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Additive ρ-Functional Inequalities in β-Homogeneous Normed Spaces

Choonkil Parka

aResearch Institute of Natural Sciences, Hanyang University, Seoul 133-791, Korea

Abstract. In this paper, we solve the following additive ρ-functional inequalities

‖ f (x + y) − f (x) − f (y)‖ ≤
∥∥∥∥∥ρ (

2 f
(x + y

2

)
− f (x) + − f (y)

)∥∥∥∥∥ , (1)

where ρ is a fixed complex number with |ρ| < 1, and∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y)

∥∥∥∥∥ ≤ ‖ρ( f (x + y) − f (x) − f (y))‖, (2)

where ρ is a fixed complex number with |ρ| < 1
2 , and prove the Hyers-Ulam stability of the additive ρ-

functional inequalities (1) and (2) in β-homogeneous complex Banach spaces and prove the Hyers-Ulam
stability of additive ρ-functional equations associated with the additive ρ-functional inequalities (1) and (2)
in β-homogeneous complex Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [16] concerning the
stability of group homomorphisms.

The functional equation
f (x + y) = f (x) + f (y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive
mapping. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [2] for additive mappings and by Rassias [13] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by
Găvruta [8] by replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias’ approach. The functional equation f

( x+y
2

)
= 1

2 f (x)+ 1
2 f (y) is called the Jensen equation. The stability

problems of several functional equations have been extensively investigated by a number of authors and
there are many interesting results concerning these problems (see [1, 3, 5, 17]).
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In [9], Gilányi showed that if f satisfies the functional inequality

‖2 f (x) + 2 f (y) − f (xy−1)‖ ≤ ‖ f (xy)‖ (3)

then f satisfies the Jordan-von Neumann functional equation

2 f (x) + 2 f (y) = f (xy) + f (xy−1).

See also [4, 7, 14] for functional inequalities. Gilányi [10] and Fechner [6] proved the Hyers-Ulam stability of
the functional inequality (3). Park, Cho and Han [12] proved the Hyers-Ulam stability of additive functional
inequalities.

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F-norm if it satisfies the following
conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F∗-space. An F-space is a complete F∗-space.

An F-norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C (see [15]).
In Section 2, we solve the additive ρ-functional inequality (1) and prove the Hyers-Ulam stability of

the additive ρ-functional inequality (1) in β-homogeneous complex Banach spaces. We moreover prove
the Hyers-Ulam stability of an additive ρ-functional equation associated with the additive ρ-functional
inequality (1) in β-homogeneous complex Banach spaces.

In Section 3, we solve the additive ρ-functional inequality (2) and prove the Hyers-Ulam stability of
the additive ρ-functional inequality (2) in β-homogeneous complex Banach spaces. We moreover prove
the Hyers-Ulam stability of an additive ρ-functional equation associated with the additive ρ-functional
inequality (2) in β-homogeneous complex Banach spaces.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and β2 ≤ 1. Assume that X is a
β1-homogeneous real or complex normed space with norm ‖ · ‖ and that Y is a β2-homogeneous complex
Banach space with norm ‖ · ‖.

2. Additive ρ-Functional Inequality (1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we solve and investigate the additive ρ-functional inequality (1) in β-homogeneous

complex Banach spaces.

Lemma 2.1. A mapping f : X→ Y satisfies

‖ f (x + y) − f (x) − f (y)‖ ≤
∥∥∥∥∥ρ (

2 f
(x + y

2

)
− f (x) − f (y)

)∥∥∥∥∥ (4)

for all x, y ∈ X if and only if f : X→ Y is additive.

Proof. Assume that f : X→ Y satisfies (4).
Letting x = y = 0 in (4), we get ‖ f (0)‖ ≤ 0. So f (0) = 0.
Letting y = x in (4), we get

‖ f (2x) − 2 f (x)‖ ≤ 0

and so f (2x) = 2 f (x) for all x ∈ X. Thus

f
(x

2

)
=

1
2

f (x) (5)
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for all x ∈ X.
It follows from (4) and (5) that

‖ f (x + y) − f (x) − f (y)‖ ≤
∥∥∥∥∥ρ (

2 f
(x + y

2

)
− f (x) − f (y)

)∥∥∥∥∥ = |ρ|β2‖ f (x + y) − f (x) − f (y)‖

and so
f (x + y) = f (x) + f (y)

for all x, y ∈ X.
The converse is obviously true.

Corollary 2.2. A mapping f : X→ Y satisfies

f (x + y) − f (x) − f (y) = ρ
(
2 f

(x + y
2

)
− f (x) − f (y)

)
(6)

for all x, y ∈ X if and only if f : X→ Y is additive.

The functional equation (6) is called an additive ρ-functional equation.
We prove the Hyers-Ulam stability of the additive ρ-functional inequality (4) in β-homogeneous complex

Banach spaces.

Theorem 2.3. Let r > β2

β1
and θ be nonnegative real numbers, and let f : X→ Y be a mapping such that

‖ f (x + y) − f (x) − f (y)‖ ≤
∥∥∥∥∥ρ (

2 f
(x + y

2

)
− f (x) − f (y)

)∥∥∥∥∥ + θ(‖x‖r + ‖y‖r) (7)

for all x, y ∈ X. Then there exists a unique additive mapping A : X→ Y such that

‖ f (x) − A(x)‖ ≤
2θ

2β1r − 2β2
‖x‖r (8)

for all x ∈ X.

Proof. Letting x = y = 0 in (7), we get ‖ f (0)‖ ≤ 0. So f (0) = 0.
Letting y = x in (7), we get

‖ f (2x) − 2 f (x)‖ ≤ 2θ‖x‖r (9)

for all x ∈ X. So∥∥∥∥∥ f (x) − 2 f
(x

2

)∥∥∥∥∥ ≤ 2
2β1rθ‖x‖

r

for all x ∈ X. Hence∥∥∥∥∥2l f
( x

2l

)
− 2m f

( x
2m

)∥∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥∥2 j f
( x

2 j

)
− 2 j+1 f

( x
2 j+1

)∥∥∥∥∥ ≤ 2
2β1r

m−1∑
j=l

2β2 j

2β1rjθ‖x‖
r (10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (10) that the sequence {2n f ( x
2n )}

is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {2n f ( x
2n )} converges. So one can define

the mapping A : X→ Y by

A(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (10), we get (8).
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It follows from (7) that

‖A(x + y) − A(x) − A(y)‖ = lim
n→∞

2β2n
∥∥∥∥∥ f

(x + y
2n

)
− f

( x
2n

)
− f

( y
2n

)∥∥∥∥∥
≤ lim

n→∞
2β2n
|ρ|β2

(∥∥∥∥∥2 f
(x + y

2n+1

)
− f

( x
2n

)
− f

( y
2n

)∥∥∥∥∥) + lim
n→∞

2β2nθ

2β1nr (‖x‖r + ‖y‖r)

= |ρ|β2

∥∥∥∥∥2A
(x + y

2

)
− A(x) − A(y)

∥∥∥∥∥
for all x, y ∈ X. So

‖A(x + y) − A(x) − A(y)‖ ≤
∥∥∥∥∥ρ (

2A
(x + y

2

)
− A(x) − A(y)

)∥∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping A : X→ Y is additive.

Now, let T : X→ Y be another additive mapping satisfying (8). Then we have

‖A(x) − T(x)‖ = 2β2n
∥∥∥∥∥A

( x
2n

)
− T

( x
2n

)∥∥∥∥∥
≤ 2β2n

(∥∥∥∥∥A
( x

2n

)
− f

( x
2n

)∥∥∥∥∥ +

∥∥∥∥∥T
( x

2n

)
− f

( x
2n

)∥∥∥∥∥)
≤

4 · 2β2n

(2β1r − 2β2 )2β1nrθ‖x‖
r,

which tends to zero as n→ ∞ for all x ∈ X. So we can conclude that A(x) = T(x) for all x ∈ X. This proves
the uniqueness of A. Thus the mapping A : X→ Y is a unique additive mapping satisfying (8).

Theorem 2.4. Let r < β2

β1
and θ be positive real numbers, and let f : X→ Y be a mapping satisfying (7). Then there

exists a unique additive mapping A : X→ Y such that

‖ f (x) − A(x)‖ ≤
2θ

2β2 − 2β1r ‖x‖
r (11)

for all x ∈ X.

Proof. It follows from (9) that∥∥∥∥∥ f (x) −
1
2

f (2x)
∥∥∥∥∥ ≤ 2θ

2β2
‖x‖r

for all x ∈ X. Hence∥∥∥∥∥ 1
2l

f (2lx) −
1

2m f (2mx)
∥∥∥∥∥ ≤ m−1∑

j=l

∥∥∥∥∥ 1
2 j f (2 jx) −

1
2 j+1

f (2 j+1x)
∥∥∥∥∥ ≤ m−1∑

j=l

2β1rj

2β2 j

2θ
2β2
‖x‖r (12)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (12) that the sequence { 1
2n f (2nx)}

is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1
2n f (2nx)} converges. So one can

define the mapping A : X→ Y by

A(x) := lim
n→∞

1
2n f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (12), we get (11).
The rest of the proof is similar to the proof of Theorem 2.3.
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By the triangle inequality, we have∥∥∥ f (x + y) − f (x) − f (y)
∥∥∥ − ∥∥∥∥∥ρ (

2 f
(x + y

2

)
− f (x) − f (y)

)∥∥∥∥∥
≤

∥∥∥∥∥ f (x + y) − f (x) − f (y) − ρ
(
2 f

(x + y
2

)
− f (x) − f (y)

)∥∥∥∥∥ .
As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the additive ρ-
functional equation (6) in β-homogeneous complex Banach spaces.

Corollary 2.5. Let r > β2

β1
and θ be nonnegative real numbers, and let f : X→ Y be a mapping such that∥∥∥∥∥ f (x + y) − f (x) − f (y) − ρ

(
2 f

(x + y
2

)
− f (x) − f (y)

)∥∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r) (13)

for all x, y ∈ X. Then there exists a unique additive mapping A : X→ Y satisfying (8).

Corollary 2.6. Let r < β2

β1
and θ be nonnegative real numbers, and let f : X→ Y be a mapping satisfying (13). Then

there exists a unique additive mapping A : X→ Y satisfying (11).

Remark 2.7. If ρ is a real number such that −1 < ρ < 1 and Y is a β2-homogeneous real Banach space, then all the
assertions in this section remain valid.

3. Additive ρ-Functional Inequality (2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1
2 .

In this section, we solve and investigate the additive ρ-functional inequality (2) in β-homogeneous
complex Banach spaces.

Lemma 3.1. A mapping f : X→ Y satisfies f (0) = 0 and∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y)

∥∥∥∥∥ ≤ ‖ρ( f (x + y) − f (x) − f (y))‖ (14)

for all x, y ∈ X if and onlt if f : X→ Y is additive.

Proof. Assume that f : X→ Y satisfies (14).

Letting y = 0 in (14), we get
∥∥∥∥2 f

(
x
2

)
− f (x)

∥∥∥∥ ≤ 0and so

2 f
(x

2

)
= f (x) (15)

for all x ∈ X.
It follows from (14) and (15) that

‖ f (x + y) − f (x) − f (y)‖ =

∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y)

∥∥∥∥∥ ≤ |ρ|β2‖ f (x + y) − f (x) − f (y)‖

and so
f (x + y) = f (x) + 2 f (y)

for all x, y ∈ X.
The converse is obviously true.

Corollary 3.2. A mapping f : X→ Y satisfies f (0) = 0 and

2 f
(x + y

2

)
− f (x) − f (y) = ρ

(
f (x + y) − f (x) − f (y)

)
(16)

for all x, y ∈ X if and only if f : X→ Y is additive.
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The functional equation (16) is called an additive ρ-functional equation.
We prove the Hyers-Ulam stability of the additive ρ-functional inequality (14) in β-homogeneous com-

plex Banach spaces.

Theorem 3.3. Let r > β2

β1
and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f (0) = 0

and ∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y)

∥∥∥∥∥ ≤ ∥∥∥ρ( f (x + y) − f (x) − f (y))
∥∥∥ + θ(‖x‖r + ‖y‖r) (17)

for all x, y ∈ X. Then there exists a unique additive mapping A : X→ Y such that

‖ f (x) − A(x)‖ ≤
2β1rθ

2β1r − 2β2
‖x‖r (18)

for all x ∈ X.

Proof. Letting y = 0 in (17), we get∥∥∥∥∥2 f
(x

2

)
− f (x)

∥∥∥∥∥ ≤ θ‖x‖r (19)

for all x ∈ X. So∥∥∥∥∥2l f
( x

2l

)
− 2m f

( x
2m

)∥∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥∥2 j f
( x

2 j

)
− 2 j+1 f

( x
2 j+1

)∥∥∥∥∥ ≤ m−1∑
j=l

2β2 j

2β1rjθ‖x‖
r (20)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (20) that the sequence {2n f ( x
2n )}

is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {2n f ( x
2n )} converges. So one can define

the mapping A : X→ Y by

A(x) := lim
n→∞

2n f (
x
2n )

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (20), we get (18).
It follows from (17) that∥∥∥∥∥2A

(x + y
2

)
− A(x) − A(y)

∥∥∥∥∥ = lim
n→∞

2β2n
(∥∥∥∥∥2 f

(x + y
2n+1

)
− f

( x
2n

)
− f

( y
2n

)∥∥∥∥∥)
≤ lim

n→∞
2β2n

∥∥∥∥∥ρ (
f
(x + y

2n

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥∥ + lim
n→∞

2β2nθ

2β1nr (‖x‖r + ‖y‖r)

= ‖ρ(A(x + y) − A(x) − A(y))‖

for all x, y ∈ X. So∥∥∥∥∥2A
(x + y

2

)
− A(x) − A(y)

∥∥∥∥∥ ≤ ‖ρ(A(x + y) − A(x) − A(y))‖

for all x, y ∈ X. By Lemma 3.1, the mapping A : X→ Y is additive.
Now, let T : X→ Y be another additive mapping satisfying (18). Then we have

‖A(x) − T(x)‖ = 2β2n
∥∥∥∥∥A

( x
2n

)
− T

( x
2n

)∥∥∥∥∥
≤ 2β2n

(∥∥∥∥∥A
( x

2n

)
− f

( x
2n

)∥∥∥∥∥ +

∥∥∥∥∥T
( x

2n

)
− f

( x
2n

)∥∥∥∥∥)
≤

2 · 2β2n
· 2β1r

(2β1r − 2β2 )2β1rnθ‖x‖
r,

which tends to zero as n→ ∞ for all x ∈ X. So we can conclude that A(x) = T(x) for all x ∈ X. This proves
the uniqueness of A. Thus the mapping A : X→ Y is a unique additive mapping satisfying (18).
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Theorem 3.4. Let r < β2

β1
and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f (0) = 0

and (17). Then there exists a unique additive mapping A : X→ Y such that

‖ f (x) − A(x)‖ ≤
2β1rθ

2β2 − 2β1r ‖x‖
r (21)

for all x ∈ X.

Proof. It follows from (19) that∥∥∥∥∥ f (x) −
1
2

f (2x)
∥∥∥∥∥ ≤ 2β1rθ

2β2
‖x‖r

for all x ∈ X. Hence∥∥∥∥∥ 1
2l

f (2lx) −
1

2m f (2mx)
∥∥∥∥∥ ≤ m−1∑

j=l

∥∥∥∥∥ 1
2 j f (2 jx) −

1
2 j+1

f (2 j+1x)
∥∥∥∥∥ ≤ 2β1rθ

2β2

m−1∑
j=l

2β1rj

2β2 j ‖x‖
r (22)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (22) that the sequence { 1
2n f (2nx)}

is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1
2n f (2nx)} converges. So one can

define the mapping A : X→ Y by

A(x) := lim
n→∞

1
2n f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (22), we get (21).
The rest of the proof is similar to the proof of Theorem 3.3.

By the triangle inequality, we have∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y)

∥∥∥∥∥ − ∥∥∥ρ (
f (x + y) − f (x) − f (y)

)∥∥∥
≤

∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y) − ρ

(
f (x + y) − f (x) − f (y)

)∥∥∥∥∥ .
As corollaries of Theorems 3.3 and 3.4, we obtain the Hyers-Ulam stability results for the additive ρ-
functional equation (16) in β-homogeneous complex Banach spaces.

Corollary 3.5. Let r > β2

β1
and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f (0) = 0

and ∥∥∥∥∥2 f
(x + y

2

)
− f (x) − f (y) − ρ

(
f (x + y) − f (x) − f (y)

)∥∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r) (23)

for all x, y ∈ X. Then there exists a unique additive mapping A : X→ Y satisfying (18).

Corollary 3.6. Let r < β2

β1
and θ be nonnegative real numbers, and let f : X → Y be a mapping satisfying f (0) = 0

and (23). Then there exists a unique additive mapping A : X→ Y satisfying (21).

Remark 3.7. If ρ is a real number such that − 1
2 < ρ <

1
2 and Y is a β2-homogeneous real Banach space, then all the

assertions in this section remain valid.
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[10] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707–710.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
[12] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal.

Appl. 2007 (2007), Article ID 41820, 13 pages.
[13] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
[14] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191–200.
[15] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1972.
[16] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[17] Z. Wang, Th. M. Rassias and R. Saadati, Intuitionistic fuzzy stability of Jensen-type quadratic functional equations, Filomat 28 (2014),

no. 4, 663–676..


