Curvature Properties of Some Class of Minimal Hypersurfaces in Euclidean Spaces

Ryszard Deszcza, Małgorzata Głogowskaa, Miroslava Petrović-Torgaševb, Leopold Verstraelenc

aDepartment of Mathematics, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, POLAND
bDepartment of Mathematics, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, SERBIA
cDepartement Wiskunde, Faculteit Wetenschappen, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Heverlee, BELGIUM

Dedicated to the birthday of Professor Mileva Prvanović

Abstract. We determine curvature properties of pseudosymmetry type of some class of minimal 2-quasi-umbilical hypersurfaces in Euclidean spaces E_{n+1}^n, $n \geq 4$. We present examples of such hypersurfaces. The obtained results are used to determine curvature properties of biharmonic hypersurfaces with three distinct principal curvatures in E^5. Those hypersurfaces were recently investigated by Y. Fu in [38].

1. Introduction

Let M be a hypersurface isometrically immersed in a semi-Riemannian space of constant curvature $N_n^s(\kappa)$ with signature $(s, n+1-s)$, $n \geq 4$, where $c = \frac{s}{n+1}$ and κ are the sectional curvature and the scalar curvature of the ambient space, respectively. Let $\mathcal{U}_H \subset M$ be the set of all points at which the $(0,2)$-tensor H^2 is not expressed by a linear combination of the second fundamental tensor H and the metric tensor g of M. For precise definitions of the symbols used here, we refer to Section 2 of this paper (see also [19], [20] and [22]).

Curvature properties of pseudosymmetry type of hypersurfaces in semi-Riemannian spaces of constant curvature were investigated in several papers. In particular, hypersurfaces M in N_{n+1}^c, $n \geq 4$, with the tensor H satisfying on \mathcal{U}_H

\[H^2 = \phi H^2 + \psi H + \rho g, \]

(1)
for some functions ϕ, ψ and ρ, were investigated in the following papers: [9]–[13], [17]–[18], [21]–[23], [25], [28]–[31], [33], [36], [40], [48]–[52].

The main results of Section 3 are presented in Proposition 3.1 and Theorem 3.2. In Proposition 3.1 we present curvature properties of minimal hypersurfaces M in $N^{n+1}(c)$, $n \geq 4$, satisfying (1). In Theorem 3.2 we present curvature properties of minimal hypersurfaces M in semi-Euclidean spaces E^{n+1}_c, $n \geq 4$, satisfying (1) with $\rho = 0$, i.e.

$$H^2 = \phi H^2 + \psi H.$$ \hfill (2)

We also present examples of hypersurfaces satisfying (1), see Example 3.1(iii) and Example 3.2(ii).

In Section 4 we consider hypersurfaces M in a Riemannian space of constant curvature $N^{n+1}(c)$, $n \geq 4$, having at every point of $\mathcal{U}_H \subset M$ exactly three distinct principal curvatures λ_1, λ_2 and λ_3 such that

$$\lambda_1 = 0, \quad \lambda_2 = -(n-2)\lambda, \quad \lambda_3 = \lambda_4 = \ldots = \lambda_n = \lambda \neq 0,$$ \hfill (3)

where λ is a function on \mathcal{U}_H. Evidently, we have on \mathcal{U}_H: $tr(H) = 0$ and

$$H^2 = \phi H^2 + \psi H, \quad \phi = -(n-3)\lambda, \quad \psi = (n-2)\lambda^2, \quad \rho = 0.$$ \hfill (4)

In Proposition 4.1 we present curvature properties of hypersurfaces M in $N^{n+1}(c)$, $n \geq 4$, satisfying (3). Using results of that proposition we obtain curvature properties of hypersurfaces M in Euclidean spaces E^{n+1}, $n \geq 4$, satisfying (3). We also present examples of hypersurfaces satisfying (3), see Example 4.1 and Example 4.2(ii). We recall that a Riemannian manifold (M, g), $n = \text{dim} M$, isometrically immersed in an m-dimensional Euclidean space E^m is said to be biharmonic submanifold ([6]) if its mean curvature vector field \vec{H} satisfies $\Delta \vec{H} = 0$, where Δ is the Laplace operator of M. For recent survey on biharmonic submanifolds we refer to the book of B.-Y. Chen [6]. It is clear that any minimal submanifold in E^m is trivially biharmonic. A biharmonic submanifold in E^m is called proper biharmonic if it is not minimal. Very recently, biharmonic hypersurfaces with three distinct principal curvatures in E^5 were investigated in [38]. In Theorem 3.2 of [38] it was stated that every biharmonic hypersurface M with three distinct principal curvatures in E^5 is minimal. The principal curvatures: λ_1, λ_2 and λ_3 of M satisfy (3) with $n = 4$. In Theorem 4.3 we present curvature properties of those hypersurfaces.

2. Preliminaries

Throughout the paper all manifolds are assumed to be connected paracompact manifolds of class C^∞. Let (M, g) be an n-dimensional, $n \geq 3$, semi-Riemannian manifold and let ∇ be its Levi-Civita connection and $\Xi(M)$ the Lie algebra of vector fields on M.

We define on M the endomorphisms $X \wedge A Y$ and $\mathcal{R}(X, Y)$ of $\Xi(M)$, respectively, by

$$(X \wedge A Y)Z = A(Y, Z)X - A(X, Z)Y, \quad \mathcal{R}(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_{[X, Y]} Z,$$

where A is a symmetric $(0, 2)$-tensor on M and $X, Y, Z \in \Xi(M)$. The Ricci tensor S, the Ricci operator \mathcal{S}, the tensors S^2 and S^3 and the scalar curvature κ of (M, g) are defined by $S(X, Y) = tr[Z \rightarrow \mathcal{R}(Z, X)Y]$, $g(SX, Y) = S(X, Y)$, $S^2(X, Y) = S(SX, Y)$, $S^3(X, Y) = S^2(SX, Y)$ and $\kappa = tr S$, respectively. The endomorphisms $C(X, Y)$ and $\text{conh}(\mathcal{R})(X, Y)$ are defined by

$$C(X, Y)Z = \mathcal{R}(X, Y)Z - \frac{1}{n-2}(X \wedge g SY + SX \wedge g Y - \frac{\kappa}{n-1} X \wedge g Y)Z, \quad \text{conh}(\mathcal{R})(X, Y)Z = \mathcal{R}(X, Y)Z - \frac{1}{n-2}(X \wedge g SY + SX \wedge g Y),$$
respectively. Now the (0,4)-tensor G, the Riemann-Christoffel curvature tensor R, the Weyl conformal curvature tensor C and the conharmonic tensor $\text{conh}(R)$ of (M, g) are defined by

\[
G(X_1, X_2, X_3, X_4) = g((X_1 \land g X_2)X_3, X_4),
\]

\[
R(X_1, X_2, X_3, X_4) = g(R(X_1, X_2)X_3, X_4),
\]

\[
C(X_1, X_2, X_3, X_4) = g(C(X_1, X_2)X_3, X_4),
\]

\[
\text{conh}(R)(X_1, X_2, X_3, X_4) = g(\text{conh}(R)(X_1, X_2)X_3, X_4),
\]

respectively, where $X_1, X_2, \ldots \in \Xi(M)$. We define the following subsets of M: $\mathcal{U}_R = \{x \in M | R - \frac{x}{(n-1)n} G \neq 0 \text{ at } x\}, \mathcal{U}_G = \{x \in M | S - \frac{2}{n} g \neq 0 \text{ at } x\}$ and $\mathcal{U}_C = \{x \in M | C \neq 0 \text{ at } x\}$. We note that $\mathcal{U}_G \cup \mathcal{U}_C = \mathcal{U}_R$.

Let \mathcal{B} be a tensor field sending any $X, Y \in \Xi(M)$ to a skew-symmetric endomorphism $\mathcal{B}(X, Y)$, and let B be a (0,4)-tensor associated with \mathcal{B} by

\[
B(X_1, X_2, X_3, X_4) = g(\mathcal{B}(X_1, X_2)X_3, X_4). \tag{5}
\]

The tensor B is said to be a generalized curvature tensor if the following conditions are satisfied

\[
B(X_1, X_2, X_3, X_4) = B(X_3, X_4, X_1, X_2),
\]

\[
B(X_1, X_2, X_3, X_4) + B(X_3, X_1, X_2, X_4) + B(X_2, X_3, X_1, X_4) = 0.
\]

For \mathcal{B} as above, let B be again defined by (5). We extend the endomorphism $\mathcal{B}(X, Y)$ to a derivation $\mathcal{B}(X, Y)$ of the algebra of tensor fields on M, assuming that it commutes with contractions and $\mathcal{B}(X, Y) \cdot f = 0$, for any smooth function f on M. For a (0,k)-tensor field T, $k \geq 1$, we can define the $(0, k + 2)$-tensor $B \cdot T$ by

\[
(B \cdot T)(X_1, \ldots, X_k, X, Y) = (\mathcal{B}(X, Y) \cdot T)(X_1, \ldots, X_k)
\]

\[
= -T(\mathcal{B}(X, Y)X_1, X_2, \ldots, X_k) - \cdots - T(X_1, \ldots, X_{k-1}, \mathcal{B}(X, Y)X_k).
\]

In addition, if A is a symmetric (0,2)-tensor then we define the $(0, k + 2)$-tensor $Q(A, T)$ by

\[
Q(A, T)(X_1, \ldots, X_k, X, Y) = (X \land A Y \cdot T)(X_1, \ldots, X_k)
\]

\[
= -T((X \land A Y)X_1, X_2, \ldots, X_k) - \cdots - T(X_1, \ldots, X_{k-1}, (X \land A Y)X_k).
\]

The tensor $Q(A, T)$ is called the Tachibana tensor of the tensors A and T, or shortly the Tachibana tensor (see, e.g., [23]). We mention that in some papers the tensor $Q(g, R)$ is called the Tachibana tensor ([41], [42], [43], [47]).

For a symmetric (0,2)-tensor E and a (0,k)-tensor T, $k \geq 2$, we define their Kulkarni-Nomizu product $E \land T$ by ([18])

\[
(E \land T)(X_1, X_2, X_3, X_4; Y_3, Y_4, \ldots, Y_k)
\]

\[
= E(X_1, X_4)T(X_2, X_3, Y_3, \ldots, Y_k) + E(X_2, X_3)T(X_1, X_4, Y_3, \ldots, Y_k)
\]

\[
- E(X_1, X_3)T(X_2, X_4, Y_3, \ldots, Y_k) - E(X_2, X_4)T(X_1, X_3, Y_3, \ldots, Y_k).
\]

For instance, the following tensors are generalized curvature tensors: $R, C, G, \text{conh}(R)$ and $E \land F$, where E and F are symmetric (0,2)-tensors. For a symmetric (0,2)-tensor E we define the (0,4)-tensor \overline{E} by $\overline{E} = \frac{1}{2} E \land E$. In particular, we have $\overline{G} = G = \frac{1}{2} g \land g$ and

\[
C = R - \frac{1}{n-2} g \land S + \frac{k}{(n-2)(n-1)} G. \tag{6}
\]

From (6) and the identity $Q(g, G) = 0$ we get immediately

\[
Q(g, C) = Q(g, R - \frac{1}{n-2} g \land S) = Q(g, \text{conh}(R)). \tag{7}
\]

We also have
Lemma 2.1. (cf. [27], Proposition 1) For any semi-Riemannian manifold \((M, g)\), \(n \geq 4\), the following identities hold good

\[
\begin{align*}
\text{conh}(R) \cdot S &= C \cdot S - \frac{\kappa}{(n-2)(n-1)} Q(g, S), \\
R \cdot \text{conh}(R) &= R \cdot C, \\
\text{conh}(R) \cdot R &= C \cdot R - \frac{\kappa}{(n-2)(n-1)} Q(g, R), \\
\text{conh}(R) \cdot \text{conh}(R) &= C \cdot C - \frac{\kappa}{(n-2)(n-1)} Q(g, C).
\end{align*}
\]

(8)

For a symmetric \((0, 2)\)-tensor \(A\) we define the endomorphism \(\mathcal{A}\) and the tensors \(A^2\) and \(A^3\) by \(g(\mathcal{A}X, Y) = A(X, Y)\), \(A^2(X, Y) = A(\mathcal{A}X, Y)\) and \(A^3(X, Y) = A^2(\mathcal{A}X, Y)\), respectively.

Lemma 2.2. Let \(E_1, E_2\) and \(F\) be symmetric \((0, 2)\)-tensors at a point \(x\) of a semi-Riemannian manifold \((M, g)\), \(n \geq 3\). (i) ([17], [18]) At \(x\) we have

\[
E_1 \wedge Q(E_2, F) + E_2 \wedge Q(E_1, F) + Q(F, E_1 \wedge E_2) = 0.
\]

In particular, if \(E = E_1 = E_2\) then at \(x\) we have

\[
E \wedge Q(E, F) = -Q(F, E).
\]

Moreover (see, e.g., [21], Section 3)

\[
Q(E, E \wedge F) = -Q(F, E).
\]

(ii) ([44], Lemma 3.2) At \(x\) we have

\[
G \cdot F = Q(g, F), \quad (g \wedge F) \cdot F = Q(g, F^2), \\
- (g \wedge F) \cdot (g \wedge F) = Q(F^2, G).
\]

Moreover, if \(A\) is a symmetric \((0, 2)\)-tensor and \(B\) a generalized curvature tensor then

\[
G \cdot A = Q(g, A), \quad G \cdot B = Q(g, B).
\]

(iii) (see, e.g., [37], Lemma 2.4 (iii)) At \(x\) we have

\[
Q(E_1, E_2 \wedge F) + Q(E_2, F \wedge E_1) + Q(F, E_1 \wedge E_2) = 0.
\]

As an immediate consequence of (6) and Lemma 2.2(ii) we get (also see [28], p. 217)

Lemma 2.3. On any semi-Riemannian manifold \((M, g)\), \(n \geq 4\), we have the following identity

\[
C \cdot S = R \cdot S - \frac{1}{n-2} Q(g, S^2 - \frac{\kappa}{n-1} S).
\]

(9)

Let \(B_{ij}, T_{ij},\) and \(A_{ij}\) be the local components of generalized curvature tensors \(B\) and \(T\) and a symmetric \((0, 2)\)-tensor \(A\) on \(M\), respectively, where \(i, j, k, l, m, p, q \in [1, 2, \ldots, n]\). The local components \((B \cdot T)_{ijklm}\) and \(Q(A, T)_{ijklm}\) of the tensors \(B \cdot T\), \(Q(A, T)\) are the following

\[
\begin{align*}
(B \cdot T)_{ijklm} &= g^{pq}(T_{pik}B_{qlm} + T_{pqj}B_{ilkm} + T_{qik}B_{pjlm} + T_{qik}B_{qjlm}), \\
Q(A, T)_{ijklm} &= A_{hl}T_{mjik} + A_{jl}T_{himk} + A_{jl}T_{hikm} \\
&- A_{km}T_{lij} - A_{km}T_{hijk} - A_{km}T_{lij} + A_{km}T_{lij}, \\
(B \cdot A)_{lk} &= g^{pq}(A_{ph}B_{qk} \pm A_{ph}B_{kq}), \\
Q(g, A)_{lk} &= g_{ln}A_{lm} + g_{lm}A_{nl} - g_{ln}A_{kl} - g_{km}A_{lk}.
\end{align*}
\]

The manifold \((M, g)\), \(n \geq 3\), is said to be an Einstein manifold [1] if \(S = \frac{\kappa}{n} g\) on \(M\).
Einstein manifolds form a subclass of the class of quasi-Einstein manifolds. The semi-Riemannian manifold \((M, g)\), \(n \geq 3\), is called a quasi-Einstein manifold if rank \((S - \alpha g) = 1\) on \(\mathcal{U}_S\), where \(\alpha\) is some function on this set. Every warped product manifold \(\tilde{M} \times_F \tilde{N}\) of an 1-dimensional \((\tilde{M}, \tilde{g})\) base manifold and an 2-dimensional manifold \((\tilde{N}, \tilde{g})\) or an \((n - 1)\)-dimensional Einstein manifold \((\tilde{N}, \tilde{g})\), \(n \geq 4\), with a warping function \(F\), is a quasi-Einstein manifold. Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations and investigation of quasi-umbilical hypersurfaces of conformally flat spaces. Quasi-Einstein hypersurfaces in semi-Riemannian spaces of constant curvature were studied among others in: [17], [21], [25], [31] and [40], see also [20]. We refer to [8] and [27] for recent results on quasi-Einstein manifolds.

The semi-Riemannian manifold \((M, g)\), \(n \geq 3\), is called a 2-quasi-Einstein manifold if rank \((S - \alpha g) \leq 2\) on \(\mathcal{U}_S\) and rank \((S - \alpha g) = 2\) on some open non-empty subset of \(\mathcal{U}_S\), where \(\alpha\) is some function on \(\mathcal{U}_S\). It is clear that every warped product manifold \(\tilde{M} \times_F \tilde{N}\) of an 2-dimensional \((\tilde{M}, \tilde{g})\) base manifold and an 2-dimensional manifold \((\tilde{N}, \tilde{g})\) or an \((n)\)dimensional Einstein manifold \((\tilde{N}, \tilde{g})\), \(n \geq 5\), with a warping function \(F\), is a 2-quasi-Einstein manifold. Therefore some exact solutions of the Einstein field equations are 2-quasi-Einstein manifolds, e.g. the Reissner-Nordström-de Sitter type spacetimes are such manifolds (see, e.g., [44]). It seems that the Reissner-Nordström spacetime is the “oldest” example of a 2-quasi-Einstein warped product manifold. It is easy to see that every 2-quasi-umbilical hypersurface in a space of constant curvature is a 2-quasi-Einstein manifold (see Remark 3.1). We refer to [24] for recent results on 2-quasi-Einstein warped product manifolds.

3. Hypersurfaces in spaces of constant curvature

Let \(M\) be a connected hypersurface isometrically immersed in a semi-Riemannian manifold \((\tilde{N}, \tilde{g})\) of dimension \(n + 1\), \(n \geq 3\). Let \(g\) be the metric tensor induced on \(M\) from \(\tilde{g}\). Let \(\nabla\) and \(\tilde{\nabla}\) be the Levi-Civita connections corresponding to the metric tensors \(g\) and \(\tilde{g}\), respectively. We denote by \(\xi\) a local unit normal vector field on \(M\) in \(\tilde{N}\) and let \(\epsilon = \tilde{g}(\xi, \xi) = \pm 1\). We can write the Gauss formula and the Weingarten formula of \((M, g)\) in \((\tilde{N}, \tilde{g})\) in the form: \(\tilde{\nabla}_X Y = \nabla_X Y + \epsilon H(X, Y) \xi\) and \(\nabla_X \xi = -AX\), respectively, where \(X, Y\) are vector fields tangent to \(M\). \(H\) is the second fundamental tensor and \(A\) the shape operator of \((M, g)\) in \((\tilde{N}, \tilde{g})\). We have \(H(X, Y) = g(AX, Y)\), for any vectors fields \(X, Y\) tangent to \(M\). Further, we set \(H^p(X, Y) = g(A^pX, Y)\), \(p = 1, 2, \ldots, H^1 = H\) and \(H^1 = A\). We denote by \(H^p\) the local components of the tensor \(H^p\).

According to [4], [5], [7], [46], [53], a hypersurface \(M\) in an \((n + 1)\)-dimensional Riemannian manifold \(N\) is said to be quasi-umbilical, resp., 2-quasi-umbilical, at a point \(x \in M\) if it has a principal curvature with multiplicity \(n - 1\), resp., \(n - 2\), i.e. when the principal curvatures of \(M\) at \(x\) are given by \(\lambda_1, \lambda_2, \lambda_3 = \ldots = \lambda_n\), resp., \(\lambda_1, \lambda_2, \lambda_3, \lambda_4 = \ldots = \lambda_n\). If \(M\) is a hypersurface in an \((n + 1)\)-dimensional semi-Riemannian manifold \(N\) then \(M\) is called quasi-umbilical (see, e.g., [34], [40]), resp., 2-quasi-umbilical (see, e.g., [36], [40]), at a point \(x \in M\) when rank \((H - \alpha g) = 1\), resp., rank \((H - \alpha g) = 2\), holds at \(x\), for some \(\alpha \in \mathbb{R}\).

We recall that a hypersurface \(M\) in a semi-Riemannian conformally flat manifold \(N\) is quasi-umbilical at a point \(x \in M\) if and only if its Weyl conformal curvature tensor \(C\) vanishes at this point ([34], Theorem 4.1). Thus a point \(x \in M\) is a non-quasi-umbilical point of \(M\) if and only if the tensor \(C\) is non-zero at \(x\), i.e. \(x \in \mathcal{U}_C \subset M\).

We denote by \(R\) and \(\tilde{R}\) the Riemann-Christoffel curvature tensors of \((M, g)\) and \((\tilde{N}, \tilde{g})\), respectively. Let \(x' = x'(y')\) be the local parametric expression of \((M, g)\) in \((\tilde{N}, \tilde{g})\), where \(y^k\) and \(x^r\) are local coordinates of \(M\) and \(N\), respectively, \(h, i, j, k \in \{1, 2, \ldots, n\}\) and \(p, r, t, u \in \{1, 2, \ldots, n + 1\}\). The Gauss equation of \((M, g)\) in \((\tilde{N}, \tilde{g})\) reads

\[
R_{hijk} = \tilde{R}_{sprtu} B^{sp}_{k} B^{tr}_{l} B^{ru}_{j} + \epsilon (H_{hkij} - H_{hijk}) + B^{tr}_{k} = \frac{\partial x^r}{\partial y^t},
\]

(10)

where \(\tilde{R}_{sprtu}, R_{hijk}\) and \(H_{hkij}\) are the local components of the tensors \(\tilde{R}, R\) and \(H\), respectively.

Let \(M\) be a hypersurface isometrically immersed in a semi-Riemannian space of constant curvature \(N^{n+1}_s\) with signature \((s, n + 1 - s)\), \(n \geq 4\), where \(c = \frac{s}{n(n+1)}\) and \(\bar{x}\) are the sectional curvature and the scalar...
curvature of the ambient space, respectively. Now (10) turns into
\[R_{ijkl} = \varepsilon (H_{lh}H_{ij} - H_{lh}H_{ik}) + \frac{\kappa}{n(n+1)} G_{ijkl}, \quad \varepsilon = \pm 1. \] (11)

Contracting (11) with \(g^{ij} \) and \(g^{kh} \) we obtain
\[S_{hk} = \varepsilon (tr(H) H_{hk} - H_{hk}^2) + \frac{(n-1)\kappa}{n(n+1)} g_{hk}, \] (12)
\[\kappa = \varepsilon ((tr(H))^2 - tr(H^2)) + \frac{(n-1)\kappa}{n+1}, \] (13)
respectively, where \(tr(H^2) = g^{hk}H_{hk}^2 \) and \(S_{hk} \) are the local components of the Ricci tensor \(S \) of \(M \). It is known that on \(M \) we have ([34])
\[R \cdot R - Q(S, R) = \frac{(n-2)\kappa}{n(n+1)} Q(g, C). \] (14)

In particular, if the ambient space is a semi-Euclidean space \(\mathbb{E}^{n+1}_s \) then (14) reduces to
\[R \cdot R = Q(S, R). \] (15)

Let \(M \) be a hypersurface in \(N^{n+1}_c \), \(n \geq 4 \), satisfying (1) on \(U_H \). We define on \(U_H \) the following functions ([48], eq. (34)):
\[\beta_1 = \varepsilon (\phi - tr(H)), \]
\[\beta_2 = -\frac{e}{n-2} (\phi (2tr(H) - \phi) - (tr(H))^2 - \psi - (n-2)e\mu), \]
\[\beta_3 = \varepsilon \mu tr(H) + \frac{1}{n-2} (\psi (2tr(H) - \phi) + (n-3)\rho), \]
\[\beta_4 = \beta_3 - \varepsilon \beta_2 tr(H) + \frac{(n-1)\kappa \beta_1}{n(n+1)}, \] (16)
where the functions: \(\phi, \psi, \rho, \mu \) are defined by (1) and
\[\mu = \frac{1}{n-2} \left(\frac{\kappa}{n-1} - \frac{\kappa}{n+1} \right), \] (17)
respectively. We also have on \(U_H \) ([48], eqs. (43), (52), (45), (46)):
\[R \cdot S = \frac{\kappa}{n(n+1)} Q(g, S) + \rho Q(g, H) - \varepsilon \beta_1 Q(H, H^2), \] (18)
\[C \cdot S = \beta_1 Q(H, S) + \beta_2 Q(g, S) + \beta_4 Q(g, H), \]
\[(n-2) R \cdot C = (n-2) Q(S, R) - \frac{(n-2)^2 \kappa}{n(n+1)} Q(g, R) - \frac{(n-3)\kappa}{n(n+1)} Q(S, G) \]
\[+ \rho Q(H, G) + (\phi - tr(H)) g \wedge Q(H, H^2), \] (20)
\[(n-2) C \cdot R = (n-3) Q(S, R) \]
\[+ \left(\frac{\kappa}{n-1} + \varepsilon \psi - \frac{(n^2 - 3n + 3)\kappa}{n(n+1)} \right) Q(g, R) \]
\[- \frac{(n-3)\kappa}{n(n+1)} Q(S, G) + (\phi - tr(H)) H \wedge Q(g, H^2), \] (21)
where \(\beta_1, \ldots, \beta_4 \) are defined by (16).
Example 3.1. (i) (Example 1.1, [54]) The Clifford hypersurfaces in $N^n(c)$, $c \neq 0$, $n \geq 4$. (a) For $c > 0$ we set $N^n(c) = S^n(c) = \{ x \in R^{n+1} : < x, x > = \frac{1}{c} \}$, where $< \cdot, \cdot >$ is the standard inner product on R^{n+1}. For $1 \leq m \leq n-2$, $t \in (0, \frac{2}{\sqrt{m}})$, let $M_{m,n-m-1}(c,t) = S^m(\frac{c}{\sinh^2 t}) \times S^{m-1}(\frac{c}{\cosh^2 t})$. We view $x = (x_1, x_2) \in M_{m,n-m-1}(c,t)$ as a vector in $R^{n+1} = R^{n+1} \times R^{m-1}$, then $x \in S^n(c)$. This is the standard isometric embedding of $M_{m,n-m-1}(c,t)$ into $S^n(c)$. In this situation, for suitably chosen unit normal vector field, $M_{m,n-m-1}(c,t)$ has two distinct principal curvatures $\rho_1 = \sqrt{c} \cot t$ of the multiplicity m and $\rho_2 = -\sqrt{c} \tan t$ of the multiplicity $n-m-1$.

(b) For $c < 0$ we set $N^n(c) = H^n(c) = \{ x \in R^{n+1} : < x, x > = \frac{1}{c} < 1 > x^n > 0 \}$. Here $x, y > 1 = x^y y^1 + \cdots + x^n y^n - x^n t^n y^n$ is the standard Lorentzian inner product on R^{n+1}. For $1 \leq m \leq n-2$, $t \in (0, +\infty)$, let $M_{m,n-m-1}(c,t) = S^m(\frac{c}{\sinh^2 t}) \times H^{m-1}(\frac{c}{\cosh^2 t})$. Then $M_{m,n-m-1}(c,t)$ is an embedded hypersurface in $H^n(c)$, and for suitably chosen unit normal vector field, it has two distinct principal curvatures $\rho_1 = -c \coth t$ of the multiplicity m and $\rho_2 = -c \tanh t$ of the multiplicity $n-m-1$.

(ii) (a) If $2 \leq m \leq n-3$ and $(m-1)c_1 \neq (n-m-2)c_2$, where $c_1 = \frac{c}{\sinh^2 t}$, $c_2 = \frac{c}{\cosh^2 t}$, $t \in (0, \frac{2}{\sqrt{m}})$ then in view of Proposition 3.4 of [39] the Riemann-Christoffel curvature tensor R of $M_{m,n-m-1}(c,t)$ is expressed at every point by a linear combination of the tensors $g \wedge g, g \wedge S$ and $S \wedge S$, i.e. $M_{m,n,m}(c,t)$ is a Roter type hypersurface.

(b) If $2 \leq m \leq n-3$ and $(m-1)c_1 \neq (n-m-2)c_2$, where $c_1 = \frac{c}{\sinh^2 t}$, $c_2 = \frac{c}{\cosh^2 t}$, $t \in (0, +\infty)$, then in view of Proposition 3.4 of [39] the Riemann-Christoffel curvature tensor R of $M_{m,n,m-1}(c,t)$ is expressed at every point by a linear combination of the tensors $g \wedge g$, $g \wedge S$ and $S \wedge S$, i.e. $M_{m,n,m-1}(c,t)$ is a Roter type hypersurface. (c) The Roter type manifolds (and in particular, hypersurfaces in space forms) were studied among others in the papers: [19], [20], [22], [25], [26], [32], [39] and [44].

(iii) Let M be a n-dimensional hypersurface in the Euclidean space E^{n+1}, $n \geq 4$. Precisely, let M the cone over the Clifford hypersurface $M_{m,n,m-1}(c,t)$ defined in (i). We refer to Section 3 of [45] for precise definition and properties of cones. In particular, from Section 3 of [45] follows immediately that M has at every point three distinct principal curvatures $\lambda_1 = 0$, $\lambda_2 = \frac{1}{c} \rho_1$, and $\lambda_3 = \frac{1}{c} \rho_2$, $t \in R^+$, of the multiplicity 1, m and $n-m-1$, respectively. Thus we see that the cone over the Clifford hypersurface $M_{m,n,m-1}(c,t)$, presented in (i) is a hypersurface in E^{n+1}, $n \geq 4$, having exactly three distinct principal curvatures and satisfying at every point $U_H = M$ the equation (1) with $\rho = 0$, i.e. (2).

(iv) We mention that an example of a hypersurface M in E^{n+1}, $n \geq 4$, satisfying (1) on $U_H \subset M$, with non-zero function ρ and $\phi = tr(H)$, is presented in [52].

(v) The Cartan hypersurfaces of dimension 6, 12 or 24 satisfy (2), with $\phi = tr(H) = 0$. Curvature properties of these hypersurfaces are presented in [18] (Theorem 4.3).

Proposition 3.1. If M is a minimal hypersurface in a semi-Riemannian space of constant curvature $N^n_{\rho+1}(c)$, $n \geq 4$,
satisfying (1) on $\mathcal{U}_H \subset M$ then the following conditions are satisfied on this set: (14) and

$$
\begin{align*}
\beta_1 &= \varepsilon \phi, \\
\beta_2 &= \frac{\varepsilon}{n-2} (\phi^2 + \psi + (n-2)\varepsilon \mu), \\
\beta_3 &= \frac{1}{n-2} ((n-3)\rho - \psi \phi), \\
\beta_4 &= \beta_3 + \frac{(n-1)\kappa \varepsilon \phi}{n(n+1)},
\end{align*}
$$

(22)

$$ \begin{align*}
R \cdot S &= \frac{\kappa}{n(n+1)} Q(g, S) + \rho Q(g, H) - \phi Q(H, H^2), \\
C \cdot S &= \varepsilon \phi Q(H, S) + \beta_2 Q(g, S) + \beta_4 Q(g, H), \\
(n-2)R \cdot C &= \frac{1}{n(n+1)} Q(g, R) - \frac{(n-3)\kappa}{n(n+1)} Q(S, G) \\
&\quad + \rho Q(H, G) + \phi g \wedge Q(H, H^2), \\
(n-2)C \cdot R &= \frac{1}{n(n+1)} Q(S, G) + \phi H \wedge Q(g, H^2), \\
(\phi \psi + \rho) H &= A^2 + \varepsilon (\phi^2 + \psi) A - \phi \rho g, \\
A^3 &= -\varepsilon (\phi^2 + 2\psi) A^2 + (2\phi \rho - \psi^2) A - \varepsilon \rho^2 g, \\
(\phi \psi + \rho)^2 R &= \frac{\varepsilon}{2} (A^2 + \varepsilon (\phi^2 + \psi) A - \phi \rho g) + (A^2 + \varepsilon (\phi^2 + \psi) A - \phi \rho g) \\
&\quad + \frac{(\phi \psi + \rho)^2 \kappa}{n(n+1)} G,
\end{align*}
$$

(23)-(29)

where β_1, \ldots, β_4 are defined by (22) and

$$
A = S - \frac{(n-1)\kappa}{n(n+1)} \rho.
$$

(30)

Proof. Since M is a minimal hypersurface, (16) and (18)-(21) turn into (22)-(26), respectively. From (1), (12) and (30) we get easily

$$
\begin{align*}
A &= -\varepsilon H^2, \\
A^2 &= H^4, \\
A^3 &= -\varepsilon H^6, \\
H^4 &= (\phi^2 + \psi) H^2 + (\phi \psi + \rho) H + \phi \rho g, \\
H^6 &= (\phi^2 + \psi) H^4 + (\sqrt{n} \phi \psi + 2\rho) H^2 + \phi (\phi \psi + \rho) H + \rho (\phi \psi + \rho) g.
\end{align*}
$$

(31)-(33)

Now (27)-(29) are immediate consequences of (11) and (31)-(33). Our proposition is thus proved.

Remark 3.1. (i) Let M be a hypersurface in a Riemannian space of constant curvature $N^{n+1}(c)$, $n \geq 4$. If at every point of $\mathcal{U}_H \subset M$ we have exactly three distinct principal curvatures λ_1, λ_2 and λ_3, then (18)-(21) hold on \mathcal{U}_H with $\varepsilon = 1$ and

$$
\phi = \lambda_1 + \lambda_2 + \lambda_3, \quad \psi = -\lambda_1 \lambda_2 - \lambda_2 \lambda_3 - \lambda_2 \lambda_3, \quad \rho = \lambda_1 \lambda_2 \lambda_3.
$$

(34)

(ii) Let M be a hypersurface in a Riemannian space of constant curvature $N^{n+1}(c)$, $n \geq 4$. If at every point of $\mathcal{U}_H \subset M$ we have exactly three distinct principal curvatures λ_1, λ_2 and $\lambda_3 = \lambda_4 = \ldots = \lambda_n = \lambda$, then from (12) it follows that

$$
\text{rank} \left(S - \frac{(n-1)\kappa}{n(n+1)} + \lambda (\text{tr}(H) - \lambda) \right) g = 2
$$

(35)
on \mathcal{U}_H. Moreover, the following condition holds on \mathcal{U}_H (see [36], p. 53)

$$C \cdot C = -\frac{(n-3)\lambda_1 \lambda_2}{(n-1)(n-2)} Q(g, C).$$

(36)

We refer to [13], [35], [19], [27] and [32] for results on semi-Riemannian manifolds (M, g), dim $M \geq 4$, and in particular, on hypersurfaces M in N^{n+1}_c, $n \geq 4$, satisfying on $\mathcal{U}_C \subset M$

$$C \cdot C = L Q(g, C),$$

(37)

where L is some function on this set. We mention that the warped product manifold $\overline{M} \times_F \overline{N}$, of manifolds $(\overline{M}, \overline{g})$, dim $\overline{M} = 2$, and $(\overline{N}, \overline{g})$, dim $\overline{N} = 2$, and the warping function F satisfies (37) on $\mathcal{U}_C \subset \overline{M} \times_F \overline{N}$. Here we also mention that the warped product manifold $\overline{M} \times_F \overline{N}$, of manifolds $(\overline{M}, \overline{g})$, dim $\overline{M} = 1$, and $(\overline{N}, \overline{g})$, dim $\overline{N} = 3$, and the warping function F satisfies on $\mathcal{U}_C \subset \overline{M} \times_F \overline{N}$

$$R \cdot R - Q(S, R) = L Q(g, C),$$

where L is some function on this set ([11]).

Proposition 3.1 leads to the following

Theorem 3.2. If M is a minimal hypersurface in a semi-Euclidean space E_a^{n+1}, $n \geq 4$, satisfying (2) on $\mathcal{U}_H \subset M$ then the following conditions are satisfied on this set: (15) and

$$\begin{align*}
\phi \psi H &= S^2 + \varepsilon(\phi^2 + \psi) S, \\
S^3 &= -\varepsilon(\phi^2 + 2\psi) S^2 - \psi^2 S, \\
(\phi \psi)^2 R &= \frac{\varepsilon}{2} (S^2 + \phi^2 + \psi) S \wedge (S^2 + \phi^2 + \psi) S, \\
R \cdot S &= \varepsilon \phi Q(H, S), \\
C \cdot S &= \varepsilon \phi Q(H, S) - \frac{\psi \phi}{n-2} Q(g, H) + \frac{\varepsilon}{n-2} (\phi^2 + \psi + \frac{\varepsilon}{n-1}) Q(g, S), \\
(n-2) R \cdot C &= (n-2) Q(S, R) - \varepsilon \phi g \wedge Q(H, S), \\
(n-2) C \cdot R &= (n-3) Q(S, R) + (\varepsilon \psi + \frac{\varepsilon}{n-1}) Q(g, R) - \varepsilon \phi H \wedge Q(g, S).
\end{align*}$$

Example 3.2. (i) Let M be a $(n-1)$-dimensional hypersurface in n-dimensional standard unit sphere $S^n(1)$ in the Euclidean space E^{n+1}, $n \geq 4$. Precisely, let M be the Clifford torus $S^p(c_1) \times S^{n-p-1}(c_2)$, $c_1 = r_1^{-1}$, $c_2 = r_2^{-1}$, $r_1 = \sqrt{\frac{n-1}{n-2}}$, $r_2 = \sqrt{\frac{n-p-1}{n-p-3}}$, $1 \leq p \leq n-2$. It is well-known that M is a minimal hypersurface of $S^n(1)$ having at every point exactly two principal curvatures ρ_1 and ρ_2 of the multiplicity p and $n-p-1$, respectively, satisfying

$$\rho_1 \rho_2 + 1 = 0, \quad \rho_i^2 = r_i^{-2} - 1, \quad i = 1, 2.$$

(38)

(ii) Let M be a n-dimensional hypersurface in the Euclidean space E^{n+1}, $n \geq 4$. Precisely, let M be the cone over \overline{M}. We refer to Section 3 of [45] for precise definition and properties of such hypersurfaces. In particular, from Section 3 of [45] it follows immediately that M has at every point three distinct principal curvatures $\lambda_1 = 0$, $\lambda_2 = \frac{1}{p} \rho_1$ and $\lambda_3 = \frac{1}{p} \rho_2$, $t \in \mathbb{R}^*$, of the multiplicity 1, p and $n-p-1$, respectively. Thus we see that the cone M over the Clifford torus $S^p(c_1) \times S^{n-p-1}(c_2)$ is a hypersurface in E^{n+1}, $n \geq 4$, having exactly three distinct principal curvatures satisfying at every point (2). Using (38) we can check that

$$\psi = -\lambda_2 \lambda_3 = t^2$$

and

$$\begin{align*}
\phi^2 &= (\lambda_2 + \lambda_3)^2 = \frac{1}{t^2} (\rho_1 + \rho_2)^2 = \frac{1}{t^2} (\rho_1^2 + \rho_2^2 - 2) = \frac{1}{t^2} \left(\frac{1}{r_1^2} + \frac{1}{r_2^2} - 4 \right) \\
&= \frac{1}{t^2} \left(\frac{(n-1)^2}{p(n-p-1)} - 4 \right) = \frac{(n-p-1)^2 - 4p(n-p-1) + 4p(n-p-1)t^2}{p(n-p-1)t^2} = \frac{(n-2p-1)^2}{p(n-p-1)t^2}.
\end{align*}$$
If \(p \neq n - p - 1 \) then in view of Theorem 3.2 the Riemann–Christoffel curvature tensor \(R \) of the cone \(M \) is expressed at every point by a linear combination of the tensors \(g \wedge g, g \wedge S \) and \(S \wedge S, g \wedge S^2, S \wedge S^2 \) and \(S^2 \wedge S^2 \). We refer to [50] and [52] for further results on hypersurfaces with the curvature tensor having the above presented property.

Remark 3.2. (i) Let \(M \) be a hypersurface in \(N^{n+1}_c \), \(n \geq 4 \), and let the condition

\[
H^3 = tr(H)H^2 + \psi H + \rho g,
\]

be satisfied on \(\mathcal{U}_H \subset M \), where \(\psi \) and \(\rho \) are some functions on this set. Using the identity (9), and (3.6) and (3.7) of [23] we get on \(\mathcal{U}_H \)

\[
C \cdot S = \left(\psi + \frac{\kappa}{(n - 2)(n - 1)} - \frac{(2n - 3)\kappa}{n(n + 1)} \right) Q(g, S) + \frac{n - 3}{n - 2} Q(g, S^2). \tag{39}
\]

(ii) (cf., [29], Lemma 4.2) Let \(M \) be a hypersurface in a semi-Euclidean space \(\mathbb{E}^{n+1}_c \), \(n \geq 4 \), satisfying on \(\mathcal{U}_H \subset M \) the relation

\[
H^3 = tr(H)H^2 - \frac{\kappa}{n - 1} H.
\]

Now (39), by (3.9) of [23], and the conditions \(\kappa = 0 \) and \(\psi = -\frac{\kappa}{n - 1} \), reduces on \(\mathcal{U}_H \) to

\[
C \cdot S = 0. \tag{40}
\]

Hypersurfaces satisfying (40) were investigated among others in: [2], [9]–[12], [21], [28]–[30].

(iii) Let \((M, g) \), \(n \geq 4 \), be a non-Riemannian semi-Riemannian manifolds with parallel Weyl tensor \((FC = 0) \), which are in addition non-locally symmetric \((VR \neq 0) \) and non-conformally flat \((C \neq 0) \). Such manifolds are called essentially conformally symmetric manifolds, e.c.s. manifolds, in short (see, e.g., [14]). Certain e.c.s. metrics are realized on compact manifolds ([15], [16]). As it was stated in [14], e.c.s. manifolds are semisymmetric manifolds \((R \cdot R = 0) \) satisfying: \(\kappa = 0 \), \(S^2 = 0 \) and \(C(SX_1, X_2, X_3, X_4) = 0 \), for any \(X_1, \ldots, X_4 \in \Xi(M) \). Thus, in view of Lemma 2.3, we see that (40) holds on every e.c.s. manifold.

4. Some special minimal 2-quasi-umbilical hypersurfaces

In this section we consider hypersurfaces \(M \) in a Riemannian space of constant curvature \(N^{n+1}_c \), \(n \geq 4 \), having at every point of \(\mathcal{U}_H \subset M \) exactly three distinct principal curvatures \(\lambda_1, \lambda_2 \) and \(\lambda_3 = \lambda \) such that (3) is satisfied. Thus at every point of \(\mathcal{U}_H \) we have: \(\lambda \neq 0, tr(H) = 0 \) and

\[
\begin{align*}
\text{rank}(H - \lambda g) &= 2, \tag{41} \\
\text{rank}\left(S - \frac{(n - 1)\kappa}{n(n + 1)} \cdot \lambda^2\right)g &= 2. \tag{42}
\end{align*}
\]

The last condition follows immediately from (35). Therefore \(\mathcal{U}_H \) is a minimal, 2-quasi-umbilical and 2-quasi Einstein open submanifold of \(M \). Evidently, (36) reduces to

\[
C \cdot C = 0. \tag{43}
\]

This, together with (7) and (8), yields

\[
\text{conh}(R) \cdot \text{conh}(R) = -\frac{\kappa}{(n - 2)(n - 1)} Q(g, \text{conh}(R)). \tag{44}
\]
Furthermore (1), (12), (13), (16) and (18)-(34) give (4) and
\[S = -H^2 + \frac{(n-1)K}{n(n+1)}g, \quad \kappa = -tr(H^2) + \frac{(n-1)K}{n+1}, \]
(45)
\[\beta_1 = \phi, \quad \beta_2 = \frac{1}{n-2} \left(\phi^2 + \psi + (n-2)\mu \right), \]
\[\beta_3 = \frac{-\psi\phi}{n-2}, \quad \beta_4 = \left(\frac{(n-1)K}{n(n+1)} - \frac{\psi}{n-2} \right) \phi, \]
(46)
\[R \cdot S = \frac{K}{n(n+1)} Q(g, S) - \phi Q(H, H^2), \]
(47)
\[C \cdot S = \phi Q(H, S) + \frac{1}{n-2} \left(\phi^2 + \psi + (n-2)\mu \right) Q(g, S) \]
\[+ \left(\frac{(n-1)K\phi}{n(n+1)} - \frac{1}{n-2} \psi\phi \right) Q(g, H), \]
(48)
\[(n-2) R \cdot C = (n-2) Q(S, R) + \phi g \wedge Q(H, H^2) \]
\[- \frac{(n-2)^2 K}{n(n+1)} Q(g, R) - \frac{(n-3)K}{n(n+1)} Q(S, G), \]
(49)
\[(n-2) C \cdot R = (n-3) Q(S, R) \]
\[+ \left(\frac{\kappa}{n-1} + \psi - \frac{(n^2-3n+3)K}{n(n+1)} \right) Q(g, R) \]
\[- \frac{(n-3)K}{n(n+1)} Q(S, G) + \phi H \wedge Q(g, H^2), \]
(50)
Next, using (4) and (12), we find
\[H^2 = -S + \frac{(n-1)K}{n(n+1)}g, \]
(51)
\[H^4 = (\phi^2 + \psi) H^2 + \phi \psi H, \]
(52)
\[\phi \psi H = S^2 - \left(\frac{2(n-1)K}{n(n+1)} - \phi^2 - \psi \right) S \]
\[+ \left(\frac{(n-1)K}{n(n+1)} \left(\phi^2 + \psi - \frac{(n-1)K}{n(n+1)} \right) \right) g. \]
(53)
Further, (28) turns into
\[S^3 = \left(\frac{3(n-1)K}{n(n+1)} - \phi^2 - 2\psi \right) S^2 + \left(\phi \psi \left(\frac{2(n-1)K}{n(n+1)} - \psi \right) - \left(\frac{(n-1)K}{n(n+1)} \right)^2 \right) S \]
\[+ \frac{(n-1)K}{n(n+1)} \left(\frac{(n-1)K}{n(n+1)} \phi^2 + \psi - \frac{(n-1)K}{n(n+1)} \right) - \psi \left(2\phi^2 + \psi - \frac{(n-1)K}{n(n+1)} \right) g. \]
(54)
We note that by the Gauss equation (11) and (53) we obtain on \(U_M \) the following relation
\[2(\phi \psi^2) \left(R - \frac{K}{n(n+1)} G \right) \]
\[= \left(S^2 - \left(\frac{2(n-1)K}{n(n+1)} - \phi^2 - \psi \right) S \right) \wedge \left(S^2 - \left(\frac{2(n-1)K}{n(n+1)} - \phi^2 - \psi \right) S \right), \]
(55)
It is obvious that if the hypersurface \(M \) in \(N^{n+1}(C) \), \(n \geq 4 \), has at every point exactly three distinct principal curvatures then \(M = U_M \). In this case we also have \(M = U_C = U_C \).

The above presented results lead immediately to the following proposition.
Proposition 4.1. Let M be a hypersurface in a Riemannian space of constant curvature $N^{n+1}(c)$, $n \geq 4$, having exactly three distinct principal curvatures λ_1, λ_2 and λ_3 satisfying at every point of M: $\lambda_1 = 0$, $\lambda_2 = -(n-2)\lambda$ and $\lambda_3 = \lambda_4 = \ldots = \lambda_n = \lambda \neq 0$. Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying (14) and (41)-(55).

From the last proposition, (14) and (17) we immediately get the following.

Proposition 4.2. Let M be a hypersurface in an Euclidean space \mathbb{E}^{n+1}, $n \geq 4$, having exactly three distinct principal curvatures λ_1, λ_2 and λ_3 satisfying at every point of M: $\lambda_1 = 0$, $\lambda_2 = -(n-2)\lambda$ and $\lambda_3 = \lambda_4 = \ldots = \lambda_n = \lambda \neq 0$. Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying (15), (43), (44) and

\[S = H^2, \quad \kappa = -\text{tr}(H^2) = -(n-2)(n-1)\lambda^2, \]
\[\phi \psi H = S^2 + (\phi^2 + \psi)S, \]
\[S^3 = -(\phi^2 + 2\psi)S^2 - \psi^2S, \]
\[\phi = -(n-3)\lambda, \quad \psi = (n-2)\lambda^2, \quad \mu = \frac{\kappa}{(n-2)(n-1)}, \]
\[\text{rank} \left(S - \frac{\kappa}{(n-2)(n-1)} g \right) = 2, \]
\[R = \frac{1}{2(\phi\psi)^2} \left(S^2 + (\phi^2 + \psi)S \right) \wedge \left(S^2 + (\phi^2 + \psi)S \right), \]
\[R \cdot S = \phi Q(H, S) = \frac{n-1}{\kappa} Q(S, S^2), \]
\[C \cdot S = \phi Q(H, S) + \frac{\phi^2}{n-2} Q(g, S) - \frac{\phi\psi}{n-2} Q(g, H) \]
\[= \frac{n-1}{\kappa} Q(S - \frac{\kappa}{(n-2)(n-1)} g, S^2 - \frac{\kappa}{n-1} S), \]
\[(n-2) R \cdot C = (n-2) Q(S, R) - \phi g \wedge Q(H, S), \]
\[(n-2) C \cdot R = (n-3) Q(S, R) - \phi H \wedge Q(g, S). \]

Theorem 4.3. Let M be a hypersurface in an Euclidean space \mathbb{E}^n having exactly three distinct principal curvatures λ_1, λ_2 and λ_3 satisfying at every point of M: $\lambda_1 = 0$, $\lambda_2 = -2\lambda$ and $\lambda_3 = \lambda_4 = \lambda \neq 0$. Then M is a minimal, 2-quasi-umbilical and 2-quasi-Einstein hypersurface satisfying: (15), (43), (44) and

\[\lambda^2 = \frac{-\kappa}{6}, \quad \lambda H = \frac{3}{2} S^2 - \frac{3}{2} S, \quad H^2 = -S, \]
\[S^3 = \frac{5\kappa}{6} S^2 - \frac{\kappa}{2} S, \quad \text{rank} (S - \frac{\kappa}{6} g) = 2, \]
\[R = \frac{27}{\kappa^3} \left(S^2 - \frac{\kappa}{2} S \right) \wedge \left(S^2 - \frac{\kappa}{2} S \right), \]
\[R \cdot S = \frac{3}{\kappa} Q(S, S^2), \]
\[C \cdot S = \frac{3}{\kappa} Q(S - \frac{\kappa}{6} g, S^2 - \frac{\kappa}{3} S), \]
\[R \cdot C = Q(S, R) + \frac{3}{2\kappa} g \wedge Q(S^2, S), \]
\[C \cdot R = \frac{1}{2} Q(S, R) + \frac{3}{2\kappa} S^2 \wedge Q(g, S) - \frac{3}{8} Q(g, S \wedge S). \]
Example 4.1. If $p = 1$ then the hypersurface M defined in Example 3.2 (ii) has at every point three distinct principal curvatures $λ_1 = 0$, $λ_2 = \frac{1}{p_1}$ and $λ_3 = \frac{1}{p_2}$, of multiplicity 1, 1 and $n - 2$, respectively. Further, we set $λ = λ_3 = \frac{1}{p_2} = \frac{1}{\sqrt{n-1}}$. This by (38) yields $λ_2 = -(n - 2)λ$. Thus we see that the cone over the Clifford torus $S^1(c_1) × S^{n-2}(c_2)$, $c_1^2 = r_1 = \sqrt{\frac{1}{n-1}}$, $c_2^2 = r_2 = \sqrt{\frac{2}{n-1}}$, is a hypersurface in E^{n+1}, $n ≥ 4$, having exactly three distinct principal curvatures satisfying at every point (3).

Example 4.2. (i) Let M be a surface in E^{n+1}, $n ≥ 4$, given by the immersion $f : M → E^{n+1}$ and BM be the tangent bundle of the unit normals to M. The hypersurface M defined by the map $Φ_t : BM → E^{n+1}$, $Φ_t(x, ξ) = f(x) + tξ$, $t > 0$, is called the tube of radius t over M. If $μ_1$ and $μ_2$ are the principal curvatures of M then the principal curvatures of the tube M are the following ([3]): $λ_1 = \frac{μ_1}{1-tμ_1}$, $λ_2 = \frac{μ_2}{1-tμ_2}$, $λ_3 = λ_4 = \ldots = λ_t = -\frac{1}{t}$. Clearly, (37) holds on M ([13], Example 2).

(ii) In addition, we assume that the principal curvatures $μ_1$ and $μ_2$ of M are constant, and $μ_1 = 0$ and $μ > 0$. Moreover, let $t = \frac{n-2}{nμ^2}$. Now the principal curvatures of M are the following: $λ_1 = 0$, $λ_2 = (n-1)μ$, $λ_3 = (\frac{1-nμ}{n})^\frac{1}{2}$ with multiplicity 1, 1 and $n - 2$, respectively. Finally, if we set $λ = -(\frac{(n-1)μ}{n-2})$ then $λ_2 = -(n-2)λ$, and $λ_3 = λ$. Thus we see that (3) holds at every point of M.

References

[38] Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space, J. Geom. Phys. 75 (2014), 113–119.

