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Available at: http://www.pmf.ni.ac.rs/filomat

Levitin-Polyak Well-Posedness for Set-Valued
Optimization Problems with Constraints

Jiawei Chena, Yeol Je Chob, Xiaoqing Ouc

aSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, China
bDepartment of Mathematics Education and the RINS, Gyeongsang National University, Jinju 660-701, Korea,

Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
cCollege of Management, Chongqing College of Humanities, Science & Technology, Chongqing 401524, China

Abstract. In this paper, Levitin-Polyak well-posedness for set-valued optimization problems with con-
straints is introduced. Some sufficient and necessary conditions for the Levitin-Polyak well-posedness
of these problems are established under some suitable conditions. The equivalence between the well-
posedness of optimization problems with constraints and the existence and uniqueness of their solutions
are proved. Finally, we give some examples to illustrate the presented results.

1. Introduction

The well-posedness plays an important role in the stability analysis and numerical methods for opti-
mization theory and applications and nonlinear operator equations. The well-posedness for minimization
problems (shortly, (MP)) was first introduced and studied by Levitin and Polyak [16] and Tykhonov [21],
respectively. These are so-called the Levitin-Polyak and Tykhonov well-posedness, respectively. The well-
posedness of (MP) implies the existence and uniqueness of solutions of (MP). In practical situations, the
solutions of (MP) are usually more than one. In this case, the notion of the well-posedness in the gener-
alized sense which implies the existence of solutions of (MP) was introduced. Since then, many authors
investigated the well-posedness and generalized well-posedness for optimization problems, variational
inequality problems and equilibrium problems (see, for example, [3–6, 8, 11, 13–15, 17, 19, 20, 23] and
references therein).

In [12], Hu et al. studied some sufficient and necessary conditions for the Levitin-Polyak type well-
posedness of variational inequality problems and optimization problems with variational inequality con-
straints and obtained the relationships between the Levitin-Polyak well-posedness of the problems and the
existence and uniqueness of its solutions. Fang et al. [9, 10] considered the well-posedness by perturba-
tions for mixed variational inequality problems in Banach spaces, established the equivalence between the
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well-posedness of mixed variational inequality problems and that of the corresponding inclusion problems
and fixed point problems and obtained the relationship between the well-posedness by perturbations and
the existence and uniqueness of its solutions. They also pointed out that it is deserved to consider the
well-posedness for the inclusion problem in [9]. Lin and Chuang [18] investigated the well-posedness
in the generalized sense for variational inclusion problems and variational disclusion problems, the well-
posedness for optimization problems with variational inclusion problems, variational disclusion problems
and scalar equilibrium problems as constraints. In 2012, Wang and Huang [22] studied the necessary
and sufficient conditions for the Levitin-Polyak well-posedness of generalized quasi-variational inclusion
and disclusion problems and for optimization problems with constraints in Hausdorff topological vec-
tor spaces. In many practical problems, their constraints appear in the form of systems. To the best of
our knowledge, there are very few results concerning the Levitin-Polyak well-posedness for set-valued
optimization problems with systems of general variational inclusions and disclusion constraints.

Inspired and motivated by the above works, the aim of this paper is devoted to study the Levitin-Polyak
well-posedness for set-valued optimization problems with systems of general variational inclusion and
disclusion constraints, characterize the sufficient and necessary conditions for the Levitin-Polyak well-
posedness of these problems and establish the equivalence between the well-posedness of optimization
problems with constraints and the existence and uniqueness of their solutions.

2. Preliminaries

Throughout this paper, without other specifications, let I be a finite index set, R be the set of real
numbers, C be a closed convex pointed cone of a Hausdorff topological vector spaces P with intC , ∅, Λ1
and Λ2 be nonempty closed subsets of a normed linear space

∧
, Zi be Hausdorff topological vector space,

Hi and Ki be nonempty closed convex subsets of normed linear spaces Xi and Yi for each i ∈ I, respectively.
Let X =

∏
i∈I Xi, Y =

∏
i∈I Yi, H =

∏
i∈I Hi, K =

∏
i∈I Ki and X−i =

∏
j∈I, j,i X j. Denote the element of X−i

by x−i and so x ∈ X denoted by x = (xi)i∈I = (x−i, xi) ∈ X−i
× Xi. We always denote 2X by the family of all

nonempty subsets of X. Let Ci : H → 2Zi be a set-valued mapping such that, for each i ∈ I, x ∈ H, Ci(x) is
a closed convex and pointed cone of Zi and let ei : H → Zi be a continuous vector-valued mapping such
that ei(x) ∈ −intCi(x) for all x ∈ H, M1,M2 :

∧
×H → 2P, Γi : H → 2Hi ,Ti : H → 2Ki , Ψi : H × Hi → 2Zi and

Fi : H × K ×Hi → 2Zi be set-valued mappings for each i ∈ I.

Consider the following set-valued optimization problems with system of general variational inclusion
(shortly, (SOPSGVI)) and disclusion constraints (shortly, (SOPSGVDI)), respectively:

min M1(p, x)
subject to p ∈ Λ1, x ∈ S(p),

and

min M2(p, x)

subject to p ∈ Λ2, x ∈ Sd(p),

where S(p) and Sd(p) are solutions sets of the following system of general variational inclusion (SGVI) and
system of general variational disclusion (SGVDI) involving set-valued mappings, respectively:

Find x∗ ∈ H such that for each i ∈ I, x∗i ∈ Γi(x∗) and there exists y∗i ∈ Ti(x∗) satisfying

0 ∈ Fi(x∗, y∗, xi) + Ψi(x∗, xi) (1)

for all xi ∈ Γi(x∗) and
Find x∗ ∈ H such that for each i ∈ I, x∗i ∈ Γi(x∗) and there exists y∗i ∈ Ti(x∗) satisfying

0 < Fi(x∗, y∗, xi) + Ψi(x∗, xi) (2)

for all xi ∈ Γi(x∗).
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Denote the feasible solutions sets of (SOPSGVI) and (SOPSGVDI) by N1 = {(p, x) ∈ Λ1 × H : x ∈ S(p)}
and N2 = {(p, x) ∈ Λ2 ×H : x ∈ Sd(p)}, respectively. In the sequel, we always assume that N1 and N2 are two
nonempty closed sets.

Definition 2.1. For each j = 1, 2, let ν ∈M j(N j). ν is said to be a minimal point of M j(N j) if

M j(N j) ∩ (ν − C \ {0}) = ∅.

Definition 2.2. A point (p, x) ∈ N1 (resp.,N2) is said to be an efficient solution of (SOPSGVI) (resp., (SOPS-
GVDI)) if there exists ν ∈M1(p, x) (resp.,M2(p, x)) such that ν is a minimal point of M1(N1) (resp.,M2(N2)).

We present the following examples which are (SOPSGVI) and (SOPSGVDI), respectively.

Example 2.3. Let the index set I be a singleton, Λ1 = [−1, 1], X = Y = Z = P = (−∞,+∞), H = K = [4,+∞)
and C = [0,+∞). For each p ∈ Λ1, x, z ∈ H and y ∈ K, let M1(p, x) = [0, |p|x], Γ(x, p) = [x, x + p2], T(x, p) =
[p − x, x + 1], F(x, y, z) = [−y − 1 − p, z − x] and Ψ(x, z) = [2x − 6, 2 + z − x]. Simple computation allows that,
for each p ∈ Λ1, S(p) = [4, 8 + p] and the efficient solutions set of (SOPSGVI) is {(p, x) ∈ Λ1 ×H : x ∈ S(p)}.

Example 2.4. Let the index set I be a singleton, Λ2 = [− 1
2 , 1

2 ], X = Y = Z = (−∞,+∞), C = [0,+∞)
and H = K = [1, 10]. For each p ∈ Λ2, x, z ∈ H and y ∈ K, let M2(p, x) = [0, p2x], Γ(x, p) = [x, x + p2],
T(x, p) = [p − x, x + 1], F(x, y, z) = (−∞,−y − 1 − p) ∪ (z − x,+∞) and Ψ(x, z) = (1 + p, 1 + p + x

2 ). After
computation, we obtain that, for each p ∈ Λ2, Sd(p) = H. It is easy to see that the efficient solution set of
(SOPSGVDI) is {(p, x) : p ∈ [−1, 1], x ∈ H}.

Definition 2.5. ([1, 2]) Let
∨

be a Hausdorff topological vector space and E be a locally convex Hausdorff
topological vector space. A mapping ψ :

∨
→ 2E is said to be:

(1) upper semi-continuous (usc) at υ0 ∈
∨

if, for each open set V with ψ(υ0) ⊂ V, there exists δ > 0 such
that ψ(υ) ⊂ V for all υ ∈ B(υ0, δ);

(2) lower semi-continuous (lsc) at υ0 ∈
∨

if, for each open set V with ψ(υ0)
⋂

V , ∅, there exists δ > 0 such
that ψ(υ) ∩ V , ∅ for all υ ∈ B(υ0, δ);

(3) closed if its graph is closed, i.e., Gr(ψ) = {(υ, ζ) ∈
∨
×E : υ ∈

∨
, ζ ∈ ψ(υ)} is closed;

(4) opened if its graph is opened.

We say that ψ is lsc (resp., usc) on
∨

if it is lsc (resp., usc) at each υ ∈
∨

. ψ is said to be continuous on
∨

if it is both lsc and usc on
∨

.

Lemma 2.6. ([1, 2]) (1) ψ is lsc at υ0 ∈
∨

if and only if, for any net {υα} ⊆
∨

with υα → υ0 and ζ0 ∈ ψ(υ0), there
exists a net {ζα} ⊆ E with ζα ∈ ψ(υα) for all α such that ζα → ζ0.

(2) If ψ is compact-valued, then ψ is usc at υ0 ∈
∨

if and only if, for any net {υα} ⊆
∨

with υα → υ0 and for any
net {ζα} ⊆ E with ζα ∈ ψ(υα) for all α, there exist ζ0 ∈ ψ(υ0) and a subnet {ζβ} of {ζα} such that ζβ → ζ0.

(3) If ψ is usc and closed-valued, then ψ is closed. Conversely, if ψ is closed and E is compact, then ψ is usc.

3. Main Results

In this section, we introduce and study the Levitin-Polyak type well-posedness for (SOPSGVI) and
(SOPSGVDI), characterize the sufficient and necessary conditions for the Levitin-Polyak well-posedness
of these problems under some suitable conditions and prove the equivalence between the well-posedness
of optimization problems with constraints and the existence and uniqueness of their solutions. In order
to characterize the Levitin-Polyak type well-posedness for (SOPSGVI) and (SOPSGVDI), we introduce the
following approximating solutions sets for (SOPSGVI) and (SOPSGVDI).
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For each ν,u ∈ P and λ, ε > 0, let

E1(ν) = {(p, x) ∈ Λ1 ×H : x ∈ S(p), ν ∈M1(p, x),M1(N1) ∩ (ν − C \ {0}) = ∅},

E2(ν) = {(p, x) ∈ Λ2 ×H : x ∈ Sd(p), ν ∈M2(p, x),M2(N2) ∩ (ν − C \ {0}) = ∅}

and

K j(ν,u, λ, ε) = {(p, x) ∈ Λ j ×H : M j(p, x) ∩ (ν + λu − C) , ∅}
⋂

Q j(ε), j ∈ {1, 2},

where

Q1(ε) = {(p, x) ∈ Λ1 ×H : ∀i ∈ I, di(xi,Γi(x, p)) ≤ ε∃ yi ∈ Ti(x, p), s.t.
0 ∈ Fi(x, y, ωi) + Ψi(x, ωi) + {0, ε}ei(x), ∀ωi ∈ Γi(x, p)}

and

Q2(ε) = {(p, x) ∈ Λ2 ×H : ∀i ∈ I, di(xi,Γi(x, p)) ≤ ε∃ yi ∈ Ti(x, p), s.t.
0 < Fi(x, y, ωi) + Ψi(x, ωi) + {0, ε}ei(x), ∀ωi ∈ Γi(x, p)}.

Clearly, for each ν ∈ P, u ∈ intC, λ1, λ2, ε1, ε2 > 0 and λ1 ≤ λ2, ε1 ≤ ε2, we have N j ⊆ Q j(ε1) ⊆ Q j(ε2) and
K j(ν,u, λ1, ε1) ⊆ K j(ν,u, λ2, ε2) for each j ∈ {1, 2}.

In the following, we give the definition of the Levitin-Polyak well-posedness for (SOPSGVI) and (SOPS-
GVDI), respectively.

Definition 3.1. Let {an} ⊆ P with an → 0 and (p?, x?) be an efficient solution of (SOPSGVI). A sequence
{(pn, xn)} ⊆ Λ1×H is said to be the Levitin-Polyak (for short, LP) approximating solution sequence of (SOPSGVI)
at (p?, x?) corresponding to {an} if the following conditions hold:

(a) there exists ν ∈M1(p?, x?) which is a minimal point of M1(N1) such that

M1(pn, xn) ∩ (ν + an − C) , ∅

for all n ∈ N;
(b) there exists a sequence {εn} of positive real numbers with εn → 0 such that (pn, xn) ∈ Q1(εn) for all

n ∈ N.

Similarly, we can define the LP approximating solution sequence for (SOPSGVDI).

Definition 3.2. Let u ∈ intC, {an} ⊆ P with an → 0 and (p?, x?) be an efficient solution of (SOPSGVI) (resp.,
(SOPSGVDI)) is said to be LP well-posed at (p?, x?) if each LP approximating solution sequence of (SOPSGVI)
(resp., (SOPSGVDI)) at (p?, x?) corresponding to {an} converges strongly to (p?, x?).

Lemma 3.3. ([7]) Let {an} ⊆ P with an → 0 and u ∈ intC. Then there exists a sequence {λn} of positive real numbers
with λn → 0 such that λnu − an ∈ intC for all n ∈ N.

Lemma 3.4. Let u ∈ intC. Assume that (p?, x?) is an efficient solution of (SOPSGVI) and ν ∈ M1(p?, x?) is a
minimal point of M1(N1). Then (p?, x?) ∈ K1(ν,u, λ, ε) for all λ, ε > 0.

Proof. Since (p?, x?) is an efficient solution of (SOPSGVI) and ν ∈ M1(p?, x?) is a minimal point of
M1(N1), we have

x? ∈ S(p?), M1(N1) ∩ (ν − C \ {0}) = ∅.
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Then x? ∈ H and, for each i ∈ I, x?i ∈ Γi(x?, p?), there exists y?i ∈ Ti(x?, p?) such that

0 ∈ Fi(x?, y?, xi) + Ψi(x?, xi)

for all xi ∈ Γi(x?, p?) and so

M1(p?, x?) ∩ (ν − C) = {ν}. (3)

For each λ, ε > 0, N1 ⊆ Q1(ε), one has (p?, x?) ∈ Q1(ε). By u ∈ intC, it follows that −C ⊆ λu − C and

M1(p?, x?) ∩ (ν − C) ⊆M1(p?, x?) ∩ (ν + λu − C). (4)

It follows from (3) and (4) that

M1(p?, x?) ∩ (ν + λu − C) , ∅.

Therefore, from (p?, x?) ∈ Q1(ε), it follows that (p?, x?) ∈ K1(ν,u, λ, ε) for all λ, ε > 0. This completes the
proof.

Lemma 3.5. Let u ∈ intC. Assume that (p?, x?) is an efficient solution of (SOPSGVDI) and ν ∈ M2(p?, x?) is a
minimal point of M2(N2). Then (p?, x?) ∈ K2(ν,u, λ, ε) for all λ, ε > 0.

Proof. The proof is similar to that of Lemma 3.4 and so it is omitted here. This completes the proof.

Theorem 3.6. Let u ∈ intC and (p?, x?) be an efficient solution of (SOPSGVI). Then (SOPSGVI) is LP well-posed
at (p?, x?) if and only if, for any ν ∈M1(p?, x?) which is a minimal point of M1(N1),

diamK1(ν,u, λ, ε)→ 0 as (λ, ε)→ (0, 0). (5)

Proof. Let (SOPSGVI) be LP well-posed at (p?, x?). Taking ν ∈ M1(p?, x?) arbitrarily which is a
minimal point of M1(N1). Then there exist σ > 0, two sequences of positive real numbers {λn}, {εn} with
(λn, εn)→ (0, 0) and {(pn, xn)}, {(p̄n, x̄n)} ⊆ K1(ν,u, λn, εn) such that

d((pn, xn), (p̄n, x̄n)) = ‖(pn, xn) − (p̄n, x̄n)‖ > σ. (6)

Again, from {(pn, xn)}, {(p̄n, x̄n)} ⊆ K1(ν,u, λn, εn), one has

(pn, xn) ∈ Q1(εn), M1(pn, xn) ∩ (ν + λnu − C) , ∅

and

(p̄n, x̄n) ∈ Q1(εn), M1(p̄n, x̄n) ∩ (ν + λnu − C) , ∅.

Since λn → 0, λnu → 0. Therefore, {(pn, xn)} and {(p̄n, x̄n)} are two LP approximating solution sequences of
(SOPSGVI) corresponding to {λnu}. By the LP well-posedness of (SOPSGVI) at (p?, x?), (pn, xn) → (p?, x?)
and (p̄n, x̄n)→ (p?, x?). Consequently, one has

‖(pn, xn) − (p̄n, x̄n)‖ ≤ ‖(pn, xn) − (p?, x?)‖ + ‖(p̄n, x̄n) − (p?, x?)‖ → 0,

which contradicts (6).
Conversely, let {an} ⊆ P with an → 0 and {(pn, xn)} be a LP approximating solution sequence of (SOPSGVI)

at (p?, x?) corresponding to {an}. Then there exist a sequence {εn} of positive real numbers with εn → 0 and
ν ∈M1(p?, x?) which is a minimal point of M1(N1) such that (pn, xn) ∈ Q1(εn) and M1(pn, xn)∩ (ν+an−C) , ∅.
This implies that there exists νn ∈M1(pn, xn) such that νn ∈ ν+an−C. Since {an} ⊆ P with an → 0 and u ∈ intC,
by Lemma 3.3, there exists a sequence {λn} of positive real numbers with λn → 0 such that an ∈ λnu − intC
for all n ∈ N. In view of νn ∈ ν + an − C, one has

νn ∈ ν + λnu − intC − C ⊆ ν + λnu − intC.
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Moreover, νn ∈ M1(pn, xn) ∩ (ν + λnu − intC). This together with (pn, xn) ∈ Q1(εn) yields that (pn, xn) ∈
K1(ν,u, λn, εn). Note that (p?, x?) ∈ N1 ⊆ Q1(εn) and ν ∈M1(p?, x?) ∩ (ν + λnu − C). Thus we have

(p?, x?) ∈ K1(ν,u, λn, εn)

for all n ∈ N and so

‖(pn, xn) − (p∗, x∗)‖ ≤ diam(K1(ν,u, λn, εn))

for all n ∈ N. It follows from (5) that (pn, xn)→ (p?, x?). Therefore, (SOPSGVI) is LP well-posed at (p?, x?).
This completes the proof.

Theorem 3.7. Let u ∈ intC and (p?, x?) be an efficient solution of (SOPSGVDI). Then (SOPSGVDI) is LP well-
posed at (p?, x?) if and only if, for any ν ∈M2(p?, x?) which is a minimal point of M2(N2),

diamK2(ν,u, λ, ε)→ 0 as (λ, ε)→ (0, 0). (7)

Proof. The proof is similar to that of Theorem 3.6 and so it is omitted here.

Theorem 3.8. Let
∧

and X be finite dimensional and u ∈ intC and (p?, x?) be an efficient solution of (SOPSGVI).
For each i ∈ I, let ei : H → Zi be a continuous mapping, the mappings Fi : H × K × Hi → 2Zi , Ψi : H × Hi → 2Zi

be closed, Γi : H ×
∧
→ 2Hi be closed-valued and continuous and Ti : H ×

∧
→ 2Ki , M1 :

∧
×X → 2P be usc and

compact-valued. Assume that, for each ν ∈ M1(p?, x?) which is a minimal point of M1(N1), there exist λ0, ε0 > 0
such that K1(ν,u, λ0, ε0) is nonempty and bounded. Then (SOPSGVI) is LP well-posed at (p?, x?) if and only if, for
any ν ∈M1(p?, x?) which is a minimal point of M1(N1), E1(ν) = {(p?, x?)}.

Proof. Let (SOPSGVI) be LP well-posedness at (p?, x?). For any ν ∈ M1(p?, x?) which is a minimal
point of M1(N1), we get (p?, x?) ∈ E1(ν). Suppose to the contrary that E1(ν) , {(p?, x?)}. Then there exists
(p̃, x̃) ∈ E1(ν) such that

‖(p̃, x̃) − (p?, x?)‖ > 0. (8)

Moreover, x̃ ∈ S(p̃), ν ∈ M1(p̃, x̃) and M1(N1) ∩ (ν − C \ {0}) = ∅, which show that (p̃, x̃) ∈ N1 ⊆ Q1(ε) for
any ε > 0 and M1(p̃, x̃) ∩ (ν − C) = ν. For each n ∈ N, let an = 0, pn = p̃ and xn = x̃. Then {(pn, xn)} is a LP
approximating solution sequence of (SOPSGVI) at (p?, x?) corresponding to {an}. By the LP well-posedness
of (SOPSGVI) at (p?, x?), one has (pn, xn)→ (p?, x?), i.e.,

‖(p̃, x̃) − (p?, x?)‖ = ‖(pn, xn) − (p?, x?)‖ → 0,

which contradicts (8).
Conversely, suppose that for any ν ∈ M1(p?, x?) which is a minimal point of M1(N1), E1(ν) = {(p?, x?)}.

Let {an} ⊆ P with an → 0 and {(pn, xn)} be a LP approximating solution sequence of (SOPSGVI) at (p?, x?)
corresponding to {an}. Then there exist a sequence {εn} of positive real numbers with εn → 0 and ν ∈
M1(p?, x?) which is a minimal point of M1(N1) such that (pn, xn) ∈ Q1(εn) and M1(pn, xn) ∩ (ν + an − C) , ∅.
As in the proof of Theorem 3.6, there exists a sequence {λn} of positive real numbers with λn → 0 such
that (pn, xn) ∈ K1(ν,u, λn, εn). Since K1(ν,u, λ0, ε0) is nonempty and bounded, there exists n0 ∈ N such that
λn ≤ λ0 and εn ≤ ε0 for n ≥ n0 and so

(pn, xn) ∈ K1(ν,u, λn, εn) ⊆ K1(ν,u, λ0, ε0).

Therefore, {(pn, xn)} is bounded. For any subsequence {(pnk , xnk )} of {(pn, xn)}with (pnk , xnk )→ (p̃, x̃) ∈ Λ1×H ⊆∧
×X, since

∧
and X are finite dimensional, we have

M1(pnk , xnk ) ∩ (ν + λnk u − C) , ∅, (pnk , xnk ) ∈ Q1(εnk ). (9)

Moreover, there exists νnk ∈ P such that

νnk ∈M1(pnk , xnk ) ∩ (ν + λnk u − C),
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that is,

νnk ∈M1(pnk , xnk ), νnk ∈ ν + λnk u − C. (10)

Since M1 :
∧
×X→ 2P is usc and compact-valued, from Lemma 2.6 (2), there exists ν̃ ∈ M1(p̃, x̃) such that a

subsequence of {νnk } strongly converges to ν̃. Without loss of generality, let νnk → ν̃ ∈ M1(p̃, x̃). It follows
from (10) that ν̃ − ν ∈ −C, namely, ν̃ ∈ ν − C. This together with Definition 2.1 and ν ∈ M1(p?, x?) derives
that

ν̃ ∈M1(p̃, x̃) ∩ (ν − C) ⊆M1(N1) ∩ (ν − C) = {ν}, (11)

that is, ν̃ = ν. Again, from (pnk , xnk ) ∈ Q1(εnk ), it follows that, for each i ∈ I,

di(x
nk
i ,Γi(xnk , pnk )) ≤ εnk (12)

and there exists ynk
i ∈ Ti(xnk , pnk ) such that

0 ∈ Fi(xnk , pnk , ωi) + Ψi(xnk , ωi) + {0, εnk }ei(xnk ) (13)

for all ωi ∈ Γi(xnk , pnk ). Note that, for each i ∈ I, Γi : H ×
∧
→ 2Hi is closed-valued and continuous. By (12),

we have

di(x̃i,Γi(x̃, p̃)) ≤ 0,

i.e., x̃i ∈ Γi(x̃, p̃). Since εnk → 0, it follows that, for each i ∈ I, ei : H → Zi is continuous, the mappings
Fi : H × K ×Hi → 2Zi and Ψi : H ×Hi → 2Zi are closed and Ti : H ×

∧
→ 2Ki is usc and compact-valued, it

follows from (13) that there exists ỹi ∈ Ti(x̃, p̃) such that

0 ∈ Fi(x̃, p̃, ωi) + Ψi(x̃, ωi)

for all ωi ∈ Γi(x̃, p̃). Hence x̃ ∈ S(p̃) and so (p̃, x̃) ∈ N1. As a consequence, (p̃, x̃) ∈ E1(ν). In the light of
E1(ν) = {(p?, x?)} and (p̃, x̃) = (p?, x?). This implies that (pn, xn) converges to (p?, x?). Therefore, (SOPSGVI)
is LP well-posed at (p?, x?). This completes the proof.

We give the following example to illustrate Theorems 3.6 and 3.8.

Example 3.9. Let the index set I be a singleton, Λ1 = [−1, 1], X = Y = Z = P = (−∞,+∞], H = K = [0,+∞]
and C = [0,+∞]. For each p ∈ Λ1, x, z ∈ H and y ∈ K, let e(x) = −1, M1(p, x) = [−|p| − x, 0], Γ(x, p) = [x, x + p],
T(x, p) = [p + x, x], F(x, y, z) = [y − p, z − x] and Ψ(x, z) = [x − z, 2 + z − x]. Simple computation allows that

S(p) =

{
{0}, if p = 0,
∅, otherwise,

N1 = {(0, 0)} and the efficient solution set of (SOPSGVI) is {(0, 0)}. 0 ∈ M1(0, 0) is the uniquely minimal
point of M1(N1). Let u = 1 ∈ intC. There exist λ0 = 1, ε0 = 1

2 such that K1(0, 1, λ0, ε0) = {0} × [0, 1
2 ] is

nonempty and bounded. This shows that all the conditions of Theorem 3.8 are satisfied. It is easy to check
that K1(0, 1, λ, ε) = {0} × [0, ε] → (0, 0) as (λ, ε) → (0, 0) and E1(0) = {(0, 0)}. So, diamK1(0, 1, λ, ε) → 0 as
(λ, ε)→ (0, 0). By Theorem 3.6, (SOPSGVI) is LP well-posed at (0, 0).

Theorem 3.10. Let
∧

, X be finite dimensional, u ∈ intC and let (p?, x?) be an efficient solution of (SOPSGVDI).
For each i ∈ I, let ei : H → Zi be a continuous vector valued mapping and the mappings Fi : H × K × Hi → 2Zi ,
Ψi : H ×Hi → 2Zi be set-valued such that Fi + Ψi is opened, Γi : H ×

∧
→ 2Hi be closed and lsc, Ti : H ×

∧
→ 2Ki

and M2 :
∧
×X→ 2P be usc and compact-valued. Assume that, for each ν ∈M2(p?, x?) which is a minimal point of

M2(N2), there exist λ, ε > 0 such that K2(ν,u, λ, ε) is nonempty and bounded. Then (SOPSGVDI) is LP well-posed
at (p?, x?) if and only if, for any ν ∈M2(p?, x?) which is a minimal point of M2(N2), E2(ν) = {(p?, x?)}.

Proof. The proof is similar to that of Theorem 3.8 and so it is omitted here.
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Example 3.11. Let I be a singled index set, Λ2 = [−1, 1], X = Y = Z = (−∞,+∞), C = [0,+∞) and
H = K = [0, 10]. For each p ∈ Λ2, x, z ∈ H and y ∈ K, let e(x) = −1, M2(p, x) = [p2, x], Γ(x, p) = [x, x + p2],
T(x, p) = [p−x, x+1], F(x, y, z) = (−∞,−y−1−p)∪(z−x,+∞) and Ψ(x, z) = (x−z, 2+p+2x). It is easy to see that
N2 = Λ2 × {0} and Sd(p) = {0} for each p ∈ Λ2. After simple computation, we know that the efficient solution
set of (SOPSGVDI) is {(0, 0)}. 0 ∈ M2(0, 0) is the uniquely minimal point of M2(N2). Let u = 1 ∈ intC. There
exist λ0 = 1 and ε0 = 1

2 such that K2(0, 1, 1, 1
2 ) = [−1, 1] × {0} is nonempty and bounded. This shows that all

the conditions of Theorem 3.10 are satisfied. It is easy to check that K2(0, 1, λ, ε)→ (0, 0) as (λ, ε)→ (0, 0) and
E2(0) = {(0, 0)}. So, diamK2(0, 1, λ, ε)→ 0 as (λ, ε)→ (0, 0). By Theorem 3.7, (SOPSGVDI) is LP well-posed
at (0, 0).
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