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Available at: http://www.pmf.ni.ac.rs/filomat

Ulam’s Type Stability of Hadamard Type Fractional Integral Equations

JinRong Wanga,b,c, Zeng Lina

aDepartment of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P.R. China
bKey and Special Laboratory of System Optimization and Scientific Computing of Guizhou Province, Guiyang, Guizhou 550025, P.R. China

cSchool of Mathematics and Computer Science, Guizhou Normal College, Guiyang, Guizhou 550018, P.R. China

Abstract. In this paper, we further investigates Ulam’s type stability of Hadamard type fractional integral
equations on a compact interval. We explore new conditions and develop valuable techniques to overcome
the difficult from the Hadamard type singular kernel and extend the previous Ulam’s type stability results
in [27] from [1, b] to [a, b] with a > 0 via fixed point method. Finally, two examples are given to illustrate
our results.

1. Introduction

The stability of functional equations originated from Ulam who posed this important question in 1940,
concerning the stability of group homomorphisms. In 1941, Hyers gave a partial affirmative answer to the
question of Ulam in the context of Banach spaces, that was the first significant breakthrough and a step
toward more solutions in this area. Since then, a large number of papers have been published in connection
with various generalizations of Ulam’s type stability theory or the Ulam-Hyers stability theory. For the
advanced contribution on Ulam’s type stability, we refer to [1–3, 6, 7, 10, 11, 13, 18, 19, 21, 22, 26, 27] and
other stability results [12, 17, 24, 25].

Fractional calculus has played a very important role in various fields such as mechanics, electricity,
biology, economics, and signal and image processing. Recently, fractional differential and integral equations
appear naturally in the fields such as viscoelasticity, electrical circuits, nonlinear oscillation of earthquake
and etc. There are some remarkable monographs provide the main theoretical tools for the qualitative
analysis of this research field, and at the same time, show the interconnection as well as the contrast
between classical differential and integral models and fractional differential and integral models, are [4, 5,
9, 15, 16, 20, 23].

In [27], the authors firstly offered Ulam’s type stability of Hadamard fractional differential equations
and derived the Ulam-Hyers stability results on [1, b] by using standard method provided in [21]. However,
the corresponding Ulam-Hyers stability results on [a, b] where a > 0 has not been studied. In order to fix
this gap, we will apply another method, fixed point method, to investigate Ulam’s type stability of the

2010 Mathematics Subject Classification. 26A33, 45G05, 47H10.
Keywords. Fractional integral equations, Hadamard type singular kernel, Ulam’s type stability.
Received: 10 June 2013; Accepted: 13 October 2013
Communicated by Hari M. Srivastava
This work is supported by the National Natural Science Foundation of Chin (11201091), Key Project on the Reforms of Teaching

Contents and Course System of Guizhou Normal College and Doctor Project of Guizhou Normal College (13BS010).
Email addresses: wjr9668@126.com (JinRong Wang), linzeng822@126.com (Zeng Lin)



J. Wang, Z. Lin / Filomat 28:7 (2014), 1323–1331 1324

following Hadamard type fractional integral equations [15] in the space of continuous functions:

y(x) =

n∑
j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j +
1

Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t
, (1)

where α ∈ (n − 1,n], n = 1, 2, · · · , Γ(·) is the Gamma function, a, b and b j are fixed real numbers such that
0 < a ≤ x ≤ b < +∞ and f : [a, b] ×R→ R is a continuous function.

To achieve our results, we will explore new conditions and develop valuable techniques to overcome
the difficult from the Hadamard type singular kernel (ln x

t )α−1 and extend the previous Ulam’s type stability
results in [27] from [1, b] to [a, b].

Definition 1.1. If for each function y satisfying∣∣∣∣∣∣∣∣y(x) −
n∑

j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j
−

1
Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t

∣∣∣∣∣∣∣∣ ≤ ϕ(x),

where ϕ is a nonnegative function, there is a solution y0 of the equation (1) and a constant c > 0 independent of y
and y0 such that

|y(x) − y0(x)| ≤ cϕ(x), x ∈ [a, b],

then the equation (1) is called Hyers-Ulam-Rassias stable.
In the case where ϕ takes the form of a constant function, the equation (1) is called Hyers-Ulam stable.

For a nonempty set X, a function d : X × X → [0,+∞] is called a generalized metric on X if and only if
d satisfies d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x) for all x, y ∈ X and d(x, z) ≤ d(x, y) + d(y, z) for all
x, y, z ∈ X.

Theorem 1.2. (see [8]) Let (X, d) be a generalized complete metric space. Assume that T : X → X is a strictly
contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer k such that d(Tk+1x,Tkx) <
+∞ for some x ∈ X, then the followings are true:
(a) The sequence {Tnx} converges to a fixed point x∗of T;
(b) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X | d(Tkx, y) < +∞

}
;

(c) If y ∈ X∗, then

d(y, x∗) ≤
1

1 − L
d(Ty, y).

2. Ulam’s type stability results

In this section, we will study Hyers-Ulam-Rassias stability and Hyers-Ulam stability of the equation (1)
on a compact interval [a, b].

Let 0 < a < b, 0 < p < 1, n − 1 < α ≤ n, p < α and M = 1
Γ(α)

( 1−p
α−p

)1−p (
ln b

a

)α−p
.

We introduce the following assumptions:
[H1]: f : [a, b] ×R→ R is a continuous function and for any t ∈ [a, b] and y, z ∈ R,

| f (t, y) − f (t, z)| ≤ Ltp
|y − z|. (2)
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[H2]: There exists a continuous function y : [a, b]→ R satisfies∣∣∣∣∣∣∣∣y(x) −
n∑

j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j
−

1
Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t

∣∣∣∣∣∣∣∣ ≤ ϕ(x) (3)

for all x ∈ [a, b], and ϕ : [a, b]→ (0,+∞) satisfies(∫ x

a
(ϕ(t))

1
p dt

)p

≤ Kϕ(x). (4)

[H3]: 0 < KLM < 1.
Now we are ready to state our first result.

Theorem 2.1. Assume that [H1], [H2] and [H3] are satisfied. Then there exists a unique continuous function
y0 : [a, b]→ R such that

y0(x) =

n∑
j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j +
1

Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y0(t))
dt
t

(5)

and

|y(x) − y0(x)| ≤
ϕ(x)

1 − KLM
(6)

for all x ∈ [a, b].

Proof. We mimic the framework in [14] to consider the space of continuous functions

X = {1 : [a, b]→ R | 1 is continuous}, (7)

endowed with the generalized metric on X defined by

d(1, h) = inf
{
C ∈ [0,+∞] | |1(x) − h(x)| ≤ Cϕ(x) for all x ∈ [a, b]

}
. (8)

It follows [14] that (X, d) is a complete generalized metric space.
Define an operator T : X→ X by

(Ty)(x) =

n∑
j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j +
1

Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t
, (9)

for all y ∈ X and x ∈ [a, b]. Clearly, T is a well defined operator.
Next, we shall verify that T is strictly contractive on X. Note that the definition of (X, d), for any 1, h ∈ X,

it is possible to find a C1h ∈ [0,+∞] such that

|1(x) − h(x)| ≤ C1hϕ(x), (10)

for any x ∈ [a, b].
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From the definition of T in (9) and (2), (4), and (10), we obtain

|(T1)(x) − (Th)(x)|

=
1

Γ(α)

∣∣∣∣∣ ∫ x

a
(ln x − ln t)α−1 1

t
[ f (t, 1(t)) − f (t, h(t))]dt

∣∣∣∣∣
≤ L

1
Γ(α)

∫ x

a
(ln x − ln t)α−1t−1tp

|1(t) − h(t)|dt

≤ LC1h
1

Γ(α)

∫ x

a
(ln x − ln t)α−1tp−1ϕ(t)dt

= LC1h
1

Γ(α)

∫ x

a
(ln x − ln t)α−1(t

p−1
α−1 )α−1ϕ(t)dt

= LC1h
1

Γ(α)

∫ x

a
[(ln x − ln t)t

p−1
α−1 ]α−1ϕ(t)dt

≤ LC1h
1

Γ(α)

(∫ x

a
[(ln x − ln t)t

p−1
α−1 ]

α−1
1−p dt

)1−p (∫ x

a
(ϕ(t))

1
p dt

)p

≤ KLC1hϕ(x)
1

Γ(α)

(∫ x

a
(ln x − ln t)

α−1
1−p t−1dt

)1−p

= KLC1hϕ(x)
1

Γ(α)

(
−

∫ x

a
(ln x − ln t)

α−1
1−p d(ln x − ln t)

)1−p

= KLC1hϕ(x)
1

Γ(α)

[
1 − p
α − p

(ln x − ln a)
α−p
1−p

]1−p

≤ KLC1hϕ(x)
1

Γ(α)

(
1 − p
α − p

)1−p (
ln

b
a

)α−p

.

This yields that

|(T1)(x) − (Th)(x)| ≤ KLMC1hϕ(x),

for all x ∈ [a, b]. That is, d(T1,Th) ≤ KLMC1h. Hence, we can conclude that d(T1,Th) ≤ KLMd(1, h) for any
1, h ∈ X, and since 0 < KLM < 1, the strictly continuous property is verified. Let us take 10 ∈ X. From the
continuous property of 10 and T10, it follows that there exists a constant 0 < C1 < +∞ such that

|(T10)(x) − 10(x)|

=

∣∣∣∣∣ n∑
j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j +
1

Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, 10(t))
dt
t
− 10(x)

∣∣∣∣∣ ≤ C1ϕ(x)

for all x ∈ [a, b], since f and 10 are bounded on [a, b] and ϕ(x) > 0. Thus, (8) implies that

d(T10, 10) < +∞.

Now, we can use the Banach Fixed Point Theorem and conclude that there exists a continuous function
y0 : [a, b] → R such that Tn10 → y0 in (X, d) as n → +∞ and Ty0 = y0, that is, y0 satisfies equation (5) for
every x ∈ [a, b]. We will now verify that {1 ∈ X | d(10, 1) < +∞} = X. For any 1 ∈ X, since 1 and 10 are
bounded on [a, b] and minx∈[a,b] ϕ(x) > 0, there exists a constant 0 < C1 < +∞ such that

|10(x) − 1(x)| ≤ C1ϕ(x)

for any x ∈ [a, b]. Hence, we have d(10, 1) < +∞ for all 1 ∈ X, that is, {1 ∈ X | d(10, 1) < +∞} = X. Hence,
we conclude that y0 is the unique continuous function with the property (5). On the other hand, from (3) it
follows that

d(y,Ty) ≤ 1. (11)
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At last,

d(y, y0) ≤
1

1 − KLM
d(Ty, y) ≤

1
1 − KLM

,

which means that the inequality (6) holds true for all x ∈ [a, b]. �

Next, we try to reduce [H1] to the following assumption:
[H1∗]: f : [a, b] ×R→ R is Carathéodory function and there exists M∗ > 0 such that

| f (t, y)| ≤M∗tp(ln b − ln t)q, p − α ≤ q ≤ 0.

Moreover, for any t ∈ [a, b] and y, z ∈ R,

| f (t, y) − f (t, z)| ≤ Ltp(ln b − ln t)q
|y − z|, p − α ≤ q ≤ 0.

Theorem 2.2. Let M∗ = 1
Γ(α)

( 1−p
α+q−p

)1−p (
ln b

a

)α+q−p
. Assume that [H1∗], [H2] and 0 < KLM∗ < 1 are satisfied. Then

there exists a unique continuous function y0 : [a, b]→ R such that

|y(x) − y0(x)| ≤
ϕ(x)

1 − KLM∗

for all x ∈ [a, b].

Proof. Firstly, we show that the second integral term in (9) is bounded. In fact,

1
Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t

≤
1

Γ(α)

∫ x

a
(ln x − ln t)α−1t−1tp(ln b − ln t)qM∗dt

≤
1

Γ(α)

∫ x

a
(ln x − ln t)α−1t−1tp(ln x − ln t)qM∗dt

=
1

Γ(α)

∫ x

a
(ln x − ln t)α+q−1(t

p−1
α+q−1 )α+q−1M∗dt

≤
1

Γ(α)

∫ x

a
[(ln x − ln t)t

p−1
α+q−1 ]α+q−1M∗dt

≤
1

Γ(α)

(∫ x

a
[(ln x − ln t)t

p−1
α+q−1 ]

α+q−1
1−p dt

)1−p (∫ x

a
(M∗)

1
p dt

)p

≤
M∗(b − a)p

Γ(α)

(∫ x

a
(ln x − ln t)

α+q−1
1−p t−1dt

)1−p

=
M∗(b − a)p

Γ(α)

(
−

∫ x

a
(ln x − ln t)

α+q−1
1−p d(ln x − ln t)

)1−p

≤
M∗(b − a)p

Γ(α)

[
1 − p

α + q − p
(ln b − ln a)

α+q−p
1−p

]1−p

.
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Secondly, we follow the framework in Theorem 2.1 to prove this result. Note that

|(T1)(x) − (Th)(x)|

=
1

Γ(α)

∣∣∣∣∣ ∫ x

a
(ln x − ln t)α−1 1

t
[ f (t, 1(t)) − f (t, h(t))]dt

∣∣∣∣∣
≤ L

1
Γ(α)

∫ x

a
(ln x − ln t)α−1t−1tp(ln b − ln t)q

|1(t) − h(t)|dt

≤ L
1

Γ(α)

∫ x

a
(ln x − ln t)α−1tp−1(ln x − ln t)q

|1(t) − h(t)|dt

≤ LC1h
1

Γ(α)

∫ x

a
(ln x − ln t)α+q−1tp−1ϕ(t)dt

= LC1h
1

Γ(α)

∫ x

a
(ln x − ln t)α+q−1(t

p−1
α+q−1 )α+q−1ϕ(t)dt

= LC1h
1

Γ(α)

∫ x

a
[(ln x − ln t)t

p−1
α+q−1 ]α+q−1ϕ(t)dt

≤ LC1h
1

Γ(α)

(∫ x

a
[(ln x − ln t)t

p−1
α+q−1 ]

α+q−1
1−p dt

)1−p (∫ x

a
(ϕ(t))

1
p dt

)p

≤ KLC1hϕ(x)
1

Γ(α)

(∫ x

a
(ln x − ln t)

α+q−1
1−p t−1dt

)1−p

= KLC1hϕ(x)
1

Γ(α)

(
−

∫ x

a
(ln x − ln t)

α+q−1
1−p d(ln x − ln t)

)1−p

= KLC1hϕ(x)
1

Γ(α)

[
1 − p

α + q − p
(ln x − ln a)

α+q−p
1−p

]1−p

≤ KLC1hϕ(x)
1

Γ(α)

(
1 − p

α + q − p

)1−p (
ln

b
a

)α+q−p

= KLM∗C1hϕ(x).

Then, one can complete the rest proof by proceeding the standard process in Theorem 2.1. �

Now, we present Hyers-Ulam stability of the equation (1).
Let 0 < a < b, n − 1 < α ≤ n, set M′ = 1

Γ(α+1)

(
ln b

a

)α
.

We need the following assumptions:
[H1′]: f : [a, b] ×R→ R is a continuous function and for any t ∈ [a, b] and y, z ∈ R,

| f (t, y) − f (t, z)| ≤ L|y − z|. (12)

[H2′]: There exists a continuous function y : [a, b]→ R satisfies∣∣∣∣∣∣∣∣y(x) −
n∑

j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j
−

1
Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y(t))
dt
t

∣∣∣∣∣∣∣∣ ≤ θ (13)

for all x ∈ [a, b].
[H3′]: 0 < LM′ < 1.

Theorem 2.3. Assume that [H1′], [H2′] and [H3′] are satisfied. Then there exists a unique continuous function
y0 : [a, b]→ R such that

y0(x) =

n∑
j=1

b j

Γ(α − j + 1)
(ln

x
a

)α− j +
1

Γ(α)

∫ x

a
(ln

x
t

)α−1 f (t, y0(t))
dt
t

(14)
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and

|y(x) − y0(x)| ≤
θ

1 − LM′
(15)

for all x ∈ [a, b].

Proof. We consider the space of continuous functions presented in (7) again and endowed with the
generalized metric defined by

d(1, h) = inf
{
C ∈ [0,+∞] | |1(x) − h(x)| ≤ C for all x ∈ [a, b]

}
. (16)

Define the same operator T in (9), we shall verify that T is strictly contractive on X. Note that the definition
of (X, d), for any 1, h ∈ X, it is possible to find a C1h ∈ [0,+∞] such that

|1(x) − h(x)| ≤ C1h, (17)

for any x ∈ [a, b]. It follows the definition of T in (9) and our assumptions, we obtain

|(T1)(x) − (Th)(x)|

=
1

Γ(α)

∣∣∣∣∣ ∫ x

a
(ln x − ln t)α−1 1

t
[ f (t, 1(t)) − f (t, h(t))]dt

∣∣∣∣∣
≤ L

1
Γ(α)

∫ x

a
(ln x − ln t)α−1 1

t
|1(t) − h(t)|dt

≤ LC1h
1

Γ(α)

∫ x

a
(ln x − ln t)α−1 1

t
dt

= LC1h
1

Γ(α)

[
−

∫ x

a
(ln x − ln t)α−1d(ln x − ln t)

]
= LC1h

1
Γ(α)

[ 1
α

(ln x − ln a)α
]

≤ LC1h
(ln b − ln a)α

Γ(α + 1)
.

Therefore, d(T1,Th) ≤ LM′C1h. Hence, we can conclude that d(T1,Th) ≤ LM′d(1, h) for any 1, h ∈ X, and
since 0 < LM′ < 1, the strictly continuous property is verified. Similarly as in the proof of Theorem 2.1, one
can derive the results. �

3. Examples

In this section we give two examples to illustrate the usefulness of our main results.

Example 3.1. Let a = 1, p = 1
3 , α = 1

2 , n = 1, b = 1 − 2
3 ln 2

5 , K = 1, M = 1.257 < 3
2 , set L = 1

2 < min{1,M−1
}.

Clearly, 0 < KLM < 1.
We assume that a continuous function y : [1, 1 − 2

3 ln 2
5 ]→ R satisfies∣∣∣∣∣∣y(x) −

b1

Γ( 1
2 )

(ln x)−
1
2 −

1
Γ( 1

2 )

∫ x

1
(ln

x
t

)−
1
2

1
2

t
1
3 y(t)

dt
t

∣∣∣∣∣∣ ≤ e−
1
2 x,

for all x ∈ [1, 1 − 2
3 ln 2

5 ]. Set f (t, y(t)) = 1
2 t

1
3 y(t), ϕ(x) = e−

1
2 x. We obtain∣∣∣∣∣∣∣

(∫ x

1
e−

3
2 tdt

) 1
3

∣∣∣∣∣∣∣ =
(2

3
e−

3
2 −

2
3

e−
3
2 x
) 1

3

≤ e−
1
2 x,
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for each x ∈ [1, 1 − 2
3 ln 2

5 ], since
(

2
3 e−

3
2 −

2
3 e−

3
2 x
) 1

3
− e−

1
2 x
≤ 0 for all x ∈ [1, 1 − 2

3 ln 2
5 ].

According to Theorem 2.1, there exists a unique continuous function y0 : [1, 1 − 2
3 ln 2

5 ]→ R such that

y0(x) =
b1

Γ( 1
2 )

(ln x)−
1
2 +

1
Γ( 1

2 )

∫ x

1
(ln

x
t

)−
1
2

1
2

t
1
3 y0(t)

dt
t

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ 4e−

1
2 x,

for all x ∈ [1, 1 − 2
3 ln 2

5 ].

Example 3.2. Let a = 1, b = 2, α = 1
2 , n = 1, M′ = 0.94 and L = 1

2 . Clearly, LM′ = 0.47 < 0.5.
Now, we assume that a continuous function y : [1, 2]→ R satisfies∣∣∣∣∣∣y(x) −

b1

Γ( 1
2 )

(ln x)−
1
2 −

1
Γ( 1

2 )

∫ x

1
(ln

x
t

)−
1
2

1
2

y(t)
dt
t

∣∣∣∣∣∣ ≤ ε (18)

for all x ∈ [1, 2] and some ε > 0.
Then by Theorem 2.3, there exists a unique continuous function y0 : [1, 2]→ R such that

y0(x) =
b1

Γ( 1
2 )

(ln x)−
1
2 +

1
Γ( 1

2 )

∫ x

1
(ln

x
t

)−
1
2

1
2

y0(t)
dt
t

and ∣∣∣y(x) − y0(x)
∣∣∣ ≤ 2ε,

for all x ∈ [1, 2].
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[3] Sz. András, A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput.,

219(2013), 4853-4864.
[4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus models and numerical methods, Series on complexity,

nonlinearity and chaos, World Scientific, 2012.
[5] D. Baleanu, J. A. T. Machado, A.C.-J. Luo, Fractional dynamics and control, Springer, 2012.
[6] N. Brillouet-Belluot, J. Brzdek, K. Cieplinski, On some recent developments in Ulam’s type stability, Abstr. Appl. Anal., 2012(2012),

Article ID 716936, doi:10.1155/2012/716936.
[7] D. S. Cimpean, D. Popa, Hyers-Ulam stability of Euler’s equation, Appl. Math. Lett., 24(2011), 1539-1543.
[8] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull.

Amer. Math. Soc., 74(1968), 305-309.
[9] K. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, 2010.

[10] M. E. Gordji, M. B. Savadkouhi, Stability of a mixed type additive, quadratic and cubic functional equation in random normed
spaces, Filomat, 25(2011), 43-54.

[11] B. Hegyi, S.-M. Jung, On the stability of Laplace’s equation, Appl. Math. Lett., 26(2013), 549-552.



J. Wang, Z. Lin / Filomat 28:7 (2014), 1323–1331 1331

[12] R. Jeetendra, V. Vivin.J, Stability analysis of uncertain stochastic systems with interval time-varying delays and nonlinear
uncertainties via augmented Lyapunov functional, Filomat, 26(2012), 1179-1188.

[13] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17(2004), 1135-1140.
[14] S. M. Jung, T. S. Kim, K. S. Lee, A fixed point approach to the stability of quadratic functional equation, Bullet. Korean Math.

Soc., 43(2006), 531-541.
[15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V.,

2006.
[16] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
[17] K. Li, S. Lin, Quasi-metrizability of bispaces by weak bases, Filomat, 27(2013), 949-954.
[18] N. Lungu, D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385(2012), 86-91.
[19] O. Mlesnite, A. Petrusel, Existence and Ulam-Hyers stability results for multivalued coincidence problems, Filomat, 26(2013),

965-976.
[20] I. Podlubny, Fractional differential equations, Academic Press, 1999.
[21] I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. “Babeş Bolyai” Mathematica, 54(2009), 125-133.
[22] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26(2010), 103-107.
[23] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, HEP,

2011.
[24] C. Tunç, On the stability and boundedness of solutions of nonlinear third order differential equations with delay, Filomat,

24(2010), 1-10.
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