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Abstract. Based on the intrinsic definition of shape by functions continuous over a covering and corre-
sponding homotopy we will define proximate fundamental group. We prove that proximate fundamental
group is an invariant of pointed intrinsic shape of a space.

1. Introduction

The notion of shape was introduced by K. Borsuk in 1968 as a more appropriate tool than homotopy, for
study of spaces with a complicated local structure. In the past fifty years thousands of papers are published
concerning shape theory. One of the most important invariants of (pointed) shape are shape groups. Main
references about shape are the books of Borsuk [1] and of Mardesi¢ and Segal [5]. The approaches in both
books are using external elements for describing shape of a space: neighborhoods in some external space
where the original space is embedded, or an inverse sequence (system) of ANRs or polyhedra.

From the early beginning of shape theory a question was raised regarding the intrinsic description of
shape of a space,i.e., construction without using external spaces.

In Felt [3] is described intrinsically a shape morphism between two compact metric spaces. In the same
paper is proved indirectly that this notion is the same with the original definition of [1]. The description
of [1] uses external spaces, namely embedding of compact metric space in Hilbert cube and considering a
sequence of continuous maps — fundamental sequence, between neighborhoods of the embedded metric
compacta.

In order to achieve an intrinsic definition, in [3] are considered nets of functions (fy) indexed by
coverings, each function fy being continuous over a covering V. However, the composition is not defined
and thus it is not formed category.

Using a slightly different approach, with ¢ - continuous functions, in Sanjurjo [6] is formed the category
by intrinsic approach.

In Shekutkovski et al. [7], using the fact that in compact metric space there exists a cofinal sequence of
finite coverings V; > V5 > ... i.e, for every covering V there exists V, such that V, < YV, the intrinsic
shape is described by sequence of V), - continuous functions (f,). This approach enables easy definition

2010 Mathematics Subject Classification. Primary 55P55 (mandatory); Secondary 54C56 (optionally)

Keywords. (pointed homotopy over a covering, pointed proximate nets, intrinsic shape, path over a covering, proximate path,
proximate loop, proximate fundamental group.)

Received: 31 August 2014; Accepted: 13 July 2015

Communicated by Miroslav Ciri¢

Email addresses: nikita@pmf.ukim.mk (Nikita Shekutkovski), aneta.velkoska@uist.edu.mk (Aneta Velkoska)



N. Shekutkovski, A. Velkoska / Filomat 29:10 (2015), 2185-2197 2186

of composition of shape morphisms and shape category, and for the first time intrinsic definition of strong
shape.

In the same paper is proved that definition of shape morphism coincides with definition of [3]. In
Shekutkovski et al. [12] and [13] is proved that categories of Sanjurjo and Shekutkovski coincide, and that
are the same with original Borsuk category for compact metric spaces.

For noncompact spaces, we cannot work with sequences. Instead, nets of functions (f+) are used which
are indexed by coverings from the set of coverings CovX.

A generalization for noncompact spaces is given in Kieboom [4] with actually the same approach as
presented in this article, and it is shown that for paracompact spaces the obtained intrinsic shape coincides
with the notion of [5]. There, shape of a space is obtained by external approach with an inverse system
approximating original space. It is known that this approach and original Borsuk approach give the same
result for metric compacta.

In this paper we form the pointed intrinsic shape category of paracompact topological spaces based on
nets of functions indexed by all coverings. This category is playing the role of pointed homotopy category,
and we construct the first invariant of this category called proximate fundamental group.

2. Pointed homotopy over a covering

First we present some notions about collections of subsets from a fixed set. Let ¢ and V are some
collections of subsets of the topological space X, U < V means that U refines V, i.e., for any set U € U
there exists a set V € V such that U C V.

If U € U, then the star of U is the set st(U, U) = U{x e W|VIW e U, WnN U # @}.

By st(U) is denoted the collection of all st(U, U), U € U, i.e., st(U) = {st(U, U) | U € U}.

By a covering we understand an open covering, and the set of all coverings we denote by CovX.

Let consider two paracompact topological spaces X and Y. First we recall the definition of “V - continuous
function in [7] and [9].

Definition 2.1. Let V is a covering of Y. A function f : X — Y is V - continuous at the point x € X if there exists
a neighborhood U, of x and V € V such that f (U,) C V.

A function f : X — Y is V - continuous on X if it is V - continuous at every point x € X. In this case, the
family of all neighborhoods U, form a covering U of X. By this, the function f : X — Y is V - continuous on X if
there exists a covering U of X, such that for any x € X there exists a neighborhood U € U of x, and V € V such that
f(U) € V. Wedenote: there exists a covering U such that f (U) < V.

Remark 2.1. When X and Y are paracompact, it is enough to take U and V to be locally finite coverings, since
locally finite coverings are cofinal in the set of all coverings.

Now, we define the pointed V - homotopy.

Definition 2.2. Let f,g : (X, x0) = (Y,yo) are V - continuous functions and f (xo) = g(xo) = yo. We say that f
and g are pointed V - homotopic functions if there exists a function F : (X X I, xo X I) = (Y, yo) such that:

(1) Fis st (V) - continuous, which is V - continuous on X X dl, I = {0, 1};
(2) F(x,0) = f(x)and F (x,1) = g (x) for all points x € X;
(3) F(xo,s) = f (x0) = g (x0) = yo for all points s € L.

When two V - continuous functions f and g are pointed V - homotopic we denote as f > (rel {xo}).

Proposition 2.1. The relation of pointed V - homotopy f 9 (rel {xo}) of V - continuous functions is an equivalence

relation.

Proof. The proof is the same as the proof of the Proposition 2.4 in [7] about unpointed homotopy. [
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Remark 2.2. The definition of V - homotopy between two functions f,g : X — Y in [4] (Definition 1.4, p. 703)
requires to exist only V - continuous function F : X X I — Y such that F (x,0) = f (x) and F (x,1) = g (x) for all
points x € X.

Howeuver, this is not an equivalence relation, since the usual concatenation of homotopies given by the formula in
the proof of Proposition 2.4, of [7] is not always a V - continuous function!

Proposition 2.2. Let X, Y, Z are topological spaces, xo € X, yo € Y, z0 € Z, g : (Y, yo) = (Z,z0) is ‘W - continuous
function and V is a covering of Y, such that g (V) < W. If two V - continuous functions fi, fa : (X, x0) = (Y, yo)
are pointed V - homotopic functions, i.e. f; by fa (rel {xo}), then g o fi A fo (rel {xo}).

Proof. By the conditions of the proposition, it follows that the compositions g o fi, g o f, are also W -
continuous function.

Since f1, fo : (X, x0) = (Y, yo) are pointed V - homotopic, then there exists a function F : (X X I, x9 X I) —
(Y, yo) such that:

(1) Fis st (V) - continuous, which is V - continuous on X X dI;
(2) F(x,0) = f1(x) and F(x,1) = f, (x) for all points x € X;
(3) F(xo,s) = fi (x0) = f2 (x0) = yo for all pointss € I.

Let consider a function K : (X X I,xp X I) = (Z,z) defined by K(x,s) = (go F)(x,s). Since g(V) < W
implies g (st (V)) < st(W). Also, F is st(V) - continuous there exists an open covering U, such that
F(U) < st(V). We conclude that (g o F) (U) = g (F(U)) < g (st (V)) < st (W). Therefore, the function K is
st (‘W) - continuous.

Since F is V - continuous on X x dI, g (V) < ‘W and g is W - continuous function then it follows that
K = goFis W - continuous on X X dI.

If x € X is an arbitrary point, then K(x,0) = (g o F) (x,0) = g (F (x,0)) = g(f1 (¥)) = (g © f1) (x) and

K@, 1) =(geF)x1)=gFx1)=g(L)=(g°f) )
Let s € I is an arbitrary point, then

K(xo,s) = (g9 0 F) (xo,5) = g (F (x0,5)) = g (f1 (x0)) = (9 © f1) (x0) = z0 = (9 © f2) (x0)-
Therefore, we showed that the functions go f1, go f, are pointed W - homotopic, i.e., go fi 90 fo(rel{xo}). O

Proposition 2.3. Let G : (Y X I, yo X I) = (Z,zo) be a st (W) - continuous function and ‘W - continuous on'Y X dI.
Then there exists a covering “V of Y, such that for each V' - continuous function f : (X,x0) — (Y, yo), the function
G(f xid) : (X xIxoxI) = (Z,zg) is st (W) - continuous, and ‘W - continuous on X X dI.

Proof. The unpointed version of this theorem is proved for compact metric case in [7], Theorem 3.0.5 and
in noncompact case the proof actually remains the same. [
3. Pointed proximate nets. Pointed intrinsic shape

Let consider two paracompact topological spaces X and Y, xg € X, yo € Y. Now, we will define pointed
proximate net from (X, xo) to (Y, yo).

Definition 3.1. A pointed proximate net from (X, xo) to (Y, yo) is a family f = (fy |V € CovY') of V - continuous
functions fo : (X, x0) = (Y, yo), such that foy %;fq/ (rel {xo}) whenever W < V.

Definition 3.2. Two pointed proximate nets f and g from (X, xo) to (Y, yo) are pointed homotopic if fv 59V (rel {xo})
for all coverings V € CovY. We denote by f ~ g (rel {xo}).

Proposition 3.1. The relation of pointed homotopy of pointed proximate nets is an equivalence relation. The pointed
homotopy class of proximate net f from (X, xo) to (Y, yo) we will denote by [ f] .
. —4X0
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Proof. Let f = (fy |V € CovY) and g = (gv |V € CovY) be pointed homotopic pointed proximate nets

from (X, x(; to (Y, o). Therefore, for all coverings V € CovY the V - continuous functions fy and g+ are
pointed V - homotopic. For all coverings V € CovY by Proposition 2.1 the relation of pointed V - homotopy
fov by gy (rel {xo}) of V - continuous functions is an equivalence relation. So, by the definition the relation of

pointed homotopy of pointed proximate nets is an equivalence relation. [J

Now let introduce a notion of composition of pointed proximate nets f : (X, xo) = (Y, yo)and g : (Y, yo) —
(Z, ).

Let f = (fy |V € CovY)and g = (gw |'W € CovZ).

Because g4y is W - continuous, then by the definition there exists an open covering V of Y such that

gw ((V) <W.

We define hqy = gy o fy : (X, x0) = (Z,zp). This function is ‘W - continuous. Although the definition
depends on the choice of V, the next Lemma shows that for two coverings V,V’ € CovY such that
gw (V), gw (V') < W is true that gy o f(V(a/gW o for (rel {xo}).

Lemma 3.1. If f is pointed proximate net and V,V’ € CovY such that gy (V) , gw (V') < W, W € CovZ. Then
gw o fv > gw o fy (rel {xo}).

Proof. Let V" € CovY be a common refinement of V and V’,i.e, V" < V,V’. Since f is pointed proximate
net by the definition follows that fq» by f (rel {xo}) and for > far (rel {xo}). By Proposition 2.2 it follows that

gwo fon T gwe fv (rel {xo}) and gy o fpr T gwe far (rel {xo}). From the transitivity of the pointed homotopy

we conclude that gqy o fq/q;g(w o fy (rel{xo}). O

Now, we will show that the function hqy = gqyo f : (X, x9) = (Z, z9) from the discussion above generates
a pointed proximate net from (X, xg) to (Z,z9) h = (hay = gw o fy |'W € CovZ), i.e., we will show that for
all W’ < W is true that hqy q;h(w (rel {xo}).

Let W’ < W and since g is a pointed proximate net then gy~ 9w (rel {yo}) by a pointed homotopy G,

which is st (‘W) - continuous function and ‘W - continuous on Y X dl.

By Proposition 2.3 there exists a V" of Y, such that for each V" - continuous function fq : (X, x0) —
(Y, yo), the function G (fo» X id) : (X X I,x9 X I) = (Z,zp) is st (W) - continuous on (X X I, xo X I), and ‘W -
continuous on X X dI .

It follows gy o fom > gaw © fom (rel {xo}).

Now, consider hqy» = gy o fo» and hqy = gy o fq, for some V’ € CovY, gy (V') < W’ and a covering
V e CovY, gy (V) < W.
By Lemma 3.1, since g (V) , gw (V") < W it follows that gy o fy b gw o fr (rel {xo}).

Now, consider a covering Vi of Y, such that V; < V’, V”. Since gy (V1), gw (V') < W', by Lemma
3.1, it follows that gqy» o f, (M~/ gw © far (rel {xo}).

Because W’ < W then gy o fqr > g © fay, (rel {xo}).

By Proposition 2.2 since J_‘ is a pointed proximate net i.el., fy, o fr (rel {xo}) and gy (V") < ‘W, then
is true that gy~ o fy, e gw o fa (rel {xo}).

Therefore gy o fqr ;vg(W’ o fo, (rel {xo}) b gw © fa (rel {xo}) q}gw o fan (rel {xo}), i.e., we showed that
hay (a/hfw (rel {xo}).

Now we will give the following definition:

Definition 3.3. Let [ f] and M are two pointed homotopy classes of pointed proximate nets. We define a
—-X0 Yo
ti inted homot 1 d b = .
composition of pointed homotopy classes [ ]_‘]xn an [g]yo Y [g]ya o [ j_f]xo [Z o ]_“LO
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From the discussion above in order to show that this composition is well defined we have only to show
thatif f ~ f (rel {xo}) and g ~ ¢ (rel {xo}) then )i ~ i (rel {xo}), where  and }i" are the compositions of pointed
proximate nets f and g, f and ¢, respectively.

Since g ~ g (rel {yo}) by a homotopy then for every ‘W € CovZ is true that gqy > g, (rel {yo}) and by
Proposition 2.3 there exists a covering U € CovY, gw (U) < W, g.,,, (U) < W such that for U - continuous
function fq; : (X, x0) = (Y, yo) it is true that gy o fyy bt g:W o fq (rel {xo}).

From the definition of the composition of two pointed proximate nets there exist coverings V and V’
of Y such gay (V) < Wand g,,,, (V') < W such hay = gay o fyy and by, = g.,,, 0 £,

Since f ~ f " (rel {xo}) then fu b ffu (rel {xo}), so by this fact, Lemma 3.1 and Proposition 2.2 we can conclude
that hay = g o fy ~ gaw © fu (rel {xo}) @g’w o fau (rel {xo}) (;/!fw o fo, (rel {xo)) = h,y,,, ie., hay (;/hiw (rel {xo})
for all W € CovZ.

Therefore, h ~ h (rel {xo}).

By the definition of the composition of pointed proximate nets and U - continuous function the following
Theorem is valid.

Theorem 3.1. Let [f]x 1 (X, x0) = (Y v0), &]y : (Y y0) = (Z,2) and [@]Z :(Z,z0) = (W, wy) are three pointed

homotopy classes of pointed proximate nets. Then [ll] o ([g]y o [ f] ) = ([h] o [g]y ) o [ﬂx .
Z —Yo —IXo Z 0 0

In this way we proved that the topological pointed spaces and pointed homotopy classes of pointed
proximate nets form category of pointed intrinsic shape. We say that pointed topological spaces (X, xo) and
(Y, yo) has same pointed intrinsic shape if they are isomorphic in this category.

4. Homotopy of U - paths

Let X be a topological space and I = [0, 1]. Now, we recall some definitions introduced in Shekutkovski
etal. [11].

Definition 4.1. Let U be an open covering of the space X and xo,x1 € X are fixed points. The st (U) - continuous
function kqy : I — X which is U - continuous on dI = {0, 1} and kq; (0) = xo,kqs (1) = x7 is called U - path with
endpoints xo and x;.

Definition 4.2. Let U be an open covering of the space X and kqy,lqs : I — X are U - paths with endpoints xo and
x1. We say that the U - paths kq; and lqs are U - homotopic paths if there exists a function F : I X I — X such that:

(I) Fisst? (U) - continuous;
(I) F is st (U) - continuous on 1> = 9 (I x I);
(IIl) F is U - continuous on 3*I> = {(0,0), (0,1), (1,0), (1,1)};

and satisfies the usual conditions for homotopy of paths relative endpoints

(IV) F(t,0) = kq (t) and F (t,1) = lq (t) for all points t € I;
(V) F(0,5) = kqs (0) = lqy (0) = xp and F (1, ) = kqs (1) = lqy (1) = x1 for all elements s € L.

When two U - paths kq; and lqy with same endpoints are U - homotopic we denote as ke ;{lru (rel{0,1}), i.e.,

k«y(z{l(u.

Proposition 4.1. The relation of U - homotopy kq by lq (rel {0, 1}) of U - paths is an equivalence relation.
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Proof. It is enough to prove transitivity of the relation. Let k¢, l¢s, pys : I — X are U - paths in X such that
kﬂ%lru (rel{0,1}) and l«u;{pru (rel {0,1}). Then there exist U - homotopies relative endpoints K : [ x I — X

and L : I X I — X connecting the U - paths kq; and lqy, l¢y and pq, respectively.
We define a function H : I X I — X by:

K (t,2s) =Ko f(ts), 0<s<
H(t,s) =
L(t,2s—1)=Logl(ts),

where the continuous functions f and g are defined by:

Filx [o, %] S IXI f(ts) = (t,25) and g : T [%1] S IxLg(ts) = (525 — 1),
1
By Theorem 2.2 [7], since the compositions K o f and L o g are st* (U) - continuous on [ X [O, E] and

1 1
I'x [E' 1], respectively and st (U) - continuous on I X {5} the function H is st?> (1) - continuous on I X I.

By the definition of the function H and the facts that K and L are st (U) - continuous on JI? it follows
that the function H is st (U) - continuous on dI?. Also, considering the definition of the function H since K
and L are U - continuous at the points (0,0), (0,1), (1,0), (1,1) then the function H is also U - continuous
at these points.

Furthermore, H (t,0) = K(t,0) = kqs (t) and H(¢,1) = L (t,1) = py (t) for all t € I and

K(0,25), O

< ke (0), 0<s<
H(O,S): 1
2

L(O,ZS_ 1)/ 1 l(u (0)/

1
2
So, kyy ;{ pu (rel{0,1}), i.e., the relation of U - homotopy relative endpoints is transitive. [J

Let consider an open covering U of the space X, and two U - paths kq, lg; : [ = X such thatkq, (1) = ¢/ (0).
We define a concatenation by:

k t
(kay * 1g/)(t) = 1
2

By Theorem 2.2 in [7] the concatenation is well defined and st (U) - continuous function. Also by the
definition of U - paths kq, lq : I — X the concatenation kq; * I¢; is U - continuous on JI = {0, 1}. Therefore,
kqs *lqis U - path.

The proofs of the following two theorems are presented in [11].

0 21 . 0 11
Theorem 4.1. Let kw,k,u I - X, l,u, l'u
and the concatenations k§, = 19, and k= I} are defined. Then k, =19, 'ZNIk}” * 13, (rel {0, 1)).

: I > X are U - paths such that k?Ll:Lv{k}u (rel{0,1}), l?L{(Zl}u (rel{0,1})

Theorem 4.2. Let kqy, Iy, py : I — X are U - paths in X and the concatenations kq; * lyy and lqy = pqy are defined,
ka; (1) = 194 (0) and lq; (1) = pas (0). Then (kqs * lyg) * pu ak'u * (lgs * pay) (rel {0, 1}).

Let X be a topologic space and xy € X. The constant U - path ¢y, : I — X is defined by cy, (f) = xo , for all
tel

Definition 4.3. Let X be a topologic space and kq; : I — Xis U - path in X. The U - path in X, k; : I — X, defined
by ky; (t) = ka (1 = t) is called inverse U - path of the U - path kq,. Notice that (k;)y; = ku.
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The proofs of the following three theorems follow the line of construction of the standard fundamental
group (for example Shekutkovski [10]).

Theorem 4.3. Let kq; : I — X is U - path with endpoints xo and x1. Then

a) k‘L( *Cxy akﬂ (7’61 {1/ 0})
b) Cxo * k’L( ;Ik’u (7’€l {1/ O})

Proof. a) First let represent the square I X I as union of two closed sets A; and A, i.e [ X1 = A; U Ay,

where A; = {(t,s) |sel,0<t< %},Az = {(t,s) | s eI,% <t< 1}.

Let consider the following function defined by a (t,s) = kq; o f (£,5), where f(t,s) = si_tl
Now, we define a function H : I X I — X by:

_Joa(ts), (ts)eA
H(t,S) - { X1, (t,S) € Az.l

The function f defined on A; is continuous. The U - path ke, is st (U) - continuous. So the function
a = kq o f is st (U) - continuous on A;.

1
If(t,s) e A1 NA, = {(%,s) |se I}, thena(t,s) = k¢y (1) = x1.

By Theorem 2.2 [7] since a and constant U - path c,, are st () - continuous and equal on A; N A;. The
function H is st (U) - continuous on I X I.

The U - path kq; and constant U - path are U - continuous on dI = {0, 1}. By the definition of the function
a and constant U - path c,, are V - continuous functions at the vertices of the sets A; and A;, respectively.

By the definition of the function H and the fact that 2 and constant U - path c,, are st () continuous on
dA1 and dA,, and U - continuous at the vertices of the sets A; and A,, it follows that the function H is st (U)
- continuous on JI2.

Considering the definition of the function H since a and constant U - path ¢y, are U - continuous at the
points (0,0), (0,1) and (1,0), (1, 1), respectively, the function H is U - continuous on

2*I* ={(0,0), (0,1), (1,0), (1,1)}.

Ifs=0
1
kﬂ(Zt), 0<t< =
H(t,0)= 1 2 = (ky*cy)(t)forallt e L.
X1, —Sfﬁl
2
Ifs=1
H(f/1)={ kﬂ(t)'lgfjfl =kq (t) forall t € 1.

Let s € I is an arbitrary point. If t = 0 then H(0,s) = k¢; (0) = xo. If t = 1 then H (1,s) = x;. Therefore, we
showed that kq; * ¢y, b ks (rel {0,1}), as required.

b) First let represent the square I X I as union of two closed sets By and B, i.e., I X I = By U B,, where

1-s
2

Blz{(t,s)|S€I,0St$%},32={(t,s)|SEI, Stél}.
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. . . . 2t—-1+s
Let consider the following function defined by b (t,s) = kqs © g (t,5) where g(t,s) = = 1
Now, we define a function K : I X I — X by
_ x1, (t,5)€ By
Kt,9) = { b(t,s), (t5)€ B
With similar discussion as in a) can be obtained that the function K is pointed U - homotopy relative
endpoints connecting the U - paths ¢y, * k¢y and k¢;. 0O

Theorem 4.4. Let kqy,lqs : [ — X are U - paths in X such that ke, by Iy (rel{0,1)). Then ky; by I} (rel{0,1)).

Proof. Because kq by lqy (rel {0, 1}) there exists a function K : I X I — X connecting the U - paths k¢; and lq.

Let define a function H : I X I — X by: H(t,s) = K(1 - t,s).

All conditions (I) - (II) from the Definition 4.2 are valid for the function H by its definition.
Now, if s = 0 then H(t,0) = K1 -¢t0) =kgy(1-1t) = k:ul (t)forallt e [ If s=1then H(t,1) = H(,1) =
KA -t1)=1Iqy(1-t) =1, (t)forallt € L.
Let s € I is an arbitrary point. If ¢+ = 0 then H(0,s) = K(1 - 0,s) = K(1,5) = k¢/ (1) = k,;} (0). If t = 1 then
H(1,s) = K(1 -1,s) = K(0,s) =144 (0) = l,‘u1 (1).

Therefore, we showed that k;; 5 I/ (rel{0,1}) as required. [

Theorem 4.5. Let kqy : I — X is U - path in X such that kq; (0) = xo and kq; (1) = x1. Then is true that
ku + kg, A (rel{0,1}).

Proof. By the definition of concatenation:

ke (2t), 0<t ke (2f), 0<t<

1 1
< = sl
2 - 2
<t< t

(Far % kg ) (B) = =
ku(2-20, 0<

1

-1
kg 2t=1), 0 3
Let represent the square I X I as union of two closed sets A and B, i.e I X I = A U B, where

A:{(t,s) |s€l,0§t§%},B:{(t,s) ISEI,%Stﬁl}.

We consider the following functions defined by:
a(t,s) =kq o f(t,s), where f(t,s) =2t (1 —s)and b(t,s) = kg o g (¢,5), where g(t,s) = (2 -2t) (1 —s).
Now define a function H : I X I — X by:

_Joas), (s)eA
H(tfs)‘{ b(t;s), (ts)eB.

We can verify all conditions (I) - (III) from the Definition 4.2 for the function H with similar discussion
as the proof of the Theorem 4.3.
Now, if s = 0 then

1
2 =(kyrky) @ foralltel
t

Ifs = 1 then
H(t,1) =kq (0) = xg forall t € I.
Let s € I is an arbitrary point. If t = 0 then H(0,s) = k¢/ (0) = xo, and if t = 1 then H(1,s) = k¢ (0) =

(s * K} (D).
Therefore, we showed that k¢, * k,;} pA (rel{0,1}), as required. [
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5. Proximate fundamental group

Proximate fundamental group is definied in [11]. Now, we recall the definition and prove that it is
invariant of pointed shape cathegory.

Definition 5.1. Let U is an open covering of the space X and xo € X is a fixed point. The U - path kq; : I — X such
that kq; (0) = ks (1) = xo is called U - loop in xy.

The homotopy class of U - loops in x, k¢; : I — X we will denote by [kq/],, .

Definition 5.2. A proximate loop in xy (over CovX) is a family k = (kqyy | U € CovX ) such that kv (Zf;k(u (rel{0,1})
forall'V <U.

We can denote the proximate loop also by k = (k¢/)q/econx-

Definition 5.3. Two proximate loops k and | in xq are homotopic over all coverings if kru:Lvll(u (rel {0,1}) for all
U € CovX. We denote that by k ~ [ (rel {0, 1}).

Proposition 5.1. The relation k ~ 1 (rel {0, 1}) is an equivalence relation. The homotopy class of proximate loop k in
Xo is denoted by [Ig] .
Xo

Proof. Letk = (kqy |U € CovX) and [ = (Igy |U € CovX) be two homotopic proximate loops in xg. Therefore,
kay b Iq (rel {0, 1}) for all coverings U € CovX. For all coverings U € CovX by Proposition 4.1 the relation of
U - homotopy relative endpoints ke, by lq (rel {0,1}) of U - loops is an equivalence relation. So, the relation

of homotopy of proximate loops is an equivalence relation. [

We consider the following set:
proxmty (X, xo) = {[Ig] | k is proximate loop in xp }
X0

In this set we define an operation “+” by: [k] * [l] = [k * l] , where k + | is defined as: k=+I =
s = =lx - - - -
(k«u * lﬂ |7/I € CovX )
We will show that this operation is well defined.
First we will find that k + [ is proximate loop in x¢. By the definition of the composition of two U - loops
for all U € CovX the function ke * lqs is U - loop in x9. Now, let consider any V < U. Since k and [ are
proximate loops then k+ b kq; (rel{0,1}) and I b Iq (rel {0, 1}), so by Proposition 1.3 (iii) [4] and Theorem 4.1

is true that ky = [ ’Z{kﬂ # [q7 (rel {0, 1}). Therefore, k * [ is proximate loop in xo.

Now, by Theorem 4.1 if kJ , k%, : I — X, l9u' by

19, It (rel {0, 1)) then s true that k), « Iy, ~ kb, « I}, (rel 0, 1)).

1

Therefore, the operation “+” in the set proxm; (X, xo) is well defined.

: I — X are U - loops in xp such that k,ou &k}u (rel{0,1}),

“_

Theorem 5.1. The set proxm (X, xo) with the operation “+” is group. This group proxmy (X, xo) is called proximate
fundamental group.

Proof. Associativity: Let [Ig] , [l] and [p] are homotopy class of proximate loops in xy. We should show
X0 Xo —lxp
that:

(€], <[, )+ [e],, = [€],, ~(12, < [¢].,) "
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For the left side of the equation (1) is true the following identity:

(1, +[1,, )+, =[], [el, =[G=1) =], . @

and for the right side of (1) is true:

(6], «([1, + [, ) =[], <[tp], = [k*(tp)], - ®

So, to show that the equation (1) is true is enough to show that [(I_{ * l) * E] = [lg * (Z * E)L , 1.e., that the

X0
proximate loops (Ig * l) +p and k (Z * p) are homotopic over all coverings.
Let kyy, lyy and pqy are U - loops in xg for an arbitrary covering U € CovX. Then by Theorem 4.2
(ke = la)*pu sz‘“ (g * pa) (rel {0, 1}) for any covering U € Cov (X). Therefore, (Ig * l)*p ~ lg*(l * p) (rel{0,1}),

e, [(kx2)«p], = [ex(ep)],
So, the associative law for the operation “+” in the set proxm; (X, x¢) is true.

Identity element : It is the homotopy class @] of the constant proximate loop in xy defined by the
X0

constant U - loop ¢y, in xo.
Let kq; is U - loop in xp for an arbitrary covering U € CovX. Then for an arbitrary covering U € CovX
by Theorem 4.3 kq; * ¢y, by ka (rel {0,1}) and ¢y, * kqy (Z{k«u (rel {0, 1}).
Therefore, k+ cy, ~ k (rel {0,1]) and cy, +k ~ k(rel {0,1)), ice., [k+ ey | =[k| and [cq, k] =[k] .
- — - = - - X0 —dXp —xo —IXp
By the definition of the operation “+” in the set proxm; (X, xo) the following identities are true:

6, *leol,, = levcul, =[], and[eul, +[], = oo 4], =[8], -
Inverse element: An inverse element of a homotopy class [Ig] of a proximate loop in xj is the homotopy
Xo
class [l{l] of the proximate loop k™" = (k;} |U € CovX ) defined by the inverse U - loop of the U - loop
Xo
kq; in xo. For any covering U € CovX by Theorem 4.5 kq; + k; o (rel {0,1}) and k; * kqs = (rel {0, 1}).

So, [K] «[k7], = [kek™] = [en], and [k7] <[K], =K <k] = [eu], -

Therefore, the set proxm; (X, xo) with the operation “+” is a group. [

Let X and Y be topological spaces, and f = (fy |V € CovY) is a pointed proximate net from (X, xp) to
(Y, yo)-
Now, to the proximate net f we can associate an induced function f,,o, : proxm(X, xo) — proxmi(Y, yo)

defined in the following way:
Let [k]y, € proxm (X, x0), where k = (kg |U € CovX) is a proximate loop in xy. Since the proximate
loop is a proximate net, if we define a proximate net p = (py |V € CovY') as a composition of proximate

nets k = (kg |'U € CovX) and f = (fy |V e CovY),ie,p = fok=(py = fyoky |V € CovY), we obtain a
proximate loop in . Finally, we define: -

fprox([k]xo) = [B]yo'

Let k° and k!, are proximate loops in xq from the same homotopy class of proximate loop [ISL . So there
0
exists a homotopy K between the proximate loops k” and k!. Then the proximate loops f o k® and f o k! are

homotopic by a homotopy f o K. Therefore the induced function f,,, is well defined.

Theorem 5.2. Let X and Y are topological spaces, f = (fy |V € CovY) is a pointed proximate net from (X, xo) to
(Y, yo). Then the induced function fye. : proxmi(X, xo) — proxmy(Y, f (xo)) is homomorphism.
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Proof. Let [k]y,, [llx, € proxm; (X, xo). We should show that:

oo {[e], < [1,) = oo (11, ) < o (1,

Because

fprox ([k]xo * [l]xo) prox ([k l] ) P”UX [(kﬂ * Z(L()(L(ECDUX]XO [(f(V (ks * Z(L())(VeCon]y

and

oo (8], ) v ([1],,) = [0 © Kebvecn], * [ © By, = [ K= (0 by,

we should show that [(fy (ke * lfu))%cw]yo = [((Fv o kar) * (Fv © 110))yecony |
The equality follows since ((fy o k¢r) * (fy o lgr)) (t) =

v

1 1
(fyoka)(2t), 0<t<; fy (ky(2), 0<t<=

v 1 2 SN 1 2 = fy (kg *lg) (1). O
(fvoly)(2t-1), 5st<1 fr(@t-1), 5<ts<1

Since the proximate loop is a proximate net by Theorem 3.1 the following Theorem is valid:

Theorem 5.3. Let f = (fy |V € CovY), fy : (X,x0) = (Y, y0) is V - continuous, and g = (gw |'W € CovZ),
gw : (Y, yo) = (Z,20) is ‘W - continuous, are two proximate nets. For any [kly, € proxmy (X, xo) is true that:

(z o i)prox (Uf]xo) = Gprox (fprox ([k]xg))

Theorem 5.4. Let f = (fy [V € CovY), fy : (X,x0) = (Y, vo) is V - continuous, and f’ = (fq, |V e COUY)
o Xoxo) = (Y, yo) is V - continuous, are two proximate nets. For any proximate loop in xo if f and f" are
homotopic then proximate loops in yo, f o kand f’ o k are homotopic.

Proof. If f and f” are homotopic there exists a homotopy F connecting f and f’. For a covering V of Y we
choose a covering U of X as in Proposition 2.3. Then L = (L), where Ly = Fy(kgy X id) : IX] — Yis a
proximate net. Since

Ly (t,0) = Fykq(t) and Loy(t, 1) = Fyky (t) for all t € I, and L/(0, 5) = Fy(xo,s) = yo and Ly/(1,5) = Fy(xo,s) =
Yo for all s € I, we have only to check the conditions (I), (II), (III) of Definition 4.2.

(I) By Proposition 2.3 the function k¢; X id : I x I — X x I is st (U) - continuous. And Fy : X X[ — Y'is
st (V) - continuous. It follows L« is st? (V) - continuous.
(I) For (0,s) from 91> = d (I x I), since kqy X id is U - continuous at point (0, s) and Fey is st (V) - continuous
at (xo, s) = (kg x id) (0, s), it follows L«is st (V) - continuous at point (0, s). Similar for (1, s).
For (t,0) from 9I? = 9 (I x I), since kq; X id is st (U) - continuous at point (t,0) and F« is V - continuous
at (k¢/ (), 0) = (kg X id) (£, 0) it follows Lq,is st (V) - continuous at point (¢, 0). Similar for (¢, 1).
(IlT) For (0,0) from 9?12, since k¢ X id is U - continuous at point (0,0) and Fq is V - continuous at
(x0,0) = (kqs x id) (0, 0), it follows Lq,is V - continuous at (0,0). Similar for all other points (1, 0), (0,1)
and (1,1) from 932I>.

We proved that L = (L) is homotopy connecting f o k and f’ o k as required. [
By Theorems 5.2, 5.3 and 5.4 we obtain the following result

Theorem 5.5. Associating proxmy (X, xg) to a pointed topological space (X, xo) and associating to a proximate net
[flx, the homomorphism fye. @ proxmi(X,xo) — proxmi(Y, f (xo)) we obtain a functor from category of pointed

intrinsic shape to category of groups.
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Proof. Let consider the functor defined above from the category of pointed intrinsic shape to the category
of groups.

By Theorems 5.2 and 5.4 this functor is well defined. By Theorem 5.3 it preserves composition of
morphisms.

At last, we have to show that it preserves the identity morphisms.

Let [ f ]Xo be an arbitrary morphism in the category of pointed intrinsic shape from (X, xo) to (Y, yo). We

consider the pointed homotopy class [1 X]x of pointed proximate net 1x defined with the identity function
Xl X
1x. By Definition 3.3 the following identities are true:

7], o[s], =[foxs], =[],

So, an identity morphism in the category of pointed intrinsic shape is the pointed homotopy class of
[1 X]x pointed proximate net 1x defined with the identity function 1x in the topological space X.
Xy =X

The induced function 1,y : proxmi (X, xg) — proxm (X, xo) associated to the identity morphism is defined
in the following way: 1,.0:([kly,) = [1x © kly,, where [k]y, € proxm (X, x0) is the homotopy class of the

proximate loop k = (k¢ |U € CovX) in xo. Since lpx([kly,) = [1x © klyy = [klx, = Lprovni(xx0) ([lg]xo) we
conclude that the function from the category of pointed intrinsic shape to category of groups preserves the
identity morphisms. []

By this theorem we proved that proxm; (X, xo) is an invariant of pointed intrinsic shape of a pointed space
(X, x0). If (X, x0) and (Y, o) have same pointed intrinsic shape then their proximate fundamental groups are
isomorphic.

Example 5.1. The proximate fundamental group of a circle and Warsaw circle are isomorphic to additive group of
integers.

Proof. Notions of shape and homotopy for finite polyhedra coincide. So, there is 1 — 1 corespondence
between homotopy classes of pointed maps (S!,1) — (S!,1) and homotopy classes of pointed proximate
nets (§',1) — (51, 1).

We consider the unit circle S! in the complex plain and define maps f" : (S!,1) — (S}, 1) by f"(z) = 2",
neZ.

Then, the only classes of pointed homotopy of maps (S, 1) — (S!, 1) are [f"], n € Z, and these are exactly
the elements of the fundamental group of the circle, i.e., 71 (S') = {[f"] | n € Z}.

Since there is 1 — 1 corespondence between homotopy classes of pointed maps (S!,1) — (S',1) and
homotopy classes of pointed proximate nets (S!,1) — (S}, 1), the only pointed homotopy classes of pointed
proximate nets (S!,1) — (S%,1) are [( f4)), n € Z, where the proximate net (fJ,) is defined by f, = f" for
all coverings V. The pointed homotopy classes of pointed proximate nets [(f],)], n € Z, are exactly the
elements of the proximate fundamental group of the circle, i.e., proxm; (S?) = {[( fa)llneZ}.

The operation “+” in fundamental group of a circle is defined by concatenation of paths. It is well
known that the definition leads to [f"] = [f"] = [f"*"], i.e., the fundamental group of a circle is isomorphic
to additive group of integers ( for example, see [10] ).

Since the operation * in proximate fundamental group of a circle is defined also by concatenation of

paths then the operation in prox7t;(S!) is given by

(£ = L] = [

Then, with [f"] — [(f},)] is defined a natural isomorphism m1(St) — proxm;(S'), between fundamental
group and proximate fundamental group of the circle.

Finally, by Theorem 5.5 the proximate fundamental group is an invariant of pointed intrinsic shape.
Since a circle and Warsaw circle have the same shape, they also have the same intrinsic shape and isomorphic
proximate fundamental groups. [J
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