choose the spectral norm):

Exact value Additive bound (4.1) Multiplicative bound (3.4)
‖B#
− A#

‖2 0.0005 60 0.2000
Exact value Additive bound (4.2) Multiplicative bound (2.4)

‖PB − PA‖2 0 0.4 0.0010

Obviously, the multiplicative perturbation bounds of the group inverse and the oblique projection are much
better than the additive perturbation bounds for the above-mentioned example.
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