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Abstract. As toroid (polyhedral torus) could not be convex, it is questionable if it is possible to 3-triangulate
them (i.e. divide into tetrahedra with the original vertices). Here, we will discuss some examples of toroids
to show that for each vertex number n ≥ 7, there exists a toroid for which triangulation is possible. Also
we will study the necessary number of tetrahedra for the minimal triangulation.

1. Introduction

It is known that there is a possibility to divide any polygon with n vertices by n − 3 diagonals into n − 2
triangles without gaps and overlaps. This division is called triangulation. To do the triangulation, many
different practical applications are made that require computer programs. Examples of such algorithms are
given by Seidel [13], Edelsbrunner [8] and Chazelle [4]. The most interesting aspect of the problem is to
design algorithms that are as optimal as possible.

Generalization of this process to higher dimensions is also called triangulation. It consists of dividing
polyhedra (polytop) into tetrahedra (simplices) with the original vertices. Within higher dimensions, new
problems arise besides the fastness of algorithm. It is proved that there is no possibility to triangulate some of
non-convex polyhedra [11, 12] in a three-dimensional space, and it is also proved that different triangulations
of the same polyhedron may have different numbers of tetrahedra [1], [9], [14]. Considering the smallest and
the largest number of tetrahedra in triangulation (the minimal and the maximal triangulation), the authors
obtained values, which linearly, resp. squarely depend on the number of vertices. Interesting triangulations
are described in the papers of Edelsbrunner, Preparata, West [9] and Sleator, Tarjan, Thurston [14]. Some
characteristics of triangulation in a three-dimensional space are given by Chin, Fung, Wang [6], Develin [7]
and Stojanović [20, 21], and in n-dimensional space by Lee [10]. Algorithms for investigating triangulation
in three-dimensional space are given in [22, 23]. This problem is also related to the problems of triangulation
of a set of points in a three-dimensional space [1, 9] and rotation distance between pair of trees [14].

By the term ”polyhedron” we usually mean a simple polyhedron, topologically equivalent to sphere.
But there are classes of polyhedra topologically equivalent to torus. Torus like polyhedra are considered
e.g. in [2, 3, 5, 17–19]. Following the definition of Szilassi [18] for such polyhedra, we will use terms toroids.
Since toroids are not convex, it is questionable if it is possible to 3-triangulate them. The toroid with the
smallest number of vertices is Császár polyhedron [2, 3, 5, 17–19]. It has 7 vertices and is known to be
triangulable with 7 tetrahedra. It is obtained as an example of polyhedron without diagonals [5, 15, 16].
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In this paper, 3-triangulations of other toroids will be considered. Some characteristic polyhedra will be
described in section 2. In section 3, we will consider 3-triangulation of toroids.

2. Some Characteristic Examples of Polyhedra and Their 3-triangulation

2.1 It is possible to triangulate all convex polyhedra, but this is not the case with non-convex ones. The
first example of a non-convex polyhedron, which is impossible to triangulate, was given by Schönhardt
[12] and referred to in [11]. This polyhedron is obtained in the following way: triangulate the lateral faces
of a trigonal prism A1B1C1A2B2C2 by the diagonals A1B2, B1C2 and C1A2 (Fig. 1). Then ”twist” the top face
A2B2C2 by a small amount in the positive direction. In such a polyhedron, none of tetrahedra with vertices
in the set {A1,B1,C1,A2,B2,C2} is inner, so the triangulation is not possible.

Figure 1: Schönhardt polyhedron

2.2 Let us now consider triangulations of a bipyramid with a triangular basis ABC, and apices V1 and
V2 (Fig. 2). There are two different triangulations of this kind. The first is into two tetrahedra V1ABC
and V2ABC, and the second is into three: V1V2AB, V1V2BC and V1V2CA. So, it is obvious that some
3-triangulable polyhedra is possible to triangulate with different numbers of tetrahedra. That is the reason
to introduce terms of minimal and maximal triangulation of a given polyhedron.

2.3 It is proved that the smallest possible number of tetrahedra in the triangulation of a polyhedron with
n vertices is n − 3. But, it is not possible to triangulate each polyhedron into n − 3 tetrahedra; for example,
all triangulations of an octahedron (6 vertices) give 4 tetrahedra. Here we will mention some examples of
polyhedra, triangulable with n − 3 tetrahedra.

The pyramids with n − 1 vertices in the basis (i.e., a total of n vertices) are triangulable by doing any
2-triangulation of the basis into (n − 1) − 2 = n − 3 triangles. Each of these triangles makes with the apex
one of tetrahedra in 3-triangulation. If the basis of a ”pyramid” is a space polygon, then it is possible to
triangulate it in a similar way without taking care about convexity. For example, if we 2-triangulate lateral
sides of trigonal prism A1B1C1A2B2C2 by the diagonals B1A2, C1A2 and C1B2 (Fig. 3) then, it is obvious that
3-triangulation is possible with 3 tetrahedra: A1B1C1A2, B1C1A2B2 and A2B2C1C2. Here, we may assume
that the basis of the trigonal pyramid is space pentagon A1B1B2C2C1.

2.4 Let us return to the two methods of triangulating a bipyramid, but this time with n − 2 vertices in
the basis (which can also be a space polygon). If we divide it into two pyramids and triangulate each of
them with taking care of a common 2-triangulation of the basis, then we will obtain 2(n − 4) tetrahedra. In
the second method, each of n − 2 tetrahedra has a common edge joining the apices of the bipyramid, and
moreover, each of them contains a pair of the neighbour vertices of the basis (i.e., one of the edges of the
basis). For n = 5 (a bipyramid with a triangle basis), it has been found that the first method is ”better”, i.e.,
it gives a smaller number of tetrahedra. For n = 6 (the octahedron), both methods give 4 tetrahedra and for
n ≥ 7, the second method is ”better”. In figure Fig. 4 triangulations of a bipyramid with a pentagonal basis
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Figure 2: Triangulations of trigonal bipyramids

Figure 3: Triangulation of trigonal prism with 3 tetrahedra
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(i.e. n = 7) are given. Dividing bipyramid into two pyramids leads to triangulation with 6 tetrahedra, and
dividing it around the axis V1V2 gives triangulation with 5 tetrahedra.

Figure 4: Triangulations of pentagonal bipyramids

2.5 In [18] Szilassi introduced term toroid:

Definition 1. An ordinary polyhedron is called a toroid if it is topologically torus-like (i.e. it can be converted to a
torus by continuous deformation) and its faces are simply polygons.

A toroid with the smallest number of vertices is the Császár polyhedron (Fig. 5). It has 7 vertices and
no diagonals, i.e. each vertex is connected to other six by edges. In [2] Bokowski and Eggert proved that
Császár polyhedron has four essentially different versions. It is to be noted that in topological terms the
various versions of Császár polyhedron are isomorphic – there is only one way to draw the full graph with
seven vertices on the torus. Császár polyhedron is possible to 3-triangulate with 7 tetrahedra, as it is shown
by Szilassi from Wolfram Demonstrations Project [19].
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Figure 5: Császár polyhedron

3. 3-triangulation of Toroids

3.1 In order to consider 3-triangulability of toroids, let us introduce the following definitions.

Definition 2. Polyhedron is piecewise convex if it is possible to divide it into convex polyhedra Pi, i = 1, . . . ,n,
with disjunct interiors. A pair of polyhedra Pi, P j is said to be neighbours if they have common face called contact
face. If polyhedra Pi and P j are not neighbours, they may have a common edge e or a common vertex v only if there is
a sequence of neighbours polyhedra Pi,Pi+1, . . . ,Pi+k ≡ P j such that the edge e, or the vertex v belongs to each contact
face fl common to Pl and Pl+1, l ∈ {i, . . . , i + k − 1}. Otherwise, polyhedra Pi and P j have not common points.

One example of piecewise convex polyhedron is given in Fig. 6. The figure is shoving a toroid with
n = 19 vertices, whose pieces are of two kinds, introduced later on as ”elementary polyhedra” of two types
A and B.

Figure 6: Piecewise convex polyhedron T19 with 19 vertices

Definition 3. Toroid is cyclically piecewise convex if it is possible to divide it into cycle of convex polyhedra Pi,
i = 1, . . . ,n, such that Pi and Pi+1, i = 1, . . . ,n − 1 and Pn and P1 are neighbours.
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Figure 7: Cyclically piecewise convex polyhedron T9 with 9 vertices

An example of cyclically piecewise convex polyhedron with n = 9 vertices composed of three pieces of
type A is given on Fig. 7.

Note that division of polyhedra to convex pieces is not always unique. For example in toroid T19, two
pieces of type A on the right side of the toroid together build a new convex polyhedron. So, we can replace
that two pieces with the new one. On the other hand, since it is always possible to 3-triangulate convex
polyhedra, the same property holds for piecewise convex toroid (and also for other piecewise convex
polyhedra). That will be used in the proofs of the following lemma.

Lemma 1. For each n ≥ 9, there exists a toroid which is possible to 3-triangulate.

Proof. For each n, we shall construct cyclically piecewise convex toroid with n vertices composed of
”elementary polyhedra” of two types A and B (Fig. 8). Polyhedra of type A are topologically triangular
prisms. Cyclically connecting k ≥ 3 polyhedra of type A would be possible if we transform two lateral
faces of each triangular prism from rectangle to trapeze. Then contact faces of such polyhedron A are
its triangular bases. Such new-built toroid have 3k vertices. Since for 3-triangulation of each triangular
prism, so as of polyhedron A, 3 tetrahedra are necessary, constructed toroid is possible to 3-triangulate by
3k tetrahedra. The toroid T9 in Fig. 7 is starting example in this series with k = 3, and n = 9.

Figure 8: Elementary polyhedra of type A and B

For constructing 3-triangulable toroid with 3k + 1 or 3k + 2 vertices, we will exchange respectively one
or two polyhedra of type A in cycle with one or two polyhedra of type B. Elementary polyhedron of type B
is built by ”gluing” a tetrahedron with two faces congruent to triangular basis of a polyhedron A onto the
same polyhedron A: one is used for gluing to A, and other one serves as a new contact face of B.

By this procedure, for each n ≥ 9, a toroid is built which is cyclically piecewise convex, and we need n
tetrahedra for its 3-triangulation. �

Lemma 2. There exists 3-triangulable toroid with n = 8 vertices.

Proof. By gluing a tetrahedron onto one of the faces of Császár polyhedron, we will build a new toroid
with 8 vertices and 8 tetrahedra in its triangulation. �

Summarizing results of Lemma 1 and Lemma 2 with regard to Császár polyhedron we conclude:
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Theorem 1. For each n ≥ 7, there exists a toroid which is possible to 3-triangulate.

3.2 Regarding the minimal triangulation, we shall independently consider the cases n ≥ 9 and n = 8. As
mentioned before for case n = 7 result is still known, i.e. Császár polyhedron is 3-triangulable only with 7
tetrahedra.

Lemma 3. If it is possible to 3-triangulate toroid with n ≥ 9 vertices, then the minimal number of tetrahedra necessary
for that triangulation is Tmin ≥ n.

Each 3-triangulable polyhedron can be considered as a collection of connected tetrahedra, so it is piece-
wise convex. Let us form graph of connection for convex pieces of toroid in such a way that nodes represents
convex piece polyhedra, while edges represents contact faces between them. For each 3-triangulable toroid
P̄, such a graph has cyclical part with eventually added branches. So, P̄ is possible to decompose to cycli-
cally piecewise convex toroid P built of elements Pi, i = 1, . . . , k and eventually additional branches, which
are simple piecewise convex polyhedra. Graphs of connection for the toroids T9 and T19 (Fig. 7 and Fig.
6) are shown on the figures Fig. 9 and Fig. 10. The first graph for the toroid T19 has cyclical part and two
branches, while the second one has cyclical part with only one branch. Since ”left” branch is composed of
elements A and B in such a way that polyhedron is not convex, making cyclical graph for T19 is impossible.

If we consider the minimal triangulations T̄min and t̄ j
min, j = 1, . . . , l of whole polyhedron P̄ and its pieces

P̄ j, it would be expectable that

T̄min =

l∑
j=1

t̄ j
min, (1)

but it may happen that holds

T̄min <
l∑

j=1

t̄ j
min.

For example, if two pyramids with 5 vertices in the basis are neighbors, we need 3 tetrahedra to triangulate
each of them (Fig. 4). But, these two pyramids together build bipyramid with 7 vertices, and as it was noted,
it is possible to triangulate it with 5 tetrahedra. Of course, then we may transform graph of connection and
have one node for bipyramid instead of two nodes for two pyramids. In this way, the minimal triangulations
of P̄ and P̄ j would be harmonized. It means that with the proper choice of graph of connection (i.e. proper
choice of pieces of polyhedra), we would have equality (1).

Figure 9: Graph of connection for the toroid T9
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Figure 10: Two graphs of connection for the toroid T19

Proof of Lemma 3. Let us first consider the minimal number of tetrahedra Tmin necessary for 3-triangulation
of the toroid P. Since the minimal 3-triangulation of Pi with ni vertices has tmin ≥ ni−3 tetrahedra, it follows
that

Tmin =

k∑
i=1

ti
min ≥

k∑
i=1

(ni − 3) =

k∑
i=1

ni − 3k = t.

On the other hand, the number of vertices of the toroid P is

n =

k∑
i=1

ni −

k∑
i=1

mi,

where mi is the number of vertices for the contact faces fi between Pi and Pi+1, i = 1, . . . , k−1, and fk between
Pk and P1. Since mi ≥ 3, it follows that

n ≤
k∑

i=1

ni − 3k = t ≤ Tmin.

If the whole toroid P̄ has additional branches P̄ j, j = 1, . . . , l with respectively n̄ j vertices and the minimal
triangulations with t̄ j

min ≥ n̄ j − 3 tetrahedra, and if the contact faces f̄ j of the toroid P and the branches P̄ j
have m̄ j vertices then,

T̄min = Tmin +

l∑
j=1

t̄ j
min ≥ Tmin +

l∑
j=1

n̄ j − 3l = T

and

n̄ = n +

l∑
j=1

n̄ j −

l∑
j=1

m̄ j ≤ n +

l∑
j=1

n̄ j − 3l ≤ Tmin +

l∑
j=1

n̄ j − 3l = T ≤ T̄min

where n̄ is the number of vertices and T̄min is the number of tetrahedra in the minimal 3-triangulation of P̄.
�

Lemma 4. If it is possible to 3-triangulate toroid with n = 8 vertices, then the minimal number of tetrahedra necessary
for the triangulation is Tmin ≥ 8.

Proof. In proof of Lemma 2 it is shown that there exists a toroid with n = 8 vertices and T8
min = 8. Let

us suppose that there exists a toroid P8 with n = 8 and T8
min < 8. Gluing a tetrahedron to P8 gives a toroid
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P9 with n = 9 vertices and minimal triangulation T9
min ≤ T8

min + 1 < 8 + 1 = 9. But, by Lemma 3 that is not
possible. So, for any 3-triangulable toroid with n = 8 vertices Tmin ≥ 8. �

So, the next theorem stands:

Theorem 2. If it is possible to 3-triangulate toroid with n ≥ 7 vertices, then the minimal number of tetrahedra
necessary for that triangulation is Tmin ≥ n.

Summary

Concept of the piecewise convex polyhedron is useful in considering 3-triangulation of non-convex
polyhedra especially of toroids. We can do that using graph of connection of these polyhedra. In this paper
it was discussed the problems of 3-triangulable toroids existence, and of the minimal number of tetrahedra
necessary for the 3-triangulation. In the similar way, it would be possible to investigate the same problems
for polyhedra topologically equivalent to sphere with p handles but with more possible cases of graphs of
connection. Consequently, this investigation is more complicated and it would be left out for some future
work.
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[2] J. Bokowski, A. Eggart, All realizations of Möbius torus with 7 vertices, Structural Topology 17 (1991) 59–78.
[3] http://www.mi.sanu.ac.rs/vismath/visbook/bokowsky/
[4] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom. 6, 5 (1991) 485–524.
[5] A. Császár, A polyhedron without diagonals, Acta Sci. Math. Universitatis Szegediensis 13 (1949) 140–142.
[6] F. Y. L. Chin, S. P. Y. Fung, C. A. Wang, Approximation for minimum triangulations of simplicial convex 3-polytopes, Discrete

Comput. Geom. 26, 4 (2001) 499–511.
[7] M. Develin, Maximal triangulations of a regular prism, J. Comb. Theory, Ser.A 106, 1 (2004) 159–164.
[8] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
[9] H. Edelsbrunner, F. P. Preparata, D. B. West, Tetrahedrizing point sets in three dimensions, J. Symbolic Computation 10 (1990)

335–347.
[10] C. W. Lee, Subdivisions and triangulations of polytopes, Handbook of Discrete and Computational Geometry, J.E. Goodman and

J. O’Rourke, eds., CRC Press, New York, 1997, 271–290.
[11] J. Ruppert, R. Seidel, On the difficulty of triangulating three-dimensional nonconvex polyhedra, Discrete Comput. Geom. 7 (1992)

227–253.
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