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Abstract. In this paper we introduce the notion of the generalized Darbo fixed point theorem and prove
some fixed and coupled fixed point theorems in Banch space via the measure of non-compactness, which
generalize the result of Aghajani et al.[6]. Our results generalize, extend, and unify several well-known
comparable results in the literature. As an application, we study the existence of solutions for the system
of integral equations.

1. Introduction

The integral equation creates a very important and significant part of the mathematical analysis and has
various applications into real world problems. On the other hand, measures of noncompactness are very
useful tools in the wide area of functional analysis such as the metric fixed point theory and the theory of
operator equations in Banach spaces. They are also used in the studies of functional equations, ordinary
and partial differential equations, fractional partial differential equations, integral and integro-differential
equations, optimal control theory, etc., see [1–5, 12, 15–18]. In our investigations, we apply the method
associated with the technique of measures of noncompactness in order to generalize the Darbo fixed point
theorem [10] and to extend some recent results of Aghajani et al.[6], and also we are going to study the
existence of solutions for the following system of integral equations

x(t, s) =a(t, s) + f (t, s, x(t, s), y(t, s))

+ 1(t, s, x(t, s), y(t, s))
∫ α1(t)

0

∫ α2(s)

0
k(t, s,u, v, x(u, v), y(u, v))dudv

y(t, s) =a(t, s) + f (t, s, y(t, s), x(t, s))

+ 1(t, s, y(t, s), x(t, s))
∫ α1(t)

0

∫ α2(s)

0
k(t, s,u, v, y(u, v), x(u, v))dudv,

(1)

for t, s ∈ R+, x, y ∈ E = BC(R+ × R+). We show that Eq. (1) has solutions that belong to E × E, where
E = BC(R+ ×R+).
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2. Preliminaries

In this section, we recall some notations, definitions and theorems to obtain all the results of this work.
Denote by R the set of real numbers and put R+ = [0,+∞). Let (E, ‖ · ‖) be a real Banach space with zero
element 0. Let B(x, r) denote the closed ball centered at x with radius r. The symbol Br stands for the ball
B(0, r). For X, a nonempty subset of E, we denote by X and ConvX the closure and the convex closure of
X, respectively. Moreover, let us denote by ME the family of nonempty bounded subsets of E and by NE
its subfamily consisting of all relatively compact sets. We use the following definition of the measure of
noncompactness given in [10].

Definition 2.1. A mapping µ :ME → R+ is said to be a measure of noncompactness in E if it satisfies the following
conditions:

(10) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE,

(20) X ⊂ Y⇒ µ(X) ≤ µ(Y),

(30) µ(X̄) = µ(X),

(40) µ(ConvX) = µ(X),

(50) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1],

(60) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊂ Xn(n = 1, 2, ...) and if lim
n−→∞

µ(Xn) = 0, then the

set X∞ =
⋂
∞

n=1 Xn is nonempty.

The family kerµ defined in axiom (10) is called the kernel of the measure of noncompactness µ.
One of the properties of the measure of noncompactness is X∞ ∈ kerµ. Indeed, from the inequality µ(X∞) ≤
µ(Xn) for n = 1, 2, 3, ..., we infer that µ(X∞) = 0. Further facts concerning measures of noncompactness and
their properties may be found in [9, 10, 12]. Darbo’s fixed point theorem is a very important generalization
of Schauder’s fixed point theorem, and includes the existence part of Banach’s fixed point theorem.

Theorem 2.2. (Schauder [2]) Let C is a closed, convex and bounded subset of a Banach space E. Then every compact,
continuous map T : C→ C has at least one fixed point.

In the following we state a fixed-point theorem of Darbo type proved by Banaś and Goebel [10].

Theorem 2.3. Let C be a nonempty, closed, bounded, and convex subset of the Banach space E and F : C → C be a
continuous mapping. Assume that there exist a constant k ∈ [0, 1) such that µ(FX) ≤ kµ(X) for any nonempty subset
of C. Then F has a fixed-point in the set C.

Definition 2.4. [14] Let S denote the class of those functions α : [0,∞) −→ [0, 1) which satisfies the condition
α(tn) −→ 1 implies tn −→ 0.

Recently, Aghajani et al. [7] obtained following fixed point theorem which in turn extends Theorem 2.3 and
the corresponding result in [10].

Theorem 2.5. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T : C → C be a
continuous function satisfying

µ(T(X)) ≤ α(µ(X))µ(X),

for each X ⊆ C, where µ is an arbitrary measure of noncompactness and α ∈ S. Then T has at least one fixed point in
C.
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The following concept of O( f ; .) and its examples was given by Altun and Turkoglu [8].
Let F([0,∞) be class of all function f : [0,∞) −→ [0,∞] and let Θ be class of all operators

O(•; .) : F([0,∞)) −→ F([0,∞)), f → O( f ; .)

satisfying the following conditions:

(i) O( f ; t) > 0 for t > 0 and O( f ; 0) = 0,

(ii) O( f ; t) ≤ O( f ; s) for t ≤ s,

(iii) limn→∞O( f ; tn) = O( f ; limn→∞ tn),

(iv) O( f ; max{t, s}) = max{O( f ; t),O( f ; s)} for some f ∈ F([0,∞).

Example 2.6. If f : [0,∞) −→ [0,∞) is a Lebesque integrable mapping which is finite integral on each compact
subset of [0,∞), non-negative and such that for each t > 0,

∫ t

0 f (s)ds > 0, then the operator defined by

O( f ; t) =

∫ t

0
f (s)ds

satisfies the above conditions.

Example 2.7. If f : [0,∞) −→ [0,∞) is non-decreasing, continuous function such that f (0) = 0 and f (t) > 0 for
t > 0 then the operator defined by

O( f ; t) =
f (t)

1 + f (t)

satisfies the above conditions.

3. Main Results

This section is devoted to prove a few generalizations of Darbo fixed point theorem(cf. Theorem 2.3).

Theorem 3.1. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T : C → C be a
continuous operator such that

O( f ;µ(T(X))) + ϕ(µ(TX)) ≤ α(µ(X))[O( f ;µ(X)) + ϕ(µ(X))], (2)

for each X ⊆ C, α ∈ S and O(•; .) ∈ Θ and ϕ : R+ −→ R+ is a continuous function, where µ is an arbitrary measure
of noncompactness. Then T has at least one fixed point in C.

Proof. We define by induction the sequence {Cn}, where C0 = C and Cn+1 = Conv(TCn), for n ≥ 0, such that

C0 ⊇ C1 ⊇ ... ⊇ Cn ⊇ Cn+1 ⊇ ...·

If there exists a natural number N such that µ(CN) = 0, then CN is compact. In this case theorem 2.2 implies
that T has a fixed point. So we assume that µ(Cn) , 0 for n = 0, 1, 2, ...· Also by (2) we have

O( f ;µ(Cn+1)) + ϕ(µ(Cn+1)) = O( f ;µ(Conv(TCn))) + ϕ(µ(Conv(TCn)))
= O( f ;µ(TCn)) + ϕ(µ(TCn))
≤ α(µ(Cn))[O( f ;µ(Cn)) + ϕ(µ(Cn))]
< O( f ;µ(Cn)) + ϕ(µ(Cn)).

(3)

Since the sequence {O( f ;µ(Cn)) + ϕ(µ(Cn))} is nonincreasing and nonnegative, we infer that

lim
n→∞

[O( f ;µ(Cn)) + ϕ(µ(Cn))] = r.
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We show that r = 0. Suppose, to the contrary, that r > 0. Then from (3) we have

O( f ;µ(Cn+1)) + ϕ(µ(Cn+1))
O( f ;µ(Cn)) + ϕ(µ(Cn))

≤ α(µ(Cn)) < 1,

which implies
α(µ(Cn)) −→ 1 as n −→ ∞.

Since α ∈ S, we get r = 0. Hence

O( f ; lim
n→∞

µ(Cn)) + ϕ( lim
n→∞

µ(Cn)) = 0,

therefore,

lim
n→∞

µ(Cn) = 0,

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, ..., then from (60), X∞ =

∞⋂
n=1

Xn is a nonempty convex closed

set, invariant under T and belongs to Kerµ. Therefore Theorem 2.2 completes the proof.

Remark 3.2. It is clear that Theorem 3.1 is a generalization of Theorem 2.5, in fact

µ(T(X)) = O( f ;µ(T(X))) ≤ α(µ(X))O( f ;µ(X)) = α(µ(X))µ(X).

Corollary 3.3. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T : C → C be a
continuous operator such that

µ(T(X)) + ϕ(µ(TX)) ≤ α(µ(X))[µ(X) + ϕ(µ(X))], (4)

for each X ⊆ C and ϕ : R+ −→ R+ is a continuous function, where µ is an arbitrary measure of noncompactness and
α ∈ S. Then T has at least one fixed point in C.

The following corollary gives us a fixed point theorem with a contractive condition of integral type.

Corollary 3.4. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E, k ∈ (0, 1) and T : C→ C
be a continuous operator such that for any X ⊆ C one has∫ µ(T(X))

0
f (s) ds ≤ k

∫ µ(X)

0
f (s) ds,

where µ is an arbitrary measure of noncompactness and f : [0,∞)→ [0,∞) is a Lebesgue-integrable mapping which
is summable (i.e. with finite integral) on each compact subset of [0,∞), non-negative and such that for each ε > 0,∫ ε

0 f (s) ds > 0. Then T has at least one fixed point in C.

Definition 3.5. [13] An element (x, y) ∈ X × X is called a coupled fixed point of a mapping T : X × X → X if
T(x, y) = x and T(y, x) = y.

Theorem 3.6. [10] Suppose µ1, µ2, ..., µn be the measures in E1,E2, ...,En respectively. Moreover assume that the
function F : [0,∞)n

→ [0,∞) is convex and F(x1, x2, ..., xn) = 0 if and only if xi = 0 for i = 1, 2, ...,n. Then

µ(X) = F(µ1(X1), µ2(X2), ..., µn(Xn))

defines a measure of noncompactness in E1 × E2 × ... × En where Xi denotes the natural projection of X into Ei for
i = 1, 2, ...,n.
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Now, as results from Theorem 3.6, we present the following example.

Example 3.7. [10] Let µ be a measure of noncompactness. We define F(x, y) = x + y for any x, y ∈ [0,∞). Then F
has all the properties mentioned in Theorem 3.6. Hence µ̃(X) = µ(X1) + µ(X2) is a measure of noncompactness in the
space E × E where Xi, i = 1, 2 denote the natural projections of X.

Theorem 3.8. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T : C × C→ C be
a continuous function such that

O( f ;µ(T(X1 × X2))) + ϕ(µ(T(X1 × X2)))

≤
1
2
α(µ(X1) + µ(X2))[O( f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))],

(5)

for any subset X1,X2 of C, where µ is an arbitrary measure of noncompactness and ϕ : [0,∞) → [0,∞) is
a nondecreasing, continuous and ϕ(t + s) ≤ ϕ(t) + ϕ(s) for all t, s ≥ 0 and α ∈ S. Also O(•; .) ∈ Θ and
O( f ; t + s) ≤ O( f ; t) + O( f ; s) for all t, s ≥ 0. Then T has at least a coupled fixed point.

Proof. First note that, from Example 3.7, µ̃(X) = µ(X1) + µ(X2) for any bounded subset X ⊆ E × E defines
a measure of noncompactness on E × E where X1 and X2 denote the natural projections of X. we define a
mapping T̃ : C × C −→ C × C by

T̃(x, y) = (T(x, y),T(y, x)).

It is obvious that T̃ is continuous. Now we claim that T̃ satisfies all the conditions of Theorem 3.1. To prove
this, let X ⊆ C × C be any nonempty subset. Then by (20), (5) and (ii) we obtain

O( f ; µ̃(T̃(X))) + ϕ(µ̃(T̃(X)))
≤ O( f ; µ̃(T(X1 × X2) × T(X2 × X1))) + ϕ(µ̃(T(X1 × X2)) × T(X2 × X1)))
= O( f ;µ(T(X1 × X2)) + µ(T(X2 × X1))) + ϕ(µ(T(X1 × X2)) + µ(T(X2 × X1)))
= O( f ;µ(T(X1 × X2))) + O( f ;µ(T(X2 × X1))) + ϕ(µ(T(X1 × X2))) + ϕ(µ(T(X2 × X1)))
= O( f ;µ(T(X1 × X2))) + ϕ(µ(T(X1 × X2))) + O( f ;µ(T(X2 × X1))) + ϕ(µ(T(X2 × X1)))

≤
1
2
α(µ(X1) + µ(X2))[O( f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))]

+
1
2
α(µ(X2) + µ(X1))[O( f ;µ(X2) + µ(X1)) + ϕ(µ(X2) + µ(X1))]

= α(µ(X1) + µ(X2))[O( f ;µ(X1) + µ(X2)) + ϕ(µ(X1) + µ(X2))]
= α(µ̃(X))[O( f ; µ̃(X)) + ϕ(µ̃(X))].

Hence, from Theorem 3.1, T̃ has at least one fixed point in C × C. Now the conclusion of theorem follows
from the fact that every fixed point of T̃ is a coupled fixed point of T.

Corollary 3.9. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and T : C × C→ C be
a continuous function. Assume that there exists a constant k ∈ [0, 1) such that

µ(T(X1 × X2)) ≤
k
2

(µ(X1) + µ(X2)),

for any subset X1,X2 of C, where µ is an arbitrary measure of noncompactness. Then T has at least a coupled fixed
point.
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4. Existence of Solutions for a System of Integral Equations

In what follows we will work in the classical Banach space BC(R+ ×R+) consisting of all real functions
defined, bounded and continuous on R+ ×R+ equipped with the standard norm

||x|| = sup{|x(t, s)| : t, s ≥ 0}.

Now, we present the definition of a special measure of noncompactness in BC(R+ ×R+) which will be used
in the sequel, a measure that was introduced and studied in [10].
To do this, let X be fix a nonempty and bounded subset of BC(R+ × R+) and fix a positive number T. For
x ∈ X and ε > 0, denote by ωT(x, ε) the modulus of the continuity of function x on the interval [0,T], i.e.,

ωT(x, ε) = sup{|x(t, s) − x(u, v)| : t, s,u, v ∈ [0,T], |t − u| ≤ ε, |s − v| ≤ ε}.

Further, let us put

ωT(X, ε) = sup{ωT(x, ε) : x ∈ X},

ωT
0 (X) = lim

ε→0
ωT(X, ε)

and

ω0(X) = lim
T→∞

ωT
0 (X).

Moreover, for two fixed numbers t, s ∈ R+ let us define the function µ on the family MBC(R+×R+) by the
following formula

µ(X) = ω0(X) + α(X),

where α(X) = lim sup
t,s→∞

diamX(t, s), X(t, s) = {x(t, s) : x ∈ X} and diamX(t, s) = sup{|x(t, s) − y(t, s)| : x, y ∈ X}.

Similar to [10] (cf. also [11]), it can be shown that the function µ is the measure of noncompactness in the
space BC(R+ ×R+).
As an application of our results we are going to study the existence of solutions for the system of integral
equations (1). Consider the following assumptions

(A1) αi : R+ → R+ are continuous, nondecreasing and lim
t→∞

αi(t) = ∞, i = 1, 2.

(A2) The function a : R+ ×R+ → R+ is continuous and bounded.

(A3) k : R+ ×R+ ×R+ ×R+ ×R ×R→ R is continuous and there exists a positive constant M such that

M = sup
{∫ α1(t)

0

∫ α2(s)

0
|k(t, s,u, v, x(u, v), y(u, v))|dudv : t, s ∈ R+, x, y ∈ BC(R+ ×R+)

}
. (6)

Morever,

lim
t,s→∞

∣∣∣∣∣∣
∫ α1(t)

0

∫ α2(s)

0
[k(t, s,u, v, x2(u, v), y2(u, v)) − k(t, s,u, v, x1(u, v), y1(u, v))]dudv

∣∣∣∣∣∣ = 0, (7)

uniformly respect to x1, y1, x2, y2 ∈ BC(R+ ×R+).

(A4) The functions f , 1 : R+ × R+ × R × R → R are continuous and there exist two bounded functions
a1, a2 : R+ ×R+ → R with bound

K = max{ sup
(t,s)∈R+×R+

a1(t, s), sup
(t,s)∈R+×R+

a2(t, s)}.
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Also there exist two positive constant D and 0 ≤ λ < 1 such that

| f (t, s, x2, y2) − f (t, s, x1, y1)| ≤
a1(t, s)λ(|x2 − x1| + |y2 − y1|)
D + λ(|x2 − x1| + |y2 − y1|)

,

and

|1(t, s, x2, y2) − 1(t, s, x1, y1)| ≤
a2(t, s)λ(|x2 − x1| + |y2 − y1|)
D + λ(|x2 − x1| + |y2 − y1|)

,

for all t, s ∈ R+ and x1, y1, x2, y2 ∈ R. Moreover, we assume that 2K(1 + M) ≤ D.

(A5) The functions H1,H2 : R+ × R+ → R+ defined by H1(t, s) = | f (t, s, 0, 0)| and H2(t, s) = |1(t, s, 0, 0)| are
bounded on R+ ×R+ with

H0 = max{ sup
(t,s)∈R+×R+

H1(t, s), sup
(t,s)∈R+×R+

H2(t, s)}.

Theorem 4.1. If the assumptions (A1) − (A5) are satisfied, then the system of equation (1) has at least one solution
(x, y) ∈ E × E.

Proof. Define the operator T : E × E→ E associated with the integral equation (1) by

T(x, y)(t, s) = a(t, s) + f (t, s, x(t, s), y(t, s)) + 1(t, s, x(t, s), y(t, s))[F(x, y)(t, s)], (8)

where,

F(x, y)(t, s) =

∫ α1(t)

0

∫ α2(s)

0
k(t, s,u, v, x(u, v), y(u, v))dudv. (9)

Solving Eq.(1) is equivalent to finding a coupled fixed point of the operator T defined on the space E × E.
For better readability, we break the proof into a sequence of cases.
Case 1: T transforms the space E × E into E.
By considering conditions of theorem we infer that T(x, y) is continuous on R+ × R+. Now we prove that
T(x, y) ∈ E for any (x, y) ∈ E × E. For arbitrarily fixed (t, s) ∈ R+ ×R+ we have

|(T(x, y))(t, s)| ≤ |a(t, s)| + | f (t, s, x(t, s), y(t, s))| + |1(t, s, x(t, s), y(t, s))||F(x, y)(t, s)|

≤ |a(t, s)| +
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0 +

[
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0

]
M.

(10)

Indeed,

| f (t, s, x(t, s), y(t, s))| ≤ | f (t, s, x(t, s), y(t, s)) − f (t, s, 0, 0)| + | f (t, s, 0, 0)|

≤
a1(t, s)λ(|x(t, s)| + |y(t, s)|)
D + λ(|x(t, s)| + |y(t, s)|)

+ H1(t, s)

≤
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0,

|1(t, s, x(t, s), y(t, s))| ≤ |1(t, s, x(t, s), y(t, s)) − 1(t, s, 0, 0)| + |1(t, s, 0, 0)|

≤
a2(t, s)λ(|x(t, s)| + |y(t, s)|)
D + λ(|x(t, s)| + |y(t, s)|)

+ H2(t, s)

≤
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0,

|(F(x, y)(t, s)| =

∣∣∣∣∣∣
∫ α1(t)

0

∫ α2(s)

0
k(t, s,u, v, x(u, v), y(u, v))dudv

∣∣∣∣∣∣
≤

∫ α1(t)

0

∫ α2(s)

0
|k(t, s,u, v, x(u, v), y(u, v))|dudv ≤M.
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By assumption (A4), we get

||T(x, y)|| ≤ ||a|| +
(

Kλ(||x|| + ||y||)
D + λ(||x|| + ||y||)

+ H0

)
(1 + M) ≤ ||a|| + (K + H0)(1 + M). (11)

Thus T maps the space E × E into E. More precisely, from (11) we obtain that T(Br × Br) ⊆ Br ,where
r = ||a|| + (K + H0)(1 + M).
Case 2: we show that map T : Br × Br → Br is continuous.
To do this, let us fix arbitrarily ε > 0 and take (x, y), (z,w) ∈ Br × Br such that ||(x, y) − (z,w)|| ≤ ε. Then

|(T(x, y)(t, s)) − (T(z,w)(t, s))| = | f (t, s, x(t, s), y(t, s)) + 1(t, s, x(t, s), y(t, s))[F(x, y)(t, s)]
− f (t, s, z(t, s),w(t, s)) − 1(t, s, z(t, s),w(t, s))[F(z,w)(t, s)]|
≤ | f (t, s, x(t, s), y(t, s)) − f (t, s, z(t, s),w(t, s))|

+ |1(t, s, x(t, s), y(t, s))||(F(x, y))(t, s) − (F(z,w))(t, s)|
+ |1(t, s, x(t, s), y(t, s) − 1(ts, z(t, s),w(t, s))||(F(z,w))(t, s)|

≤
K(1 + M)λ(||x − z|| + ||y − w||)

D + λ(||x − z|| + ||y − w||)

+

[
Kλ(||x|| + ||y||)

D + λ(||x|| + ||y||)
+ H0

]
|(F(x, y))(t, s) − (F(z,w))(t, s)|,

(12)

Furthermore, with due attention to the condition (A2) there exist N > 0 such that for t > N we have

|(F(x, y))(t, s) − (F(z,w))(t, s)| = |
∫ α1(t)

0

∫ α2(s)

0
[k(t, s,u, v, x(u, v), y(u, v))

− k(t, s,u, v, z(u, v),w(u, v))]dudv| < ε.
(13)

Suppose that t, s > N. It follows (12) and (13) that

|T(x, y)(t, s) − T(z,w)(t, s)| < ε. (14)

If t, s ∈ [0,N], then we obtain

|(F(x, y))(t, s) − (F(z,w))(t, s)| ≤ α2
Nω1(k, ε), (15)

where we denoted
αN = sup{αi(t) : t ∈ [0,N], i = 1, 2},

and

ω1(k, ε) = sup{|k(t, s,u, v, x, y) − k(t, s,u, v, z,w)| : t, s ∈ [0,N],u, v ∈ [0, αN]
, x, y, z,w ∈ [−r, r], ||(x, y) − (z,w)|| ≤ ε}.

By using the continuity of k on [0,N] × [0,N] × [0, αN] × [0, αN] × [−r, r] × [−r, r], we have ω1(k, ε) → 0 as
ε→ 0. Now, linking the inequalities (12) and (15) we deduce that

|T(x, y)(t, s) − T(z,w)(t, s)| ≤ ε + [K + H0]α2
Nω1(k, ε). (16)

The above established facts we conclude that T is continuous on Br × Br.
Case 3: In the sequel, we show that for any nonempty set X1,X2 ⊆ Br,

µ(T(X1 × X2)) ≤
λ
2

(µ(X1) + µ(X2)).
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Indeed, by virtue of assumptions (A1) − (A5), we conclude that for any (x, y), (z,w) ∈ X1 × X2 and t, s ∈ R+,

|(T(x, y))(t, s) − (T(z,w))(t, s)|

≤
K(1 + M)λ(|x(t, s) − z(t, s)| + |y(t, s) − w(t, s)|)

D + λ(|x(t, s) − z(t, s)| + |y(t, s) − w(t, s)|)
+

[
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0

]
β(t, s)

≤
1
2
λ(|x(t, s) − z(t, s)| + |y(t, s) − w(t, s)|) +

[
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0

]
β(t, s),

where

β(t, s) = sup
{∣∣∣∣∣∣

∫ α1(t)

0

∫ α2(s)

0
[k(t, s,u, v, x(u, v), y(u, v)) − k(t, s,u, v, z(u, v),w(u, v))]dudv

∣∣∣∣∣∣ : x, y ∈ E
}
.

This estimate allows us to derive the following one

diam(T(X1 × X2))(t, s) ≤
λ
2

(diamX1(t, s) + diamX2(t, s)) +

[
Kλ(|x(t, s)| + |y(t, s)|)

D + λ(|x(t, s)| + |y(t, s)|)
+ H0

]
β(t, s). (17)

Consequently, from (17) and assumption (7) that

lim sup
t,s−→∞

diam(T(X1 × X2))(t, s) ≤
λ
2

[lim sup
t,s−→∞

diamX1(t, s) + lim sup
t,s−→∞

diamX2(t, s)]. (18)

Next, fix arbitrarily N > 0 and ε > 0. Let us choose t1, t2, s1, s2 ∈ [0,N],with |t2 − t1| ≤ ε, |s2 − s1| ≤ ε.Without
loss of generality, we may assume that t1 ≤ t2 and s1 ≤ s2. Then, for (x, y) ∈ X1 × X2 we get

| f (t2, s2, x(t2, s2), y(t2, s2)) − f (t1, s1, x(t1, s1), y(t1, s1))|
≤ | f (t2, s2, x(t2, s2), y(t2, s2)) − f (t2, s2, x(t1, s1), y(t1, s1))|

+ | f (t2, s2, x(t1, s1), y(t1, s1)) − f (t1, s1, x(t1, s1), y(t1, s1))|

≤
Kλ(|x(t2, s2) − x(t1, s1)| + |y(t2, s2) − y(t1, s1)|)

D + λ(|x(t2, s2) − x(t1, s1)| + |y(t2, s2) − y(t1, s1)|)
+ | f (t2, s2, x(t1, s1), y(t1, s1)) − f (t1, s1, x(t1, s1), y(t1, s1))|

≤
λ

2(1 + M)
(ωN(x, ε) + ωN(y, ε)) + ωN( f , ε),

and

|(F(x, y)(t2, s2) − (F(x, y)(t1, s1)|

≤

∫ α1(t2)

0

∫ α2(s2)

0
|k(t2, s2,u, v, x(u, v), y(u, v)) − k(t1, s1,u, v, x(u, v), y(u, v))|dudv

+

∫ α1(t2)

α1(t1)

∫ α2(s2)

α2(s1)
|k(t1, s1,u, v, x(u, v), y(u, v))|dudv

≤

∫ α1(t2)

0

∫ α2(s2)

0
ωN(k, ε)dudv +

∫ α1(t2)

α1(t1)

∫ α2(s2)

α2(s1)
KNdudv

≤ α2
Nω

N(k, ε) + ωN(α1, ε)ωN(α2, ε)KN,
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and

|1(t2, s2, x(t2, s2), y(t2, s2))(F(x, y)(t2, s2) − 1(t1, s1, x(t1, s1), y(t1, s1))(F(x, y)(t1, s1)|
≤ |1(t2, s2, x(t2, s2), y(t2, s2))(F(x, y)(t2, s2) − 1(t1, s1, x(t1, s1), y(t1, s1))(F(x, y)(t2, s2)|

+ |1(t1, s1, x(t1, s1), y(t1, s1))(F(x, y)(t2, s2) − 1(t1, s1, x(t1, s1), y(t1, s1))(F(x, y)(t1, s1)|

≤
Kλ(|x(t2, s2) − x(t1, s1)| + |y(t2, s2) − y(t1, s1)|)

D + λ(|x(t2, s2) − x(t1, s1)| + |y(t2, s2) − y(t1, s1)|)
|(F(x, y)(t2, s2)|

+ [
Kλ(|x(t1, s1)| + |y(t1, s1)|)

D + λ(|x(t1, s1)| + |y(t1, s1)|)
+ H0]|(F(x, y)(t2, s2) − (F(x, y)(t1, s1)|

≤
Mλ

2(1 + M)
(ωN(x, ε) + ωN(y, ε)) + (K + H0)[α2

Nω
N(k, ε) + ωN(α1, ε)ωN(α2, ε)KN].

Therefore,

|(T(x, y))(t2, s2) − (T(x, y))(t2, s2)|
≤ |a(t2, s2) − a(t1, s1)| + | f (t2, s2, x(t2, s2), y(t2, s2)) − f (t1, s1, x(t1, s1), y(t1, s1))|

+ |1(t2, s2, x(t2, s2), y(t2, s2))(F(x, y)(t2, s2) − 1(t1, s1, x(t1, s1), y(t1, s1))(F(x, y)(t1, s1)|

≤ ωN(a, ε) +
λ

2(1 + M)
(ωN(x, ε) + ωN(y, ε)) + ωN( f , ε)

+
Mλ

2(1 + M)
(ωN(x, ε) + ωN(y, ε)) + (K + H0)[α2

Nω
N(k, ε) + ωN(α1, ε)ωN(α2, ε)KN]

(19)

where we defined

ωN( f , ε) = sup{| f (t2, s2, x, y) − f (t1, s1, x, y)| : t1, t2, s1, s2 ∈ [0,N]
, |t2 − t1| ≤ ε, |s2 − s1| ≤ ε, x, y ∈ [−r, r]}

ωN(k, ε) = sup{|k(t2, s2,u, v, x, y) − k(t1, s1,u, v, x, y)| : t1, t2, s1, s2 ∈ [0,N]
, |t2 − t1| ≤ ε, |s2 − s1| ≤ ε,u, v ∈ [0, αN], x, y ∈ [−r, r]}

ωN(αi, ε) = sup{|αi(t) − αi(s)| : t, s ∈ [0,N], |t − s| ≤ ε, i = 1, 2}

ωN(x, ε) = sup{|x(t2, s2) − x(t1, s1)| : t1, t2, s1, s2 ∈ [0,N], |t2 − t1| ≤ ε, |s2 − s1| ≤ ε}

KN = sup{|k(t, s,u, v, x, y)| : t, s ∈ [0,N],u, v ∈ [0, αN], x, y ∈ [−r, r]}

ωN(a, ε) = sup{|a(t2, s2) − a(t1, s1)| : t1, t2, s1, s2 ∈ [0,N], |t2 − t1| ≤ ε, |s2 − s1| ≤ ε},

Since (x, y) was an arbitrary element of X1 × X2, the inequality (20) implies that

ωN(T(X1 × X2), ε) ≤ ωN(a, ε) +
λ
2

(ωN(X1, ε) + ωN(X2, ε)) + ωN( f , ε)

+ (K + H0)[α2
Nω

N(k, ε) + ωN(α1, ε)ωN(α2, ε)KN],
(20)

In view of the uniform continuity of the functions a, f and k on [0,N]× [0,N] and [0,N]× [0,N]× [−r, r] and
[0,N] × [0,N] × [0, αN] × [0, αN] × [−r, r] × [−r, r] respectively, we have that ωN(a, ε) → 0,ωN( f , ε) → 0 and
ωN(k, ε) → 0. Moreover, it is obvious that the constant KN is finite and ωN(α1, ε) → 0 and ωN(α2, ε) → 0 as
ε→ 0. Thus, linking the established facts with the estimate (20) we get

ωo(T(X1 × X2)) ≤
λ
2

(ωo(X1) + ωo(X2)). (21)
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Finally, from (18), (21) and the definition of the measure of noncompactness µ, we obtain

µ(T(X1 × X2)) = ω0(T(X1 × X2)) + lim sup
t,s→∞

diam(T(X1 × X2))(t, s)

≤
λ
2

(ωo(X1) + ωo(X2)) +
λ
2

(lim sup
t,s−→∞

diamX1(t, s) + lim sup
t,s−→∞

diamX2(t, s))

≤
λ
2

(ωo(X1) + lim sup
t,s−→∞

diamX1(t, s) + ωo(X2) + lim sup
t,s−→∞

diamX2(t, s))

=
λ
2

(µ(X1) + µ(X2)).

(22)

Finally, applying Corollary 3.9 , we obtain the desired result.

References

[1] R.P. Agarwal, D. O’Regan, Singular Volterra integral equations, Appl. Math. Lett. 13 (2000) 115–120.
[2] R.P. Agarwal, D. O’Regan, Fixed point theory and applications, Cambridge University Press, 2004.
[3] R.P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional

differential equations, Results Math. 55 (2009) 221–230.
[4] A. Aghajani, J. Banas, Y. Jalilian, Existence of solution for a class of nonlinear Voltrra sigular integral equations, Computer and

Mathematics with Applications 62 (2011) 1215–1227.
[5] A. Aghajani, N. Sabzali, A coupled fixed point theorem for condensing operators with application to system of integral equations,

Journal of nonlinear and convex Analysis (To appear).
[6] A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc.

Simon Stevin 20 (2) (2013) 345–358.
[7] A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo’s theorem with application to the solvability of systems of

integral equations, Journal of Computational and Applied Mathematics 260 (2014) 68–77.
[8] I. Altun, D. Turkoglu, A fixed point theorem for mappings satisfying a general contractive condition of operator type, J. Comput.

Anal. Appl. 9 (1) (2007) 9–14.
[9] J. Banas, Measures of noncompactness in the space of continuous tempered functions, Demonstratio Math. 14 (1981) 127–133.

[10] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Dekker,
New York 60 (1980).

[11] J. Banas, R. Rzepka, An application of a measure of noncompactnessin the study of asymptotic stability, Appl. Math. Lett. 16
(2003) 1–6.

[12] J. Banas, M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral
Equations, Springer, New Delhi, 2014.

[13] S.S. Chang, Y.J. Huang, Coupled Fixed Point Theorems With Applications, J. Korean Math. Soc. 33 (3) (1996) 575–585.
[14] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604–608.
[15] X. Hu, J. Yan, The global attractivity and asymptotic stability of solution of a nonlinear integral equation. J. Math. Anal. Appl.

321 (2006) 147–156.
[16] Z. Liu, S.M. Kang, Existence and asymptotic stability of solutions to functional-integral equation, Taiwan J. Math. 11 (2007)

187–196.
[17] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach

spaces, J. Math. Anal. Appl. (2005) 638–649.
[18] M. Mursaleen, A. Alotaibi, Infinite System of Differential Equations in Some Spaces, Abstract and Applied Analysis (2012)

doi:10.1155/2012/863483.


