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Available at: http://www.pmf.ni.ac.rs/filomat

Some Inequalities on Submanifolds in
Statistical Manifolds of Constant Curvature

Muhittin Evren Aydina, Adela Mihaib, Ion Mihaic

aDepartment of Mathematics, Faculty of Science, Firat University, Elazig, 23200, Turkey
bDepartment of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Bucharest, 020396, Romania

cDepartment of Mathematics, Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest, 010014, Romania

Abstract. In this paper, we study the behaviour of submanifolds in statistical manifolds of constant
curvature. We investigate curvature properties of such submanifolds. Some inequalities for submanifolds
with any codimension and hypersurfaces of statistical manifolds of constant curvature are also established.

1. Introduction

Statistical manifolds introduced, in 1985, by Amari have been studied in terms of information geometry.
Since the geometry of such manifolds includes the notion of dual connections, also called conjugate con-
nections in affine geometry, it is closely related to affine differential geometry. Further, a statistical structure
being a generalization of a Hessian one, it connects Hessian geometry.

Let
(
M̃, 1̃

)
be a Riemannian manifold and M a submanifold of M̃. If

(
M,∇, 1

)
is a statistical manifold,

then we call
(
M,∇, 1

)
a statistical submanifold of

(
M̃, 1̃

)
, where ∇ is an affine connection on M and 1 is the

metric tensor on M induced from the Riemannian metric 1̃ on M̃. Let ∇̃ be an affine connection on M̃. If(
M̃, 1̃, ∇̃

)
is a statistical manifold and M a submanifold of M̃, then

(
M,∇, 1

)
is also a statistical manifold by

induced connection ∇ and metric 1. In the case that
(
M̃, 1̃

)
is a semi-Riemannian manifold, the induced

metric 1 has to be non-degenerate. For details, see ([11], [12]).
In the geometry of submanifolds, Gauss formula, Weingarten formula and the equations of Gauss, Co-

dazzi and Ricci are known as fundamental equations. Corresponding fundamental equations on statistical
submanifolds were obtained in [12]. A condition for the curvature of a statistical manifold to admit a kind
of standard hypersurface was given by H. Furuhata [6] and he introduced a complex version of the notion
of statistical structures as well.

On the other hand, B.-Y. Chen [4] established basic inequalities for submanifolds in real space forms,
well-known as Chen inequalities. In particular, a sharp relationship between the Ricci curvature and the
squared mean curvature for any n-dimensional Riemannian submanifold of a real space form was proved
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in [5], which is known as the Chen-Ricci inequality. Morever, Chen’s inequalities for submanifolds of real
space forms endowed with a semi-symmetric metric connection were obtained in [9].

In this paper, we obtain some inequalities for submanifolds with any codimension and hypersurfaces
of statistical manifolds.

2. Basics on statistical submanifolds

Let
(
M̃, 1̃

)
be a Riemannian manifold of dimension (n + k) and ∇̃ an affine connection on M̃. Let us denote

the set of sections of a vector bundle E −→ M̃ by Γ (E). Thus, the set of tensor fields of type
(
p, q

)
on M̃ is

denoted by Γ
(
TM̃(p,q)

)
.

Definition 2.1. [6] Let T̃ ∈ Γ
(
TM̃(1,2)

)
be the torsion tensor field of ∇̃. Then a pair

(
∇̃, 1̃

)
is called a statistical

structure on M̃ if (1)
(
∇̃X1̃

)
(Y,Z) −

(
∇̃Y1̃

)
(X,Z) = 1̃

(
T̃ (X,Y) ,Z

)
holds for X,Y,Z ∈ Γ

(
TM̃

)
, and (2) T̃ = 0.

A statistical manifold is a Riemannian manifold
(
M̃, 1̃

)
of dimension (n + k) , endowed with a pair of

torsion-free affine connections ∇̃ and ∇̃∗ satisfying

Z1̃ (X,Y) = 1̃
(
∇̃ZX,Y

)
+ 1̃

(
X, ∇̃∗ZY

)
(2.1)

for any X,Y and Z ∈ Γ
(
TM̃

)
. It is denoted by

(
M̃, 1̃, ∇̃

)
. The connections ∇̃ and ∇̃∗ are called dual connections,

and it is easily shown that
(
∇̃
∗
)∗

= ∇̃. If
(
∇̃, 1̃

)
is a statistical structure on M̃, then

(
∇̃
∗, 1̃

)
is also a statistical

structure ([1], [12]).
On the other hand, any torsion-free affine connection ∇̃ always has a dual connection given by

∇̃ + ∇̃∗ = 2∇̃0, (2.2)

where ∇̃0 is Levi-Civita connection for M̃.
Denote by R̃ and R̃∗ the curvature tensor fields of ∇̃ and ∇̃∗, respectively.
A statistical structure

(
∇̃, 1̃

)
is said to be of constant curvature c ∈ R if

R̃ (X,Y) Z = c
{
1̃ (Y,Z) X − 1̃ (X,Z) Y

}
. (2.3)

A statistical structure
(
∇̃, 1̃

)
of constant curvature 0 is called a Hessian structure.

The curvature tensor fields R̃ and R̃∗ of dual connections satisfy

1̃
(
R̃∗ (X,Y) Z,W

)
= −1̃

(
Z, R̃ (X,Y) W

)
. (2.4)

From (2.4) it follows immediately that if
(
∇̃, 1̃

)
is a statistical structure of constant structure c, then

(
∇̃
∗, 1̃

)
is

also a statistical structure of constant c. In particular, if
(
∇̃, 1̃

)
is Hessian, so is

(
∇̃
∗, 1̃

)
[6].

Let M be an n-dimensional submanifold of M̃. Then, for any X,Y ∈ Γ (TM) , according to [12], the
corresponding Gauss formulas are:

∇̃XY = ∇XY + h (X,Y) , (2.5)

∇̃
∗

XY = ∇∗XY + h∗ (X,Y) , (2.6)

where h and h∗are symmetric and bilinear, called the imbedding curvature tensor of M in M̃ for ∇̃ and the
imbedding curvature tensor of M in M̃ for ∇̃∗, respectively.

In [12], it is also proved that
(
∇, 1

)
and

(
∇
∗, 1

)
are dual statistical structures on M, where 1 is induced

metric on Γ (TM) from the Riemannian metric 1̃ on M̃.
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Let us denote the normal bundle on M by Γ (TM⊥) . Since h and h∗are bilinear, we have the linear
transformations Aξ and A∗ξ defined by

1
(
AξX,Y

)
= 1̃ (h (X,Y) , ξ) , (2.7)

1
(
A∗ξX,Y

)
= 1̃ (h∗ (X,Y) , ξ) , (2.8)

for any ξ ∈ Γ (TM⊥) and X,Y ∈ Γ (TM) . Further, in [12], the corresponding Weingarten formulas are as
follows

∇̃Xξ = −A∗ξX + ∇⊥Xξ, (2.9)

∇̃
∗

Xξ = −AξX + ∇∗⊥X ξ, (2.10)

for any ξ ∈ Γ (TM⊥) and X ∈ Γ (TM) . The connections ∇⊥X and ∇∗⊥X given by (2.9) and (2.10) are Riemannian
dual connections with respect to the induced metric on Γ (TM⊥) .

The corresponding Gauss, Codazzi and Ricci equations are given by the following result.

Proposition 2.2. [12] Let ∇̃ be a dual connection on M̃ and ∇ the induced connection on M. Let R̃ and R be the
Riemannian curvature tensors of ∇̃ and ∇, respectively. Then,

1̃
(
R̃ (X,Y) Z,W

)
= 1 (R (X,Y) Z,W) + 1̃ (h (X,Z) , h∗ (Y,W)) − 1̃ (h∗ (X,W) , h (Y,Z)) , (2.11)

(
R̃ (X,Y) Z

)⊥
= ∇⊥Xh (Y,Z) − h (∇XY,Z) − h (Y,∇XZ) −

{
∇
⊥

Y h (Y,Z) − h (∇YX,Z) − h (X,∇YZ)
}
, (2.12)

1̃
(
R⊥ (X,Y) ξ, η

)
= 1̃

(
R̃ (X,Y) ξ, η

)
+ 1

([
A∗ξ,Aη

]
X,Y

)
, (2.13)

where R⊥ is the Riemannian curvature tensor on TM⊥, ξ, η ∈Γ (TM⊥) and
[
A∗ξ,Aη

]
= A∗ξAη − AηA∗ξ.

For the equations of Gauss, Codazzi and Ricci with respect to the dual connection ∇̃∗ on M̃, we have

Proposition 2.3. Let ∇̃∗ be a dual connection on M̃ and ∇∗ the induced connection on M. Let R̃∗ and R∗ be the
Riemannian curvature tensors for ∇̃∗ and ∇∗, respectively. Then,

1̃
(
R̃∗ (X,Y) Z,W

)
= 1 (R∗ (X,Y) Z,W) + 1̃ (h∗ (X,Z) , h (Y,W)) − 1̃ (h (X,W) , h∗ (Y,Z)) , (2.14)

(
R̃∗ (X,Y) Z

)⊥
= ∇∗⊥X h∗ (Y,Z) − h∗

(
∇
∗

XY,Z
)
− h∗

(
Y,∇∗XZ

)
−

{
∇
∗⊥

Y h∗ (Y,Z) − h∗
(
∇
∗

YX,Z
)
− h∗

(
X,∇∗YZ

)}
(2.15)

1̃
(
R∗⊥ (X,Y) ξ, η

)
= 1̃

(
R̃∗ (X,Y) ξ, η

)
+ 1

([
Aξ,A∗η

]
X,Y

)
, (2.16)

where R∗⊥ is Riemannian curvature tensor for ∇⊥∗ on TM⊥,ξ, η ∈Γ (TM⊥) and
[
Aξ,A∗η

]
= AξA∗η − A∗ηAξ.

3. Statistical hypersurfaces

Let
(
M̃, 1̃, ∇̃

)
be a statistical manifold and f : M −→ M̃ be an immersion. We define a pair 1 and ∇ on M

by
1 = f ∗1̃, 1 (∇XY,Z) = 1̃

(
∇̃X f∗Y, f∗Z

)
(3.1)

for any X,Y,Z ∈ Γ (TM) , where the connection induced from ∇̃ by f on the induced bundle f ∗TM̃ −→ M is
denoted by the same symbol ∇̃. Then the pair

(
∇, 1

)
is a statistical structure on M, which is called the one

induced by f from
(
∇̃, 1̃

)
(cf. [6]).
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Definition 3.1. [6] Let
(
M, 1,∇

)
and

(
M̃, 1̃, ∇̃

)
be two statistical manifolds. An immersion f : M −→ M̃ is called a

statistical immersion if
(
∇, 1

)
coincides with the induced statistical structure, i.e., if (3.1) holds.

Let us assume that f :
(
M, 1,∇

)
−→

(
M̃, 1̃, ∇̃

)
is a statistical immersion of codimension one and ξ ∈

Γ
(

f ∗TM̃
)

is a unit normal vector field of f . Also we denote the dual connection of ∇̃with respect to 1̃ by ∇̃∗.
Thus, from [6], we have the following Gauss and Weingarten formulas:

∇̃X f∗Y = f∗∇XY + h (X,Y) ξ, (3.2)

∇̃Xξ = − f∗A∗X + τ∗ (X) ξ, (3.3)

∇̃
∗

X f∗Y = f∗∇∗XY + h∗ (X,Y) ξ, (3.4)

∇̃
∗

Xξ = − f∗AX + τ (X) ξ, (3.5)

where h, h∗ ∈ Γ
(
TM(0,2)

)
, A,A∗ ∈ Γ

(
TM(1,1)

)
and τ, τ∗ ∈ Γ (TM∗) satisfy

h (X,Y) = 1 (AX,Y) h∗ (X,Y) = 1 (A∗X,Y) , (3.6)

τ (X) + τ∗ (X) = 0, (3.7)

for any X,Y ∈ Γ (TM) .
Denote by R̃, R̃∗,R and R∗ the curvature tensor fields of the connections ∇̃, ∇̃∗,∇ and ∇∗, respectively.

Then, for the Gauss equation of a statistical hypersurface, we calculate

R̃ (X,Y) Z = R (X,Y) Z − h (Y,Z) A∗X + h (X,Z) A∗Y + (∇Xh) (Y,Z) ξ (3.8)

− (∇Yh) (X,Z) ξ + τ∗ (X) h (Y,Z) ξ − τ∗ (Y) h (X,Z) ξ.

From (3.8) , the normal component of R̃ (X,Y) Z is(
R̃ (X,Y) Z

)⊥
= (∇Xh) (Y,Z) ξ − (∇Yh) (X,Z) ξ + τ∗ (X) h (Y,Z) ξ − τ∗ (Y) h (X,Z) ξ, (3.9)

which is known as Codazzi equation. Similarly we get the Ricci equation of a statistical hypersuface as
follows

R̃ (X,Y) ξ = − (∇XA∗) Y + (∇YA∗) X − τ∗ (Y) A∗X + τ∗ (X) A∗Y (3.10)

−h (X,A∗Y) ξ + h (A∗X,Y) ξ + dτ∗ (X,Y) ξ.

The equations of Gauss, Codazzi and Ricci with respect to the dual connection ∇̃∗ on M̃ are

R̃∗ (X,Y) Z = R∗ (X,Y) Z − h∗ (Y,Z) AX + h∗ (X,Z) AY +
(
∇
∗

Xh∗
)

(Y,Z) ξ (3.11)

−

(
∇
∗

Yh∗
)

(X,Z) ξ + τ (X) h∗ (Y,Z) ξ − τ (Y) h∗ (X,Z) ξ,(
R̃∗ (X,Y) Z

)⊥
=

(
∇
∗

Xh∗
)

(Y,Z) ξ −
(
∇
∗

Yh∗
)

(X,Z) ξ + τ (X) h∗ (Y,Z) ξ − τ (Y) h∗ (X,Z) ξ, (3.12)

R̃∗ (X,Y) ξ = −
(
∇
∗

XA
)

Y +
(
∇
∗

YA
)

X − τ (Y) AX + τ (X) AY − h∗ (X,AY) ξ + h∗ (AX,Y) ξ + dτ (X,Y) ξ. (3.13)

In the case when the ambient space is of constant curvature c, the equations of Gauss, Codazzi and Ricci
reduce to

R (X,Y) Z = c
{
1 (Y,Z) X − 1 (X,Z) Y

}
+ {h (Y,Z) A∗X − h (X,Z) A∗Y} , (3.14)

(∇Xh) (Y,Z) + τ∗ (X) h (Y,Z) = (∇Yh) (X,Z) + τ∗ (Y) h (X,Z) , (3.15)

(∇XA∗) Y − τ∗ (X) A∗Y = (∇YA∗) X − τ∗ (Y) A∗X, (3.16)

h (X,A∗Y) − h (A∗X,Y) = dτ∗ (X,Y) , (3.17)
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and the dual ones reduce to

R∗ (X,Y) Z = c
{
1 (Y,Z) X − 1 (X,Z) Y

}
+ {h∗ (Y,Z) AX − h∗ (X,Z) AY} , (3.18)(

∇
∗

Xh∗
)

(Y,Z) + τ (X) h∗ (Y,Z) =
(
∇
∗

Yh∗
)

(X,Z) + τ (Y) h∗ (X,Z) , (3.19)(
∇
∗

XA
)

Y − τ (X) AY =
(
∇
∗

YA
)

X − τ (Y) AX, (3.20)

h∗ (X,AY) − h∗ (AX,Y) = dτ (X,Y) . (3.21)

4. General inequalities for statistical submanifolds

Let M̃ be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R, denoted by M̃ (c) , and
M an n-dimensional statistical submanifold of M̃ (c) .

We use the notations
R (X,Y,Z,W) = 1 (R (X,Y) W,Z)

and
R∗ (X,Y,Z,W) = 1 (R∗ (X,Y) W,Z) ,

where R and R∗ are the curvature tensor fields of ∇ and ∇∗. We mention that R (X,Y,Z,W) is not skew-
symmetric relative to Z and W.

Let {e1, ..., en} and {en+1, ..., en+k} be orthonormal tangent and normal frames, respectively, on M.
The mean curvature vector fields are given by

H =
1
n

n∑
i=1

h (ei, ei) =
1
n

k∑
α=1

 n∑
i=1

hαii

 en+α, hαi j = 1̃
(
h
(
ei, e j

)
, en+α

)
, (4.1)

and

H∗ =
1
n

n∑
i=1

h∗ (ei, ei) =
1
n

k∑
α=1

 n∑
i=1

h∗αii

 en+α, h∗αi j = 1̃
(
h∗

(
ei, e j

)
, en+α

)
. (4.2)

Then we have the following.

Proposition 4.1. Let M be an n-dimensional submanifold of an (n + k)-dimensional statistical manifold M̃ (c) of
constant curvature c ∈ R. Assume that the imbedding curvature tensors h and h∗ satisfy

h (X,Y) = 1 (X,Y) H and h∗ (X,Y) = 1 (X,Y) H∗,

for any X,Y ∈ Γ (TM) . Then M is also a statistical manifold of constant curvature c + 1 (H,H∗) whenever 1 (H,H∗)
is constant.

Proof. From the Gauss equation given by (2.11), the proof follows directly.

Definition 4.2. [10] Let M̃ be an (n + k)-dimensional statistical manifold. Then the Ricci tensor S̃ (of type (0, 2)) is
defined by

S̃ (Y,Z) = trace
{
X −→ R̃ (X,Y) Z

}
, (4.3)

where R̃ is the curvature tensor field of the affine connection ∇̃ on M̃.

Thus we have the following result.
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Theorem 4.3. Let M̃ (c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an n-
dimensional statistical submanifold of M̃ (c) . Also let {e1, ..., en} and {n1, ...,nk} be orthonormal tangent and normal
frames, respectively, on M. Then the Ricci tensor S and the dual Ricci tensor S∗ of M satisfy

S (X,Y) = c (n − 1) 1 (X,Y) +

k∑
i=1

[
1
(
Ani X,Y

)
trA∗ni

− 1
(
Ani Y,A

∗

ni
X
)]

(4.4)

and

S∗ (X,Y) = c (n − 1) 1 (X,Y) +

k∑
i=1

[
1
(
A∗ni

X,Y
)

trAni − 1
(
Ani X,A

∗

ni
Y
)]
, (4.5)

where Ani and A∗ni
are linear transformations defined by (2.7) and (2.8) .

Proof. Let us assume that M is an n-dimensional submanifold of M̃ (c) . Denote by R the Riemannian
curvature tensor of M with respect to ∇. Then we write

S (X,Y) =

n∑
j=1

1
(
R

(
e j,X

)
Y, e j

)
and by using the Gauss equation given by (2.11) , we have

S (X,Y) =

n∑
j=1

c
{
1 (X,Y) 1

(
e j, e j

)
− 1

(
X, e j

)
1
(
Y, e j

)}
(4.6)

+1̃
(
h∗

(
e j, e j

)
, h (X,Y)

)
− 1̃

(
h
(
e j,Y

)
, h∗

(
X, e j

))
= c (n − 1) 1 (X,Y) +

n∑
j=1

[
1̃
(
h∗

(
e j, e j

)
, h (X,Y)

)
− 1̃

(
h
(
e j,Y

)
, h∗

(
X, e j

))]
.

On the other hand we get

1̃
(
h∗

(
e j, e j

)
, h (X,Y)

)
=

k∑
i=1

1
(
Ani X,Y

)
1
(
A∗ni

e j, e j

)
(4.7)

and

1̃
(
h
(
e j,Y

)
, h∗

(
X, e j

))
=

k∑
i=1

1
(
A∗ni

X, e j

)
1
(
Ani Y, e j

)
. (4.8)

By substituting (4.7) and (4.8) into (4.6), we obtain

S (X,Y) = c (n − 1) 1 (X,Y) +

n∑
j=1

k∑
i=1

[
1
(
Ani X,Y

)
1
(
A∗ni

e j, e j

)
−1

(
Ani X, e j

)
1
(
A∗ni

Y, e j

)]

= c (n − 1) 1 (X,Y) +

k∑
i=1

[
1
(
Ani X,Y

)
trA∗ni

−1
(
Ani X,A

∗

ni
Y
)]
,

which gives the equality (4.4) . For dual Ricci tensor S∗, similar calculations can be done.
Thus the proof is complete.

Definition 4.4. [10] Let ∇ be a torsion-free affine connection on a Riemannian manifold M that admits a parallel
volume element ω. If ω is a volume element on M such that ∇ω = 0, then (∇, ω) is called an equiaffine structure on
M.
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Proposition 4.5. [10] An affine connection ∇ with zero torsion has symmetric Ricci tensor if and only if it is locally
equiaffine.

Thus we have the following result for statistical manifolds having equiaffine connection.

Lemma 4.6. Let M̃ (c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an n-
dimensional submanifold of M̃ (c) .Assume that the affine connection ∇ of M is equiaffine. If Ani and A∗ni

are the linear
transformations satisfying (2.7) and (2.8) , then

k∑
i=1

[
Ani ,A

∗

ni

]
= 0, (4.9)

where
[
Ani ,A∗ni

]
= Ani A∗ni

− A∗ni
Ani .

Proof. Denote by S the Ricci tensor of the manifold M. Since M is an equiaffine submanifold of M̃ (c), the
Ricci tensor S is symmetric and we have

0 = S (X,Y) − S (Y,X) = −

k∑
i=1

[
1
(
Ani Y,A

∗

ni
X
)
− 1

(
Ani X,A

∗

ni
Y
)]

= −

k∑
i=1

1
(
Y,

(
Ani A

∗

ni
− A∗ni

Ani

)
(X)

)
= −1

Y,
k∑

i=1

[
Ani ,A

∗

ni

]
X

 ,
which implies

k∑
i=1

[
Ani ,A

∗

ni

]
= 0.

Corollary 4.7. Let M̃ (c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an
n-dimensional equiaffine submanifold M of M̃ (c) . Let S and S∗denote the dual Ricci tensors of M. Then we have

(S − S∗) (X,Y) =

k∑
i=1

1
((

Ani − A∗ni

)
X,Y

)
tr

(
A∗ni
− Ani

)
for the linear transformations Ani and A∗ni

defined by (2.7) and (2.8) .

Proof. It is easily seen by using (4.4) , (4.5) and (4.9) .

Proposition 4.8. Let M̃ (c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an
n-dimensional statistical submanifold of M̃ (c) . Then

2τ ≥ n (n − 1) c + n21̃(H,H∗) − ‖h‖ ‖h∗‖ , (4.10)

where τ is the scalar curvature of (M,∇, 1), i.e., τ =
∑

1≤i< j≤n 1(R(ei, e j)e j, ei).

Proof. From (2.11) , we have the Gauss equation as follows

R (X,Y,Z,W) = c
[
1 (X,Z) 1 (Y,W) − 1 (X,W) 1 (Y,Z)

]
+1̃ (h∗ (X,Z) , h (Y,W)) − 1̃ (h (X,W) , h∗ (Y,Z)) ,
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where X,Y,Z and W ∈ Γ (TM) . Putting X = Z = ei and Y = W = e j, i, j = 1, ...,n, we write

R
(
ei, e j, ei, e j

)
= c

[
1 (ei, ei) 1

(
e j, e j

)
− 1

(
ei, e j

)2
]

+ 1̃
(
h∗ (ei, ei) , h

(
e j, e j

))
− 1̃

(
h
(
ei, e j

)
, h∗

(
e j, ei

))
. (4.11)

We denote by ‖h‖2 =
∑k
α=1

∑n
i, j=1(hαi j)

2 and similarly ‖h∗‖. By summing over 1 ≤ i, j ≤ n, it follows from
(4.11) that

2τ =
(
n2
− n

)
c + n21 (H,H∗) −

n∑
i, j=1

k∑
α=1

hαi jh
∗α
i j ≥ n (n − 1) c + n21̃ (H,H∗) − ‖h‖ ‖h∗‖ , (4.12)

for H and H∗ defined by (4.1) and (4.2) , which gives (4.10) .

Remark 4.9. On any statistical submanifold M of M̃(c) one has τ = τ∗.

Let ∇0 be the Levi-Civita connection of an n-dimensional submanifold M in an (n + k)-dimensional
statistical manifold M̃ (c) of constant curvature c. Denote by H0 the mean curvature vector field. Then a
sharp relationship between the Ricci curvature and the squared mean curvature obtained by B.-Y. Chen [5]
is the following:

Ric0 (X) ≤
n2

4

∥∥∥H0
∥∥∥2

+ (n − 1) c, (4.13)

which is known as the Chen-Ricci inequality.
From (2.2) , we get 2H0 = H + H∗ and thus∥∥∥H0

∥∥∥2
=

1
4

(
‖H‖2 + ‖H∗‖2 + 21 (H,H∗)

)
, (4.14)

where H and H∗ are defined by (4.1) and (4.2) . Therefore, from (4.13) and (4.14) , we derive

Ric0 (X) ≤
n2

16
‖H‖2 +

n2

16
‖H∗‖2 +

n2

8
1̃ (H,H∗) + (n − 1) c. (4.15)

5. Inequalities for statistical hypersurfaces

By analogy with Proposition 4.8, we have an inequality for statistical hypersurfaces as follows:

Proposition 5.1. Let M be a statistical hypersurface of an (n + 1)-dimensional statistical manifold M̃ (c) of constant
curvature c ∈ R.We have

2τ ≥ n (n − 1) c + n2
‖H‖ ‖H∗‖ − ‖h‖ ‖h∗‖ , (5.1)

where τ is the scalar curvature of M.

Proof. Let {e1, ..., en} be an orthonormal frame of M and en+1 unit normal vector to M. From (3.14) , we get

R
(
ei, e j, ei, e j

)
= c

[
1 (ei, ei) 1

(
e j, e j

)
− 1

(
ei, e j

)2
]

+ 1̃
(
h∗ (ei, ei) , h

(
e j, e j

))
− 1̃

(
h
(
ei, e j

)
, h∗

(
e j, ei

))
. (5.2)

We define the mean curvature vector fields H and H∗ by

H =
1
n

 n∑
i=1

hii

 en+1, hi j = 1̃
(
h
(
ei, e j

)
, en+1

)
and

H∗ =
1
n

 n∑
i=1

h∗ii

 en+1, h∗i j = 1̃
(
h∗

(
ei, e j

)
, en+1

)
.
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After summing (5.2) over all i, j = 1, ...,n, we obtain

2τ = n (n − 1) c + n2
‖H‖ ‖H∗‖ −

n∑
i, j=1

hi jh∗i j. (5.3)

Applying Cauchy-Buniakowski-Schwarz to (5.3), we deduce

2τ ≥ n (n − 1) c + n2
‖H‖ ‖H∗‖ − ‖h‖ ‖h∗‖ .

Theorem 5.2. Let M be a statistical hypersurface of an (n + 1)-dimensional statistical manifold M̃ (c) . For each
X ∈ Tp (M) we have

Ric (X) = (n − 1) c + n1̃ (h∗ (X,X) ,H) −
n∑

i=1

hi1h∗i1,

and

Ric∗ (X) = (n − 1) c + n1̃ (h (X,X) ,H∗) −
n∑

i=1

hi1h∗i1.

Proof. Let us choose the orthonormal frame {e1, ..., en} such that X = Z = e1 and Y = W = ei, i = 2, ...,n. From
(3.14) , we get

R (X, ei,X, ei) = c
(
1 (X,X) 1 (ei, ei) − 1 (X, ei)

2
)

+ 1̃ (h∗ (X,X) , h (ei, ei)) − 1̃ (h (X, ei) , h∗ (X, ei)) ,

and after summing over 2 ≤ j ≤ n, we derive

Ric (X) = (n − 1) c + n1̃ (h∗ (X,X) ,H) −
n∑

i=1

hi1h∗i1.

The proof is similar for Ric∗.

Example. Recall the example 5.4 from [6]. Let
(
H, 1̃

)
be the upper half space of constant curvature −1,

H :=
{
y =

(
y1, ..., yn+1

)
∈ Rn+1

|yn+1 > 0
}
, 1̃ :=

(
yn+1

)−2
n+1∑
k=1

dykdyk.

An affine connection ∇̃ onH is given by

∇̃ ∂
∂yn+1

∂

∂yn+1 =
(
yn+1

)−1 ∂

∂yn+1 ,

∇̃ ∂
∂yi

∂

∂y j = 2δi j

(
yn+1

)−1 ∂

∂yn+1 ,

∇̃ ∂
∂yi

∂

∂yn+1 = ∇̃ ∂
∂yn+1

∂

∂y j = 0,

where i, j = 1, ...,n. The curvature tensor field R̃ of ∇̃ is identically zero, i.e., c = 0. Thus
(
H, ∇̃, 1̃

)
is a Hessian

manifold of constant Hessian curvature 4.
For a constant y0 > 0, we consider the following immersion

f0 : Rn
−→H, f0

(
y1, ..., yn

)
=

(
y1, ..., yn, y0

)
.
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Let
(
∇, 1

)
be the statistical structure on Rn induced by f0 from

(
∇̃, 1̃

)
. We then get that

(
∇, 1

)
is a Hessian

structure. In other words, f0 is a statistical immersion of the trivial Hessian manifold
(
Rn,∇, 1

)
into the

upper half Hessian space
(
H, ∇̃, 1̃

)
. It is easy to calculate that

ξ = y0
∂

∂yn+1 , h = 21, h∗ = 0, ‖H∗‖ = 0, (5.4)

which means that the equality case of (5.1) is satisfied for
(
Rn,∇, 1

)
and

(
H, ∇̃, 1̃

)
.

On the other hand this example can be generalized by using the Lemma 5.3 of [6]. Let
(
H, ∇̃, 1̃

)
be a

Hessian manifold of constant Hessian curvature c̃ , 0,
(
M,∇, 1

)
a trivial Hessian manifold and f : M −→H

a statistical immmersion of codimension one. Then the following hold:

A∗ = 0, h∗ = 0, ‖H∗‖ = 0, (5.5)

thus the immersion f has codimension one and satisfies the equality case of (5.1) .

6. Chen-Ricci inequalities for statistical submanifolds in statistical manifold of constant curvature

Let M̃ (c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an n-
dimensional statistical submanifold of M̃ (c) . Then the Gauss equation is

R̃ (X,Y,Z,W) = R (X,Y,Z,W) + 1̃ (h (X,Z) , h∗ (Y,W)) − 1̃ (h∗ (X,W) , h (Y,Z)) .

By setting X = Z = ei and Y = W = e j, i, j = 1, ...,n, and summing over 1 ≤ i, j ≤ n, then we have

n (n − 1) c = 2τ − n21̃ (H,H∗) +

n∑
i, j=1

1̃
(
h∗

(
ei, e j

)
, h

(
ei, e j

))
,

where H and H∗ are the mean curvature vector fields defined by (4.1) and (4.2) . From this, we get

n (n − 1) c = 2τ −
n2

2
[
1̃ (H + H∗,H + H∗) − 1̃ (H,H) − 1 (H∗,H∗)

]
+

1
2

n∑
i, j=1

[
1̃
(
h∗

(
ei, e j

)
+ h

(
ei, e j

)
, h∗

(
ei, e j

)
+ h

(
ei, e j

))
−1̃

(
h
(
ei, e j

)
, h

(
ei, e j

))
− 1̃

(
h∗

(
ei, e j

)
, h∗

(
ei, e j

))]
.

From 2H0 = H + H∗ it follows that

n (n − 1) c = 2τ − 2n21̃
(
H0,H0

)
+

n2

2
1̃ (H,H) +

n2

2
1̃ (H∗,H∗) (6.1)

+2
n∑

i, j=1

1̃
(
h0

(
ei, e j

)
, h0

(
ei, e j

))
−

1
2

(
‖h‖2 + ‖h∗‖2

)
.

On the other hand we can write

‖h‖2 =

k∑
α=1

(hα11

)2
+

(
hα22 + ... + hαnn

)2
+ 2

∑
1≤i< j≤n

(
hαi j

)2

 −
k∑
α=1

∑
2≤i, j≤n

hαiih
α
j j



M.E. Aydin et al. / Filomat 29:3 (2015), 465–477 475

=
1
2

k∑
α=1

{(
hα11 + hα22 + ... + hαnn

)2
+

(
hα11 − hα22 − ... − hαnn

)2
}

+2
k∑
α=1

∑
1≤i< j≤n

(
hαi j

)2
−

k∑
α=1

∑
2≤i, j≤n

hαiih
α
j j ≥

1
2

n2
‖H‖2 −

k∑
α=1

∑
2≤i, j≤n

[hαiih
α
j j − (hαi j)

2].

We similarly derive

‖h∗‖2 ≥
1
2

n2
‖H∗‖2 −

k∑
α=1

∑
2≤i, j≤n

[h∗αii h∗αj j − (h∗αi j )2]. (6.2)

Thus we have the following inequality

‖h‖2 + ‖h∗‖2 ≥
1
2

n2
‖H‖2 +

1
2

n2
‖H∗‖2 −

k∑
α=1

∑
2≤i, j≤n

(
hαii + h∗αii

) (
hαj j + h∗αj j

)
(6.3)

+2
k∑
α=1

∑
2≤i, j≤n

hαiih
∗α
j j +

k∑
α=1

∑
2≤i, j≤n

[(hαi j)
2 + (h∗αi j )2].

Substituting (6.3) into (6.1) , we obtain

n(n − 1)c ≤ 2τ − 2n21̃(H0,H0) +
n2

2
1̃(H,H) +

n2

2
1̃(H∗,H∗) + 2||h0

||
2 + 2

k∑
α=1

∑
2≤i, j≤n

h0α
ii h0α

j j

−
n2

4
1̃(H,H) −

n2

4
1̃(H∗,H∗) −

k∑
α=1

∑
2≤i, j≤n

hαiih
∗α
j j −

1
2

k∑
α=1

∑
2≤i, j≤n

[(hαi j))
2 + (h∗αi j )2].

Since ∑
2≤i, j≤n

R
(
ei, e j, ei, e j

)
= (n − 1)(n − 2)c +

k∑
α=1

∑
2≤i, j≤n

(
hαiih

∗α
j j − hαi jh

∗α
i j

)
,

the previous inequality becomes

n(n − 1)c ≤ 2τ − 2n21̃(H0,H0) +
n2

4
1̃(H,H) +

n2

4
1̃(H∗,H∗) + 2‖|h0

||
2

+2
k∑
α=1

∑
2≤i, j≤n

h0α
ii h0α

j j −
∑

2≤i, j≤n

R(ei, e j, ei, e j) + (n − 1)(n − 2)c −
1
2

k∑
α=1

∑
2≤i, j≤n

(hαi j + h∗αi j )2.

Then we get

Ric(X) ≥ n21̃(H0,H0) −
n2

8
1̃(H,H) +

n2

8
1̃(H∗,H∗) + (n − 1)c − ||h0

||
2
−

k∑
α=1

∑
2≤i, j≤n

[h0α
ii h0α

j j − (h0α
i j )2]. (6.4)

By the Gauss equation with respect to the Levi-Civita connection, we have∑
1≤i, j≤n

R̃0(ei, e j, ei, e j) = 2τ0
− n21̃(H0,H0) + ||h0

||
2,
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and, respectively, ∑
2≤i, j≤n

R̃0(ei, e j, ei, e j) =
∑

2≤i, j≤n

R0(ei, e j, ei, e j) −
k∑
α=1

∑
2≤i, j≤n

[
h0α

ii h0α
j j − (h0α

i j )2
]
.

Substituting in (6.4) it follows that

Ric(X) ≥ 2τ0
−

∑
1≤i, j≤n

R̃0(ei, e j, ei, e j) −
n2

8
1̃(H,H) −

n2

8
1̃(H∗,H∗)+

+(n − 1)c −
∑

2≤i, j≤n

R0(ei, e j, ei, e j) +
∑

2≤i, j≤n

R̃0(ei, e j, ei, e j).

Finally we obtain

Ric(X) ≥ 2Ric0(X) −
n2

8
1̃(H,H) −

n2

8
1̃(H∗,H∗) + (n − 1)c − 2

n∑
i=2

K̃0(X ∧ ei).

We denote by max K̃0(X ∧ ·) the maximum of the sectional curvature function of M̃(c) with respect to ∇̃
restricted to 2-plane sections of the tangent space TpM which are tangent to X.

Summing up, we can state the following.

Theorem 6.1. Let M be an n-dimensional statistical submanifold of an (n+k)-dimensional statistical manifold M̃(c).
For each unit X ∈ Tp(M), we have

Ric(X) ≥ 2Ric0(X) −
n2

8
1̃(H,H) −

n2

8
1̃(H∗,H∗) + (n − 1)c − 2(n − 1) max K̃0(X ∧ ·).

Particular Case: M is a minimal submanifold. Because H0 = 0, we have H + H∗ = 0. Then the previous
inequality implies

Corollary 6.2. Let M be a minimal n-dimensional statistical submanifold of an (n+k)-dimensional statistical manifold
M̃(c). For each unit X ∈ Tp(M), we have

Ric(X) ≥ 2Ric0(X) +
n2

4
1̃(H,H∗) + (n − 1)c − 2(n − 1) max K̃0(X ∧ ·).

Remark 6.3. Similar inequalities can be stated for the Ricci curvature Ric∗.
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