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Abstract. We study paracontact metric (k, y)-spaces with ¥ = —1, equivalent to h*> = 0 but not & = 0. In
particular, we will give an alternative proof of Theorem 3.2 of [11] and present examples of paracontact
metric (=1, 2)-spaces and (-1, 0)-spaces of arbitrary dimension with tensor /1 of every possible constant rank.
We will also show explicit examples of paracontact metric (-1, u)-spaces with tensor /1 of non-constant rank,
which were not known to exist until now.

1. Introduction

Paracontact metric manifolds, the odd-dimensional analogue of paraHermitian manifolds, were first
introduced in [10] and they have been the object of intense study recently, particularly since the publication
of [14]. An important class among paracontact metric manifolds is that of the (x, u)-spaces, which satisfy
the nullity condition [5]

R(X, V)& = x(n(Y)X = n(X)Y) + p(n(Y)hX — n(X)hY), 1)

for all X, Y vector fields on M, where k and y are constants and h = 3Lz ¢.

This class includes the paraSasakian manifolds [10, 14], the paracontact metric manifolds satisfying
R(X,Y)¢ = 0 for all X,Y [15], certain g-natural paracontact metric structures constructed on unit tangent
sphere bundles [7], etc.

The definition of a paracontact metric (x, 1)-space was motivated by the relationship between contact
metric and paracontact geometry. More precisely, it was proved in [4] that any non-Sasakian contact metric
(k, u)-space accepts two paracontact metric («, 11)-structures with the same contact form. On the other hand,
under certain natural conditions, every non-paraSasakian paracontact (, 1)-space admits a contact metric
(x, p)-structure compatible with the same contact form ([5]).

Paracontact metric (x, u)-spaces satisfy that h? = (x + 1)¢? but this condition does not give any type
of restriction over the value of «, unlike in contact metric geometry, because the metric of a paracontact
metric manifold is not positive definite. However, it is useful to distinguish the cases ¥ > -1, ¥ < =1 and
x = —1. In the first two, equation (1) determines the curvature completely and either the tensor / or ¢h are
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diagonalisable [5]. The case x = —1 is equivalent to #* = 0 but not to i = 0. Indeed, there are examples of
paracontact metric (k, p)-spaces with h* = 0 but i # 0, as was first shown in [2, 5, 8, 12].

However, only some particular examples were given of this type of space and no effort had been made
to understand the general behaviour of the tensor & of a paracontact metric (-1, u)-space until the author
published [11], where a local classification depending on the rank of & was given in Theorem 3.2. The
author also provided explicit examples of all the possible constant values of the rank of 7 when u = 2. She
explained why the values u = 0 and y = 2 are special and studying them is enough. Finally, she showed
some paracontact metric (-1, 0)-spaces of any dimension with rank(#) = 1 and of paracontact metric (-1, 0)-
spaces of dimension 5 and 7 for any possible constant rank of /. These were the first examples of this type
with y # 2 and dimension greater than 3.

In the present paper, after the preliminaries section, we will give an alternative proof of Theorem 3.2 of
[11] that does not use [13] and we will complete the examples of all the possible cases of constant rank of
h by presenting (2n + 1)-dimensional paracontact metric (-1, 0)-spaces with rank(k) = 2,...,n. Lastly, we
will also show the first explicit examples ever known of paracontact metric (-1, 2)-spaces and (-1, 0)-spaces
with h of non-constant rank.

2. Preliminaries

An almost paracontact structure on a (2n + 1)-dimensional smooth manifold M is given by a (1, 1)-tensor
field ¢, a vector field £ and a 1-form 7 satisfying the following conditions [10]:

@) n&) =1, ¢*=1-n8&¢,
(ii) the eigendistributions D" and D~ of ¢ corresponding to the eigenvalues 1 and —1, respectively, have
equal dimension .

It follows that @& = 0, no @ = 0 and rank(p) = 2n. If an almost paracontact manifold admits a
semi-Riemannian metric g such that

9(@X, 9Y) = —g(X, Y) + n(X)n(Y),

for all X,Y on M, then (M, ¢, &, 1, 9) is called an almost paracontact metric manifold. Then g is necessarily of
signature (n + 1, 1) and satisfies n = g(-, &) and g(-, ¢-) = —g(¢-, ).

We can now define the fundamental 2-form of the almost paracontact metric manifold by ®(X,Y) =
9 X, @Y). If dy = ®, then 1 becomes a contact form (i.e. n A (dn)" # 0) and (M, ¢, &, 1,9) is said to be a
paracontact metric manifold.

We can also define on a paracontact metric manifold the tensor field h := L:¢, which is symmetric with
respect to g (i.e. g(hX,Y) = g(X, hY), for all X, Y), anti-commutes with ¢ and satisfies h& = trh = 0 and the
identity V& = —¢ + ¢h ([14]). Moreover, it vanishes identically if and only if £ is a Killing vector field, in
which case (M, ¢, &, 1, 9) is called a K-paracontact manifold.

An almost paracontact structure is said to be normal if and only if the tensor [@, ] — 2dn ® & = 0, where
[¢, ¢] is the Nijenhuis tensor of ¢ [14]:

[, )X, Y) = @°[X, Y] + [pX, Y] - ¢[X, Y] - ¢[X, pY].

A normal paracontact metric manifold is said to be a paraSasakian manifold and is in particular K-paracontact.
The converse holds in dimension 3 ([6]) but not in general in higher dimensions. However, it was proved
in Theorem 3.1 of [11] that it also holds for (-1, u)-spaces. Every paraSasakian manifold satisfies

R(X, V)& = ~(n(Y)X - n(X)Y), ()

for every X, Y on M. The converse is not true, since Examples 3.8-3.11 of [11] and Examples 4.1 and 4.5 of

the present one show that there are examples of paracontact metric manifolds satisfying equation (2) but

with h # 0 (and therefore not K-paracontact or paraSasakian). Moreover, it is also clear in Example 4.5 that

the rank of & does not need to be constant either, since / can be zero at some points and non-zero in others.
The main result of [11] is the following local classification of paracontact metric (-1, u)-spaces:
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Theorem 2.1 ([11]). Let M be a (2n + 1)-dimensional paracontact metric (=1, u)-space. Then we have one of the
following possibilities:
1. either h = 0 and M is paraSasakian,

2. 0or h # 0 and rank(h,) € {1,...,n} at every p € M where h, # 0. Moreover, there exists a basis
{Epy X1, Y1, ..., X, Y} of Tp(M) such that the only non-vanishing components of g are

B E) =1, gy(X, V) = 51,

and

0 0 0 0
hP|<Xi,Yi>=(1 0) or hP|<xi,Y,>=(o o)'

where obviously there are exactly rank(hy) submatrices of the first type.
If n =1, such a basis {&,, X1, Y1} also satisfies that

(prl ==+Xy, qole =FYq,

and the tensor h can be written as

0 0 O
hP|<ép,x1,Y1>= 0 0 0f.

010

Many examples of paraSasakian manifolds are known. For instance, hyperboloids H>"*!(1) and the
hyperbolic Heisenberg group H*'*! = R* X R, [9]. We can also obtain (1}-Einstein) paraSasakian manifolds
from contact (k, u)-spaces with [1 — £| < V1 — . In particular, the tangent sphere bundle T;N of any space
form N(c) with ¢ < 0 admits a canonical 7-Einstein paraSasakian structure, [3]. Finally, we can see how to
construct explicitly a paraSasakian structure on a Lie group (see Example 3.4 of [11]) or on the unit tangent
sphere bundle, [7].

On the other hand, until [11] only some types of non-paraSasakian paracontact metric (-1, u)-spaces
were known:

® (21 + 1)-dimensional paracontact metric (-1, 2)-space with rank(h) = n, [5].
e 3-dimensional paracontact metric (-1, 2)-space with rank(h) = n = 1, [12].

e 3-dimensional paracontact metric (—1, 0)-space withrank(k) = n = 1. This example is not paraSasakian
but it satisfies (2), [8].

The answer to why there seems to be only examples of paracontact metric (=1, pt)-spaces with u = 2
or u = 0is a D.-homothetic deformation, i.e. the following change of a paracontact metric structure

M, @, &,1,9) [14]:

’ 14 1 ’ /
o' =p, &= Eé, n:=cn g :=cg+clc-1)nen,

for some ¢ # 0.

It is known that (¢’, &', 1, ') is again a paracontact metric structure on M and that K-paracontact and
paraSasakian structures are also preserved. However, curvature conditions like R(X, Y)& = 0 are destroyed,
since paracontact metric (x, p1)-spaces become other paracontact metric (x’, u’)-spaces with

’

, Kk+1-c? p—2+2
K =—-, =
c? c
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In particular, if (M, ¢, &, 1, 9) is a paracontact metric (-1, p)-space, then the deformed manifold is another

paracontact metric (-1, u’)-space with u’ = poe

Therefore, given a (-1, 2)-space, a D.-homothetic deformation with arbitrary ¢ # 0 will give us another
paracontact metric (-1, 2)-space. Given a paracontact metric (-1, 0)-space, if we D.-homothetically deform
it with c = ﬁ # 0 for some u # 2, we will obtain a paracontact metric (-1, u)-space with u # 2. A sort of

converse is also possible: given a (~1, u)-space with u # 2, a D -homothetic deformation withc =1-4 # 0
will give us a paracontact metric (—1,0)-space. The case u = 0, & # 0 is also special because the manifold
satisfies (2) but it is not paraSasakian.

Examples of non-paraSasakian paracontact metric (-1, 2)-spaces of any possible dimension and constant
rank of h were presented in [11]:

Example 2.2 ((2n + 1)-dimensional paracontact metric (-1, 2)-space with rank(h) = m € {1,...,n}). Let g be
the (2n + 1)-dimensional Lie algebra with basis {&, X1, Y1, ..., Xu, Yy} such that the only non-zero Lie brackets are:

[E/Xi]:Yi/ izlr”-/mr

6ij(2& + V2(1 + Oim)Yo) + (1 = 85) V2(Si Y + 0juYs), i,j=1,...,m,
[X;, Yil = {6;(2& + V2Y5), ij=m+1,...,n,
V2Y;, i=1,...,m j=m+1,...,n

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact metric structure
on G the following way:

pE=0, oXi=X;, @Yi=-Y, i=1..n
né)=1 nX)=nY;)=0 i=1,...,n

The only non-vanishing components of the metric are
9(&, &) =9(X;,Y)=1, i=1,...,n

A straightforward computation gives that hX; = Y;ifi = 1,...,m, hX; = 0ifi =m+1,...,nand hY; = 0 if
j=1,...,n,50 h? = 0 and rank(h) = m. Furthermore, the manifold is a (=1, 2)-space.

Examples of non-paraSasakian paracontact metric (~1, 0)-spaces of any possible dimension and rank(/z) =
1 were also given in [11]:

Example 2.3 ((2n + 1)-dimensional paracontact metric (-1, 0)-space with rank(h) = 1). Let g be the 2n +1)-
dimensional Lie algebra with basis {£, X1, Y1, ..., Xy, Yy} such that the only non-zero Lie brackets are:

[£,Xi1]=X1+Yy, [& Y] =-Yq, [X1,Y1] = 2¢,
[Xi, Yil=2(E+Y)), [X1,Yi]=X1+Yy, [Y,Yil=-Yy, i=2,...,n

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact metric structure
on G the following way:

(Pé =0, (PXl =X, (le =-Y, (le =-X;, (pY, =Y, i=2,...,n,
& =1, nX)=n)=0, i=1,...,n

The only non-vanishing components of the metric are
g(élé):g(xlryl)z 1/ g(XirYi) = _1/ i:2,...,7’l.

A straightforward computation gives that hX; = Y1, hYqy = 0and hX; = hY; =0,i = 2,...,n, 50 h? =0 and
rank(h) = 1.
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Moreover, by basic paracontact metric properties and Koszul’s formula we obtain that

VeXi=0, VeY1=0, VeXi=X, VeYi=-Y, i=2,...n,
Vx Y1 =018, VxY;=06ii(E+2Y), VyXi=-¢§ VyXj=-65¢ 1,j=2,...,m,
VX1X]'=O, Vlel =Vy1Y]‘=O, Vyjyl =Y1, i=2,...,n,

and thus

R(Xl'/é)é: -Xi, i= 1,...,n,
R(Y;, &)E==Y;, i=1,...,n,
R(X;, X))é =R(X;, Y))E =R(Y;, Y))E=0, i,j=1,...,n

Therefore, the manifold is also a (=1, 0)-space.

To our knowledge, the previous example is the first paracontact metric (-1, u)-space with #* =0, h # 0
and uy # 2 that was constructed in dimensions greater than 3. For dimension 3, Example 4.6 of [8] was
already known.

In dimension 5, there also exist examples of paracontact metric (—1,0)-space with rank(#) = 2 and in
dimension 7 of rank(h) = 2, 3, as shown in [11]. Higher-dimensional examples of paracontact metric (-1, 0)-
spaces with rank(#) > 2 were not included, which will be remedied in Example 4.1. We will also see how
to construct a 3-dimensional paracontact metric (-1, 0)-space and (-1, 2)-space where the rank of / is not
constant.

3. New proof of Theorem 2.1

We will now present a revised proof of Theorem 2.1 that does not use [13] when i # 0 but constructs the
basis explicitly.

Proof. Since x = —1, we know from [5] that h? = 0. If h = 0, then R(X, Y)& = —(n(Y)X — n(X)Y), for all X, Y
on M and ¢ is a Killing vector field, so Theorem 3.1 of [11] gives us that the manifold is paraSasakian.

If i # 0, then let us take a point p € M such that i, # 0. We know that ¢ is a global vector field such that
g(&, &) =1, that hé = 0 and that  is self-adjoint, so Kern, is h-invariant and h,, : Kern, + Ker1,, is a non-zero
linear map such that hg = 0. We will now construct a basis {X1, Y1, ..., X;, Yy} of Kern, that satisfies all of
our requirements.

Take a non-zero vector v € Kern, such that h,v # 0, which we know exists because 1, # 0. Then we write
Kern, = L1 & L+, where L; = (v, hyv). Both L; and Lll are hy-invariant because 1, is self-adjoint. Moreover,
gy(v, hyv) # 0 because g,(hyv, h,v) = 0 = g,(hyv, w) forallw € Ly, hyv # 0 and g is a non-degenerate metric.We
now distinguish two cases:

_ _ 1 _ 1 . . _
1. If gy(v,v) = 0, then we can take X; = WZ) and Y; = Whpv, which satisfy that g,(X;, X;) =
0= gp(Yi, Y,’), gp(Xi/ Y,’) =+]1and thi =Y.
;. gp©0) fofs ’o\ — L 1 ’
2. If gy(v,v) # 0, then v’ = v 5 @) hyv satisfies that g,(v’,v") = 0, so we can take X; = —lgp(v',hpv)'l
Y; = ———hv’. We have again that g,(X;, X;) = 0 = g,(Y;,Y3), gp(X;, Yi) = £1 and b, X; = Y.

" Al @ )

In both cases, L1 = (X, Y;), so we now take a non-zero vector v € LlL and check if v # 0. We know that
we can take v such that #,v # 0 in this step as many times as the rank of f,, which is at minimum 1 (since
hy, # 0) and at most n because dim Kern, = 2n and the space L; has dimension 2.

If we denote by m the rank of h,, then we can write Kern, as the following direct sum of mutually

orthogonal subspaces:

Kernl? =L1®L2@®Lm®vz <X1/Y1/---/erym>®‘//
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where hyv = 0 for all v € V. Each L; is of signature (1,1) because (X = %(Xi +Y), Y = %(Xi -Y;)}is
a pseudo-orthonormal basis such that g,(X;, X;) = —g,(Y;, Y) = 9,(X;, Vi) = %1, g,(X;, Yi) = 0. Therefore,
(X1,Y1,..., X, Ym) is of signature (m,m) and, since Kerr, is of signature (1,1), we can take a pseudo-
orthonormal basis {v1, ..., 0y—m, w1, ..., Wy} of V such that g,(v;, v;) = 6;; and g,(w;, w;) = —06;j. Therefore,
it suffices to define X;,,; = %i(vj +w;j), Yiurj = %(vj —wj), j=1,...,n—m, tohave g,(X;, X;) = 0 = g,(Y3, Y3),
gp(Xi, Yi) =land hpyX; = h,Y; =0,i=m+1,...,n.

If n =1, then ¢, X; = £X; and ¢,Y1 = FY; follow directly from paracontact metric properties and the
definition of the basis {X1, Y1, ..., X, Y,}). O

It is worth mentioning that Theorem 2.1 is true only pointwise, i.e. rank(l,) does not need to be the
same for every p € M. Indeed, we will see in Examples 4.3 and 4.5 that we can construct paracontact metric
(=1, p)-spaces such that & is zero in some points and non-zero in others.

4. New examples

We will first present an example of (21 + 1)-dimensional paracontact metric (-1, 0)-space with rank of
h greater than 1. This means that, together with Examples 2.2 and 2.3, we have examples of paracontact
metric (-1, u)-spaces of every possible dimension and constant rank of 1/ when y = 0 and u = 2.

Example 4.1 ((2n + 1)-dimensional paracontact metric (-1, 0)-space with rank(h) = m € {2,...,n}). Let g be
the (2n + 1)-dimensional Lie algebra with basis {E, X1, Y1, ..., Xu, Yu) such that the only non-zero Lie brackets are:

[ Xi]l=X1+ X0+ Y7, [, Y1]=-Y1+Y>,
[£,Xo] =X1+ X2+ Y, [£,Y2]=Y1 =Y,
[, Xi]l=Xi+Y;, i=3,...,m, [£Y]=-Y;, i=3,...,m,

V2Xi, ifi=1,j=2,
[Xi, X1 = - V2X; ifi=2,j=3...,m,
V2[E, X1, ifi=1,...,m, j=m+1,...,n,

[Yi/ Y]] _ {\/i(_Y1 + Yz), lfl =1, ] =2,

V2Y, ifi=1,2,j=3,...,m,
28+ V2(X2 + Y2) ifi=1,
—2& + V2X;, ifi=2,

[Xi,Yi] = e
28+ V2X1 = X2 = Yo), ifi=3,...,m,
—2& — \V2X;, ifi=m+1,...,n,
V2(Y1 + X)) ifi=1, j=2,
V2Xi, ifi=2,j=1,

[X;, Yil = { V2X;, ifi=1,2,j=3,...,m,

i#] V2Y;, ifi=3,...,m j=2,
-V2[&, Y], ifi=m+1,..m j=1,...,m.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact metric structure
on G the following way:

(pé:O, (le':Xi, (pYi:—Y,', i:l,...,n,

n&)=1 nX)=nY)=0, i=1,...,n
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The only non-vanishing components of the metric are

9(&, &) =9X, Y1) =1, ¢(X;,Y))=-1, i=2,...,n

A straightforward computation gives that hX; = Yy, i=1,...,m hX; =0,i=m+1,...,nand hY; =0,i=1,...,n,
so h? = 0 and rank(h) = m.
Moreover, very long but direct computations give that

RX;, &)é=-X;, i=1,...,n,
RY;,&)é=-Y;, i=1,...,n,
R(X;, X)) = R(X;, Y))E =R(Y;, Y)E=0, i,j=1,...,n.
Therefore, the manifold is also a (—1, 0)-space.

Remark 4.2. Note that the previous example is only possible when n > 2. If n = 1, then we can only construct
examples of rank(h) = 1, as in Example 2.3.

In the definition of the Lie algebra of the previous example, some values of i and j are not possible for m = 2 or
m = n. In that case, removing the affected Lie brackets from the definition will give us valid examples nonetheless.

We will present now an example of 3-dimensional paracontact metric (—1,2)-space and one of 3-
dimensional paracontact metric (—1,0)-space, such that rank(k,) = 0 or 1 depending on the point p of
the manifold. These are the first examples of paracontact metric (x, u)-spaces with i of non-constant rank
that are known.

Example 4.3 (3-dimensional paracontact metric (—1,2)-space with rank(/,) not constant). We consider the
manifold M = R® with the usual cartesian coordinates (x,y,z). The vector fields

e—i+xzi—2i e—i E—i
1T ox oy Yoz 2T oy S oz

are linearly independent at each point of M. We can compute
ler,e2] =2&, e, &l = —xep, [e2,&] =0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing components are
g(er,e) = g(&, &) =1, and the 1-form 1 as n = 2ydx + dz, which satisfies n(e1) = n(e2) = 0, n(&) = 1. Let ¢ be the
(1, 1)-tensor field defined by @e1 = e1, ey = —ep, & = 0. Then

dan(ey, e2) = %(6’1(77(62)) —ex(n(er)) — nler, e2])) = =1 = —gle1, 2) = gle1, pe2),
dn(e1, &) = %(el(n(é)) = &(nler)) — n(ler, 1) = 0 = gler, <),
dn(ey, &) = %(62(77(5)) = &(n(e2)) — n(lez, €1) = 0 = glea, P&).

Therefore, (¢, &, 1, 9) is a paracontact metric structure on M.

Moreover, hé = 0, hey = xep, he, = 0. Hence, h2 = 0 and, given p = (x,y,z) € R3, rank(hy) = 0 if x = 0 and
rank(h,) = 1if x # 0.

Let V be the Levi-Civita connection. Using the properties of a paracontact metric structure and Koszul's formula

29(VxY, Z2) = X(g9(Y, 2)) + Y(9(Z, X)) = Z(g(X, Y)) = 9(X, [V, Z]) = g(V, [X, Z]) + 9(Z, [X, Y]), 3)
we can compute

Ve& =0, V,&=-e1—xe, V,&=ey, Veiegr=-e1, Veer=ey,
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Veer =x8, Veer =0, Veyer =&, Ve =-=E
Using the following definition of the Riemannian curvature
R(X,Y)Z = VxVyZ —=VyVxZ = Vixv|Z, (4)
we obtain
R(e1, &) = —e1 + 2hey,  R(ep, £)E = —e2 +2hez,  R(ey, e2)€ =0,
so the paracontact metric manifold M is also a (-1, 2)-space.

Remark 4.4. The previous example does not contradict Theorem 2.1, as we will see by constructing explicitly the
basis of the theorem on each point p where h, # 0, i.e., on every point p = (x,y,z) such that x # 0.

Indeed, let us take a point p = (x,y,z) € R>. If x # 0, then we define X; = %, Y, = hf/%. We obtain that
{&p, X1, Y1} is a basis of Tp(IR3) that satisfies that:
e the only non-vanishing components of g are g,(&p, Ep) =1, gp(X1, Y1) = sign(x),

P& X1 Y1) —

0 0O
e the tensor h can be written as h =10 0 0],
010

e 0,6=0, @,X1=X1, @pY1=-Y1.

Example 4.5 (3-dimensional paracontact metric (-1, 0)-space with rank(/,) not constant). We consider the
manifold M = R® with the usual cartesian coordinates (x,y, z). The vector fields

d d d d
_ v —2z _ i - -
e dy W @ dy’ il

are linearly independent at each point of M. We can compute
[e,e2] =2&, [e1,&] =2xe™ ey, [, E] = 0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing components are
gler,e2) = g(&,&) = 1, and the 1-form 1 as n = 2ydx + dz, which satisfies n(e1) = n(e2) = 0, N(&) = 1. Let ¢ be the
(1, 1)-tensor field defined by e, = e1, pe; = —ep, & = 0. Then

dn(e1, e2) = %(6’1(77(@2)) —ex(n(er)) — nler, e2])) = =1 = —gle1, e2) = gler, pe2),
dn(ei, &) = %(61('7(5)) = &(n(er)) = n(ler, &]) = 0 = gle1, &),

nfes, &) = 3(ex1(E)) = Enex) = nllen, €D = 0 = gles, pE).

Therefore, (¢, &, 1, g) is a paracontact metric structure on M.

Moreover, h& = 0, hey = —2xe ey, he, = 0. Hence, h* = 0 and, given p = (x,y,z) € R, rank(h,) = 0if x =0
and rank(hy) = 1 if x # 0.

Let V be the Levi-Civita connection. Using the properties of a paracontact metric structure and Koszul’s formula
(3), we can compute

Ve€=0, V,&=-e1+2xe e, Vo,&=e, Veier=-e;, Veer=e,
Veer = —2xe &, Voen =0, Veer=£& Vee, =—E.

Using now (4), we obtain
R(e1,&)E = —e1, Rlez, &) = —ez, R(er,2)E =0,

so the paracontact metric manifold M is also a (—1, 0)-space.
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