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Probability that an Autocommutator Element of a Finite
Group Equals to a Fixed Element

Zohreh Sepehrizadeha, Mohammad Reza Rismanchiana

aDepartment of Pure Mathematics, Shahrekord University, Shahrekord, Iran

Abstract. In this article we introduce a formula for the probability which an autocommutator element of
a finite group G, equals to a fixed element 1 of G and derive some properties of this formula. Moreover, we
obtain a lower bound and an upper bound for this probability in the special cases. This generalizes some
results of Das et al. in 2010 and Moghaddam et al. in 2011.

1. Introduction

The concept of commutativity degree started by Gustafson in 1975, which is probability that two
elements of a finite group G commute. In this article G denotes a finite group, H a subgroup of G, and 1 an
element of G. In [6], Moghaddam et al. have considered the probability Paut(H,G) for an element randomly
chosen of H, which is fixed by an automorphism randomly chosen of Aut(G). On the other hand, in [2],
Das and Nath have studied the probability

Pr1(H,G) =
|{(x, y) ∈ H × G : [x, y] = 1}|

|H||G|
,

where [x, y] = x−1y−1xy. We will study the ratio

P1aut(G) =
|{(x, α) ∈ G × Aut(G) : [x, α] = 1}|

|G||Aut(G)|
,

where [x, α] = x−1xα, is called autocommutator element of G (see also [7]). Moreover, we extend some of the
results obtained in [2]. We also develop and characterize a formula for probability of the pair (H,G), which
generalizes the formula for Pr1(H,G) given in [2].
Note that if H = G then Paut(H,G) = P1aut(G), which coincides with autocommutativty degree Paut(G) of
G, if we take 1 = 1, the identity element of G. We note that this case is treated in [7]. It may be recalled that

Paut(G) =
k
|G|

where k denotes the number of disjoint orbits of G under the group automorphism Aut(G)
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(see also [3–5] for commutativity degree and generalization). Among the other results, we particularly
determine an upper bound for relative autocommutativity degree of a finite group.
Let G be a group and Aut(G) be the full automorphisms group of G, for all α ∈ Aut(G) and 1 ∈ G, we have
the following map

Aut(G) × G −→ G
(α, 1) 7−→ 1α.

For an element 1 ∈ G, the set of automorphisms {α ∈ Aut(G) | 1α = 1 } denoted by CAut(G)(1) is a subgroup of
Aut(G) and the equivalence classes {1α |α ∈ Aut(G) } denoted by OrbAut(G)(1).
Let H be a subgroup of G, we introduce two subgroups of Aut(G) and H as follows, respectively,

CAut(G)(H) = {α ∈ Aut(G) | hα = h, ∀ h ∈ H },

CH(Aut(G)) = {h ∈ H | hα = h, ∀ α ∈ Aut(G) }.

In this notation we introduce a subgroup of G as follows,

L(G) = { 1 ∈ G | [1, α] = 1, ∀α ∈ Aut(G) },

which is called absolute centre of G, see also [6].

2. Main Results

In this section we first give the following definition which generalizes definitions of Das et al. and
Moghaddam et al., see [2, 6].

Definition 2.1. Let G be a finite group, H a subgroup of G and 1 an element of G then the probability P1aut(H,G)
is defined as follows:

P1aut(H,G) =
|{(x, α) ∈ H × Aut(G) : [x, α] = 1}|

|H||Aut(G)|
.

where [x, α] = x−1xα.

Let [H,Aut(G)] be the subgroup of G generated by autocommutators [x, α] = x−1xα with x ∈ H and
α ∈ Aut(G). Also, for the sake of simplicity let us write P1aut(H,G) = Paut(H,G). Clearly,

Paut(H,G) = 1 ⇐⇒ [H,Aut(G)] = {1}, and

P1aut(H,G) = 0 ⇐⇒ 1 < { [x, α] : x ∈ H, α ∈ Aut(G) }.

It is also easy to see that if CAut(G)(x) = {1} for all x ∈ H − {1} then

Paut(H,G) =
1
|H|
+

1
|Aut(G)|

−
1

|H||Aut(G)|
.

We now derive a computing formula, as generalization of Theorem 2.3 of [2], which plays a key role in the
study of P1aut(H,G).

Theorem 2.2. The following statement holds

P1aut(H,G) =
1

|H||Aut(G)|

∑
x∈H

x1∈OrbAG (x)

|CAut(G)(x)| =
1
|H|

∑
x∈H

x1∈OrbAG (x)

1
|OrbAG (x)|

,

where OrbAG (x) = { xα : α ∈ Aut(G) }.
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Proof. We have {(x, α) ∈ H × Aut(G) : x−1xα = 1} =
⋃

x∈H{x} × Tx, where Tx = {α ∈ Aut(G) : x−1xα = 1}. Note
that, for any x ∈ H, we have

Tx , ∅⇐⇒ x1 ∈ OrbAG (x).

Let Tx , ∅ for some x ∈ H. Fix an element α0 ∈ Tx, then α 7→ α−1
0 α defines an one to one correspondence

between the set Tx and CAut(G)(x). This means that |Tx| = |CAut(G)(x)|.
Thus, we have

|{(x, α) ∈ H × Aut(G) : x−1xα = 1}| =
∑
x∈H

|Tx| =
∑
x∈H

x1∈OrbAG (x)

|CAut(G)(x)|.

The first equality in the theorem follows from Definition 2.1.
For the second equality, consider the action of Aut(G) on G by the above discussion. Then, for all x ∈ G, we
have

|OrbAG (x)| = |Aut(G) : Stab(x)| =
|Aut(G)|
|CAut(G)(x)|

.

This completes the proof.

As an immediate consequence, we have the following generalization of the well-known formula Paut(G) =
k
|G|

, where k is the number of the disjoint orbits of G under the group automorphism Aut(G) (see also [6, 8]).

Corollary 2.3. If H is a characteristic subgroup of G, then

Paut(H,G) =
k(H)
|H|

,

where k(H) is the number of the disjoint orbits of H under the group automorphism Aut(G).

Proof. Note that Aut(G) acts on H, for all α ∈ Aut(G) and x ∈ H, we have the following map

Aut(G) ×H −→ H
(α, x) 7−→ xα.

The orbit of any element x ∈ H under this action is given by OrbAG (x), hence H is the disjoint union of these
classes. Therfore, we have

Paut(H,G) =
1
|H|

∑
x∈H

1
|OrbAG (x)|

=
k(H)
|H|

.

Note that for 1 = 1, the condition x1 ∈ OrbAG (x) is superfluous.

Lemma 2.4. (J. H Christopher and L. R. Darren [1]) Let G1 and G2 be two groups such that 1cd(|G1|, |G2|) = 1, then

Aut(G1 × G2) ' Aut(G1) × Aut(G2).

Remark 2.5. Let G = G1×G2, H = H1×H2, and for all hi ∈ Hi, i = 1, 2. One can easily see that any automorphism
α of Aut(Gi), (i = 1, 2) may be extended to an automorphism αe of Aut(G), in such a way that (1112)α

e
= 1α112, for all

11, 12 ∈ G. We denote all such extended automorphisms in Aut(G) by Aut(Ge
i ), which are one-to-one correspondence

with the ones in Aut(Gi). So it is clear that |Aut(Ge
i )| = |Aut(Gi)|, for i = 1, 2 and Aut(Ge

1) ∩ Aut(Ge
2) =< idG >,

Aut(Ge
1)Aut(Ge

2)CAut(G)(h1h2) ⊆ Aut(G). Hence

|Aut(Ge
1)Aut(Ge

2)||CAut(G)(h1h2)|

|Aut(Ge
1)Aut(Ge

2) ∩ CAut(G)(h1h2)|
=
|Aut(Ge

1)||Aut(Ge
2)||CAut(G)(h1h2)|

|Aut(Ge
1)Aut(Ge

2) ∩ CAut(G)(h1h2)|

=
|Aut(Ge

1)||Aut(Ge
2)||CAut(G)(h1h2)|

|Aut(Ge
1) ∩ CAut(G)(h1h2)||Aut(Ge

2) ∩ CAut(G)(h1h2)|

=
|Aut(Ge

1)||Aut(Ge
2)||CAut(G)(h1h2)|

|CAut(G1)(h1)||CAut(G2)(h2)|
≤ |Aut(G)|,
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which implies that
|CAut(G)(h1h2)|
|Aut(G)|

≤
|CAut(G1)(h1)||CAut(G2)(h2)|
|Aut(Ge

1)||Aut(Ge
2)|

, see also [6].

The following theorem is a generalization of the work of Moghaddam et al. which in turn is similar to
Theorem 2.1 of [6].

Theorem 2.6. Let H1 and H2 be subgroups of the finite groups G1 and G2, respectively. Let 11 ∈ G1 and 12 ∈ G2.
Then

P(11,12)aut(H1 ×H2,G1 × G2) ≤ P11 aut(H1 × G1)P12 aut(H2 × G2).

In particular, the equality holds when 1cd(|G1|, |G2|) = 1.

Proof. Put G = G1 ×G2, H = H1 ×H2 and 1 = (11, 12), for all 1i ∈ Gi and hi ∈ Hi, i = 1, 2. Then from Theorem
2.2 and the above remark, it follows that

P1aut(H,G) =
1
|H|

∑
h∈H

h1∈OrbAG (x)

|CAut(G)(h)|
|Aut(G)|

=
1

|H1||H2|

∑
h1h2∈H

hi1i∈OrbAGi
(hi)

|CAut(G)(h1h2)|
|Aut(G)|

where i = 1, 2.

≤
1
|H1|

1
|H2|

∑
h1∈H1

h111∈OrbAG1
(h1)

∑
h2∈H2

h212∈OrbAG2
(h2)

|CAut(G1)(h1)|
|Aut(G1)|

|CAut(G2)(h2)|
|Aut(G2)|

=
1
|H1|

∑
h1∈H1

h111∈OrbAG1
(h1)

|CAut(G1)(h1)|
|Aut(G1)|

1
|H2|

∑
h2∈H2

h212∈OrbAG2
(h2)

|CAut(G2)(h2)|
|Aut(G2)|

= P11 aut(H1,G1)P12 aut(H2,G2).

Now, using the assumption 1cd(|G1|, |G2|) = 1 and Lemma 2.4 the equality yeilds.

Next, we present the following proposition which is similar to Proposition 3.1 in [2].

Proposition 2.7. If 1 , 1 then

(i) P1aut(H,G) , 0 =⇒ P1aut(H,G) ≥
|CH(Aut(G))||CAut(G)(H)|

|H||Aut(G)|
,

(ii) P1aut(G) , 0 =⇒ P1aut(G) ≥
|L(G)|

|G||Aut(G)|
.

Proof. Let 1 = [x, α] for some (x, α) ∈ H × Aut(G). Since 1 , 1, we have x < CH(Aut(G)) and α < CAut(G)(H).
Consider the left coset T(x,α) = (x, α)CH(Aut(G))×CAut(G)(H) of CH(Aut(G))×CAut(G)(H) in H×Aut(G). Clearly,
|T(x,α)| = |CH(Aut(G))||CAut(G)(H)|, and [a, β] = 1 for all (a, β) ∈ T(x,α). This proves part (i).
Similarly, part (ii) follows with H = G.

Now by using Theorem 2.2, we are able to generalize Proposition 3.2 of Das et al. as follows:

Proposition 2.8. Let H be a subgroup of group G and 1 ∈ G then

P1aut(H,G) ≤ Paut(H,G)

with equality if and only if 1 = 1.
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Proof. By Theorem 2.2, we have

P1aut(H,G) =
1

|H||Aut(G)|

∑
x∈H

x1∈OrbAG (x)

|CAut(G)(x)|

≤
1

|H||Aut(G)|

∑
x∈H

|CAut(G)(x)| = Paut(H,G).

Clearly, the equality holds if and only if x1 ∈ OrbAG (x) for all x ∈ H, that is the equality holds if and only if
1 = 1.

As a generalization of Proposition 3.3 of [2], we establish the following theorem.

Theorem 2.9. Let p be the smallest prime dividing |Aut(G)|, and 1 , 1. Then,

P1aut(H,G) ≤
|H| − |CH(Aut(G))|

p|H|
<

1
p

.

Proof. Without loss of generality, we may assume that CH(Aut(G)) , H. Let x ∈ H be such that x1 ∈ OrbAG (x).
Then, Since 1 , 1, we have x , CH(Aut(G)) and |OrbAG (x)| > 1. Since |OrbAG (x)| = |Aut(G) : Stab(x)| = |Aut(G)|

|CAut(G)(x)| ,
so |OrbAG (x)| is a divisor of |Aut(G)|. Therefore, |OrbAG (x)| ≥ p. Hence, by Theorem 2.2, we have

P1aut(H,G) ≤
1
|H|

∑
x∈H

x1∈OrbAG (x)

1
p
≤
|H| − |CH(Aut(G))|

p|H|
<

1
p

,

which completes the proof.

Proposition 2.10. Let H1 and H2 be subgroups of a group G and H1 is contained in H2, then

P1aut(H1,G) ≤ |H2 : H1|P1aut(H2,G).

The equality holds if and only if x1 < OrbAG (x) for all x ∈ H2.

Proof. By Theorem 2.2, we have

|H1||Aut(G)|P1aut(H1,G) =
∑
x∈H1

x1∈OrbAG (x)

|CAut(G)(x)|

≤

∑
x∈H2

x1∈OrbAG (x)

|CAut(G)(x)|

= |H2||Aut(G)|P1aut(H2,G).

The condition for equality follows immediately.

Immediate consequence of the above proposition is as follows:

Corollary 2.11.
P1aut(H,G) ≤ |G : H|Paut(G),

with equality if and only if 1 = 1 and H = G.
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