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Abstract. We study the convergence analysis of a Picard-S iterative method for a particular class of weak-
contraction mappings and give a data dependence result for fixed points of these mappings. Also, we
show that the Picard-S iterative method can be used to approximate the unique solution of mixed type
Volterra-Fredholm functional nonlinear integral equation

t i by b
x(t):F(t,x(t),f f K(t,s,x(s))ds,f H(t,s,x(s))ds).

n

Furthermore, with the help of the Picard-S iterative method, we establish a data dependence result for the
solution of integral equation mentioned above.

1. Introduction

Most of phenomena that occur in nature can be formulated by nonlinear mathematical equations or
systems which can be easily reformulated as fixed point equations of type

Tx = x. (1)

where T is a self-map of an ambient space X.

The study of nonlinear equations or systems, has become a rapidly growing research area over the years.
Thus a considerable attention has been paid to solving equations of form (1) by using different techniques
such as direct and iterative methods. Indeed, due to various reasons, direct methods may be sometimes
impractical or fail in solving equations. In such cases, iterative methods become a viable alternative. As a
result, the design of fixed-point iterative methods for solving nonlinear equations has acquired a remarkable
development in the last years, see, e.g., [1-24].

In this paper, we show that a Picard-S iteration method [7] can be used to approximate fixed point of
weak-contraction mappings. Then we show that this iteration method is equivalent and converges faster
than CR iteration method [4] for the aforementioned class of mappings. By providing an example, it is
shown that the Picard-S iteration method converges faster than CR iteration method and hence it is also
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faster than all Picard [18], Mann [13], Ishikawa [10], Noor [14], SP [17], S [1] and some other iteration
methods in the existing literature when applied to weak-contraction mappings. Furthermore, a data
dependence result is proven for fixed point of weak-contraction mappings with the help of the Picard-S
iteration method. Finally, as applications of the Picard-S iteration method, we show that the Picard-S
iterative method converges to the unique solution of a mixed type Volterra-Fredholm functional nonlinear
integral equation and we establish a data dependence result for the solution of this integral equation with
the help of the iterative method mentioned.

Throughout this paper the set of all positive integers and zero is shown by IN. Let B be a Banach space,
D be a nonempty closed convex subset of B and T a self-map of D. An element x. of D is called a fixed

point of T if and only if Tx, = x.. The set of all fixed point of T denoted by Fr. Let {a;}:’zo, i€1{0,1,2} be real

sequences in [0, 1] satisfying certain control condition(s).
Renowned Picard iteration method [18] is formulated as follow

Po € D,
{ Pus1 = Tpy, n €N, )

and generally used to approximate fixed points of contraction mappings satisfying: for all x, y € B there
exists a 6 € (0,1) such that

|7 = Ty < o flx - o] 3)
The following iteration methods are known as Noor [14] and SP [17] iterations, respectively:
wo €D,
Wps1 = (1 - ag) wy +a0Td,, A
Oy = (1 - a,lq) wy, + aiTpn, 4)
Pn = (1 - aﬁ) wp +a:Tw,, n €N,
qo € D,
Gns1 = (1 - ag) rn+aTry, 5
p = (1 - aﬁ)s,1 +alTs,, @)
S, = (1 - ai) gn + a2Tqn, n € N,

Remark 1.1. (i) If a2 = 0 for each n € IN , then the Noor iteration method reduces to iterative method of Ishikawa
[10].

(ii) If a% = 0 for each n € N, then the SP iteration method reduces to iterative method of Thianwan [22].

(iii) When a., = a*> = 0 for each n € IN, then both Noor and SP iteration methods reduce to an iteration method
due to Mann [13].

Recently, Giirsoy and Karakaya [7] introduced a Picard-S iterative scheme as follows:

Xg € D,
Xn+l = T]/n,
Yn = (1 - a,lq) Tx, +alTz,, (6)

Zy = (1 - aﬁ)xn +a2Tx,, n €N,
The following definitions and lemmas will be needed in obtaining the main results of this article.
Definition 1.2. [2] Let {a,};_, and {b,},_, be two sequences of real numbers with limits a and b, respectively. Assume
that there exists
la, — al _
|bn - bl

(i) If 1 = O, the we say that {a,},., converges faster to a than {b,},_, to b.
(ii) If 0 < | < oo, then we say that {a,},., and {b,},—, have the same rate of convergence.

lim I 7)
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(e8]

Definition 1.3. [2] Assume that for two fixed point iteration processes {u,},., and {v,},., both converging to the
same fixed point p, the following error predictions

||u,, - pH <ay,foralln € N, (8)

llon = p|| < b forallneN, )

are available where {a,},, and {b,},_, are two sequences of positive numbers (converging to zero). If {a,},., converges
faster than {b,},—,, then {u,}, converges faster than {v,},., to p.

Definition 1.4. [16] Let (B, ||'|]) be a Banach space. A map T : B — B is called weak-contraction if there exist a
constant 6 € (0,1) and some L > 0 such that

|7 = Tyl| < o flx = | + Ly - Ty

I,for all x, y € B. (10)

Definition 1.5. [3] Let T,T : B — B be two operators. We say that T is an approximate operator of T if for all x € B
and for a fixed € > 0 we have

| Tx - Tx| < e. (11)
Lemma 1.6. [23]Let {B,},, and {pu},., be nonnegative real sequences satisfying the following inequality:

Bre1 < (1= An) B + P, (12)
where Ay, € (0,1), forall n > ng, Y ;g Ay = 00, and ﬁ—: — 0asn — oo. Then limy_e fr = 0.

Lemma 1.7. [20] Let {B4}.-., be a nonnegative sequence for which one assumes there exists ny € IN, such that for all
n > ng one has satisfied the inequality

ﬁn+1 < (1 - [Jn)ﬁn + ‘Un]/n/ (13)
where i, € (0,1), foralln € N, Y, y, = coand y, > 0, Vn € IN. Then the following inequality holds
n=0

0 < limsup B, < lim sup y,. (14)

n—oo n—oo

2. Main Results

Theorem 2.1. Let T : D — D be a weak-contraction map satisfying condition (10) with Fr # 0 and {x,},_, an

(o]

iterative sequence defined by (6) with real sequences {a;}n:O’ i € (1,2} in [0,1] satisfying Y.;°aja; = co. Then
{xn}, converges to a unique fixed point u*of T.

Proof. Uniqueness of u* comes from condition (10). Using Picard-S iterative scheme (6) and condition (10),
we obtain

2w =l < (1= a2) Il — 'l + a3 I T, — Tor'

< (1—a2) vy — u'll + @20 I, — ')l + a2L | = T’

= [1-22@ -9l -1, (15)
||yn —u'|| < (1 - ai) | Tx, — Tu*|| + a}l [Tz, — Tu*||

< (1-ab) ol —uwll +akdllz, — w'll, (16)
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e = 'l < 6|y — 0| (17)
Combining (15), (16) and (17)
Fr —w'll < 8% [1 = aja? (1 = 6)] Il — w'll. (18)
By induction
e =l < @] [1 - ata? (0= )] o =l
< 52D ||xy — ]| e~ 00 Tioaia?. (19)
Since Y;7 aja; = oo,
e 1-OT%% 5 0 as 1 — oo, (20)
which implies lim, e [lx, —u*|l. O
Theorem 2.2. Let T : D — D with fixed point u* € Fr # () be as in Theorem 2.1 and let {q,}," ,, {xa}, be two

iterative sequences defined by SP (5) and Picard-S (6) iteration methods with real sequences {ai,}:zo, i€f{0,1,2}in

[0, 1] satisfying ¥.i_oa.a; = oo. Then the following are equivalent:
(1) limy, o0 [Jx, — u*]| = 0;
(if) imyyeo ||g.0 — 17| = 0.

Proof. (i)=(ii): It follows from (5), (6), and condition (10) that

||xn+1 - qn+1|| = ”(1 - a%) (Tyn —1n) + a (Ty, — Try) (21)
< (1 - a?l) ||Tyn - rn“ + ag ||Ty,, - Tr,,”
< [1-a@=8)]lyn — rall + [1 = a2 0= 1)] s — Twa,
lyn=rall = [|(1=a8) (T = 50) + 0} (T2, — T (22)
< (1=a})ITx, = sll + al Tz, — Ts,l
< (1= @) ITx, = sall + @6 llzn = sull + a3 Lz = Tzl
ITxo=sall = (1= a2) (T2 = 0u) + @2 (Tx, = Tqu) 23)
< [1-a2@-0)]|x—aul| +[1 - 22 A = L)]Ils — Tl
Iz = sull < (1 - ai) ||xn - q,,H +a> “Txn - an” (24)
< [1 - a% 1- 6)] ”xn - q,,H + af,L [, = Txyl| .

Combining (21), (22), (23), and (24)
s = o] < [1-ah 1= )][1-a} A=) [1 -} (1 = 8)][|xu - g (25)
+[1-a5 - 0)]{(1-a})[1-a2 @ -L)] +ahaZ6L} Ixy — Txal
+ [1 —a2(1- 6)] a'L ||z, — Tzl + [1 —a(1- L)] [y = Ty |-
It follows from the facts 6 € (0,1) and a’, € [0,1], ¥n € N, i € {0, 1,2} that

[l—ag(l—é)][l—a}q(l—é)][l—af,(l—é)]<1—a,11aﬁ(1—(5). (26)
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Hence, inequality (25) becomes
[ner = quea]| < [1-aya2 @ = 0)] |l — g
+ [1 —a%(1- 5)] {(1 —a}) [1 —2(1- L)] + aiaﬁéL} s — Tl
+[1-a8 = 0)]arLllzy = Tzull + [1 = a5 A = D)]||yn = Twa|.

Denote that
B =l - g,
Ay 1 =ala?2(1-06)€(0,1),
Pn = [1 - ag 1- 6)] {(1 - a}i) [1 - a,zl 1- L)] + a}qa%éL} [l = Txyl|

+[1 = (1 = 8)|alLllzn = Tzl + [1 = 2% (1 = D)][|yn = Tya] -
Since lim,, e ||x;, — t*|| = 0 and Tu* = u*

lim ||, = T = lim [y = Tya| = lim Jlzs ~ Tz4ll = 0,

2833

(27)

(28)

(29)

which implies §* — 0as n — co. Therefore, inequality (27) perform all assumptions in Lemma 1.6 and thus we

obtain lim,,_,0 ||nxn - q,,H = 0. Since
n— W < ||y —gul| +lIxp —u'|l > 0asn — oo,
I = 7)) < Jlw = ]+ w201

lim,,—e0 ||q,, — u*“ =0.
(ii)=(i): It follows from (5), (6), and condition (10) that

|gis1 = xasa|| = |rn = Ty + a5 (Tr = 1)
< Ol[ru =yl + (1 +a + L) llr = Tral,
Ira=vall < (1= a})llsw = Tl + a} I Ts, = Tzl
< (1=ay)lise = Txall + @6 llsn = zall + ayLllsy = Tsill,
llsn = Txall < TSy = Txull + llsn — T'snll
< o ”511 - xn” + (1 + L) ”Sn - Tsn”
< 8|gn = x| + 643 | T = qul| + AL+ D llsy = Tsill,
oozl < (1)l + a2 T 7|
< [1 - afl 1- 6)] ||q,1 - x,,H + af,L an - an” .

Combining (31), (32), (33), and (34)
[gner = xnaa|] < 821 =akad (1= 6)][lgn - 2
+0%a2 [1-a} (1 = )] [lg. - Taa|
+(1+aS +L)lIry = Trall +6(1 = al + L) llsy — sl
Since 6 € (0,1)

*[1-ata2 (1-0)] <1-ala(1-50).

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Hence, inequality (35) becomes
”(]nﬂ - xn+1|| < [1 - a},a% 1- 6)] ”q;q - xn” (37)
+62ai [1 - a}l 1- L)] “qn - an”
+(1+a) + L) lirw = Trall + 6(1 = ay + L) lls — Ts,ll.

Denote that
,Bn L= ||4n - xn’ ’ (38)
Ap @ =ald2(1-06)€(0,1),
Pn @ = 6261% [1 - ai 1- L)] ”q,, - Tq,,”

+(1+a% + L) lirw — Trall + 6 (1 = a} + L) llsw — Tsull.

=0and Tu* = u*

Since lim,,_, o ||qn -u

Lim [|g — T[] = Lim [Iry = Tryll = lim fls, = Ts,ll =0, (39)

On

which implies 5= — 0 as n — co. Therefore, inequality (37) perform all assumptions in Lemma 1.6 and thus we
obtain lim,,_,0 ||qn - an = 0. Since

llxx, — u’|] < an - xn” + an - u” —0asn — oo, (40)
imy, e |lx, — || =0. O

Taking R. Chugh et al.’s result ([4], Corollary 3.2) into account, Theorem 2.2 leads to the following
corollary under weaker assumption:

Corollary 2.3. Let T : D — D with fixed point u* € Fr # 0 be as in Theorem 2.1. Then the followings are equivalent:
1)The Picard iteration method (2) converges to u”,
2) The Mann iteration method [13] converges to u*,
3) The Ishikawa iteration method [10] converges to u*,
4) The Noor iteration method (4) converges to u*,
5) S-iteration method [1] converges to u*,
6) The SP-iteration method (5) converges to u*,
7) CR-iteration method [4] converges to u”,
8) The Picard-S iteration method (6) converges to u*.

Theorem 2.4. Let T : D — D with fixed point u* € Fr # 0 be as in Theorem 2.1. Suppose that {w,}y—o, {qn}s.o and
{x, )} are iterative sequences, respectively, defined by Noor (4), SP (5) and Picard-S (6) iterative schemes with real
sequernces {ai,}:’:O c [0,1], i € {0,1,2} satisfying

()0<a, < 1,

(ii) lim,_, ai, = 0.

Then the iterative sequence defined by (6) converges faster than the iterative sequences defined by (4) and (5) to a
unique fixed point of T, provided that the initial point is the same for all iterations.

Proof. From inequality (19), we have

n
bt = 0l < 20D o | [ [1 - afa? (1 - 9)] (41)
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Using (5) we obtain

||qn+1 - u*” = ||(1 - a(,),) rn+ agTrn - uH
> (1=a9)llry = wll = a I Tr,y — T’
> [1-aS@+0)]lrs - vl
> [1-a 1+ 0)]{(1-a})llsw — wll = @y lsn —
= 1= +0)]|[1-a,@+0)]lls, -
> [1 -ad(1+ 6)] [1 —al(1+ (5)] {(1 - aﬁ) ||qn - u*H — a5 ||qn - u*”}
= [1-dfa+o)][1-a,a+o)|[1-a 1 +0)]|g.— v
> Jgo-w|[][1-ada+o)][1-aia+0)]|[1-a20+0)].

k=0
Using now (41) and (42)
[ 6Dl — Il Ty [1 - afa? (1~ 0)]

< - :
g =l g - u*”kg() [1-@+o)|[1-ala+0)|[1-a21+0)]

Define

) S0+ T [1 _ allfai 1- 5)]
[t a+o))[1-ata+ o[- o)

By the assumption

6n+1
n
&2 T [1-ata2(1-6)]
. IS [1-22+8)][1-al +6) | [1-a2(1+6)]
= lim
n—co 520D T [1-ala2(1-0)]
[T} [1-a2(1+6) ][ 1-a} (1+0) [ [1-a2(1+0) ]

?[1-al, a2, (1-0)]

lim

n—oo

- lim n+1"n+
e 1-a) A+0)|[1-al,, (1+0)|[1-a2,, A +0)]
= <L

2835

(42)

(43)

(44)

(45)

It thus follows from ratio test that }, 6, < co. Hence, we have lim,,_,, 6, = 0 which implies that the iterative

n=0

sequence defined by (6) converges faster than the iterative sequence defined by SP iteration method (5).
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Using Noor iteration method (4), we get

lona =wll = (1= ad)wn +aTa, - u (46)
> (1- )l(un—uH a | T@, — Tu|
> (1-ab)llwn — 'l = a3 llo, — u
> [1—a —aoé(l—a )]Ha),,—u ||—aoal(52 Hpn u’
> {1-af-ab5(1-a})—adato? [1-a2 (1 - )] }Hlw, — '
> {1-a)-a35[1-a)(1-0)]}llw,—
> [ — a5 (1 + )] llw, — 'l
>
> ||w0—u*||ﬁ[1—ag(1+a)].
k=0
It follows by (41) and (46) that
i =l _ Ol = T [1 - afe (1 - 0)] )
o =l g i F1 [1 - 1+ 0)]
k=0
Define

52(n+1) 71_ _ 1-6
o, < 20 M1 - aiat(1 -9 (48)

[1[1-a21+0)]

By the assumption

o [1 - a:z+1 31+1 1- 6)]

lim 271 = lim (49)
n—oo 9” n—oo [1 _ a 1 + 6)]
= %<1

It thus follows from ratio test that }, 6, < co. Hence, we have lim, ,, 8, = 0 which implies that the

iterative sequence defined by (6) Cor{verges faster than the iterative sequence defined by Noor iteration
method (4). O

By use of the following example due to [24], it was shown in ([4], Example 4.1) that CR iterative method
[4] is faster than all Picard (2), S [1], Noor (4) and SP (6) iterative methods for a particular class of operators
which is included in the class of weak-contraction mappings satisfying (10). In the following, for the sake
of consistent comparison, we will use the same example as that of ([4], Example 4.1) in order to compare the
rates of convergence between Picard-S (6) and CR [4] iteration methods for the weak-contraction mappings.
In the following example, for convenience, we use the notations (PS,) and (CR,) for the iterative sequences
associated to Picard-S (6) and CR [4] iterative methods, respectively.

Example 2.5. Deﬁne a mapping T : [0,1] — [0,1]as Tx = %. Leta) = a}, = a2 = 0, forn = 1,2,...,24 and
a=al =a% = foralln>25
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It can be seen easily that the mapping T satisfies condition (10) with the unique fixed point O € Fr. Furthermore,
it is easy to see that Example 2.5 satisfies all the conditions of Theorem 2.1. Indeed, let xo # O be an initial point for
the iterative sequences (PS,) and (CR,,). Utilizing Picard-S (6) and CR [4] iteration methods we obtain

1(1 4 T(1 2
psi = 5(3-um==1l(a 1) 0
k=25
1 1 4 8
CR, = |53-—=-—+ X
-3
(1 1 4 8)
T B L . (51)
k_l_zls(2 Vi ko kvk
It follows from (50) and (51) that
n
1 2
___x n
PS, -0 kg5(4 ) ~ (k-8) Vk
ICR, =01 (1 1 4. s\, sr2(kvk-2k—8Vk+16

n (k—8)\/E n \/%

= ) (52)
wn2(VE-2)(-8)  x2(Vk-2)
For all k > 25, we have
(k-2)(Vk-4)
= > 1
4
= (k-2)(Vk-4)>4
= k(Vk-4)>2(Vk-2)
S Vk-4 1
2(Vk-2) k
= i<1—1, (53)
2(Vk-2) k
which yields
PS, =0l _T7_ Yk _T (1_1)2% (54)
ICR,, =0l k:ZSZ(VE_Z) 2 AN
Therefore, we have
. IPS, -0 _
M iCR, —0) ~ ¥ %)

which implies that the Picard-S iterative scheme (6) is faster than the CR iteration method [4].
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Table 1: Comparison of the rate of convergence of the Picard-S iteration and CR iteration methods under the same hypothesis given

in Example 2.5 with xg = x1 = -+ = xp4 = 0.5.
No. of Iterations  Picard-S Iteration CR Iteration
25 0.08333333330 0.09862528487
26 0.01416666666 0.02011955811
27 0.002451923072 0.004232775522
28 0.0004313568364 0.0009160742556
29 0.00007702800650  0.0002035109758
30 0.00001394472532  0.00004631908335
31 0.2556532976 10~  0.00001078210668
32 0.4741956326 10~  0.2563038247 10~°
33 0.8891168110 1077  0.6213252692 10~°
34 0.1683933354 1077  0.1534119607 10~°
35 0.3219284354 10~8  0.3853815295 1077

Having regard to R. Chugh et al.’s result ([4], Example 4.1), L.B. Ciric et al.’s results [5] and Example 2.5
above, we conclude that Picard-S iteration method is faster than all Picard (2), Mann [13], Ishikawa [10],
S [1], Noor (4) and SP (5) iterative methods. We are now able to establish the following data dependence
result.

Theorem 2.6. Let T with fixed point u* € Fr # ( be as in Theorem 2.1 and T an approximate operator of T. Let
{xn)ie, be an iterative sequence generated by (6) for T and define an iterative sequence {x,},, as follows

X0 €D,
yn+1 = ﬁn/
Yn = (1 - a,lq)?fn + a}fz“n,
Zn = (1 - aﬁ)fn + aﬁﬁn, neN,

(56)

where {afq}zo, i € {1,2} be real sequences in [0,1] satisfying (i) 3 < ala2 for all n € N, and (ii) ¥, aha’ = co. If

Tu* = u* such that x,, = u* as n — oo, then we have

n=0

o -7 < 12, (57)
where € > 0 is a fixed number.
Proof. 1t follows from (6), (10), (11), and (56) that
||zn —En|| < (1 - a%) ||xn —E,H +a> “Txn _;an”
< [l a2+ aﬁé] ”xn - 35”” +a2L|lx, — Tx,|| + a2e, (58)
lvn =3l < (1=m) ol ~ 3+ 0l ~ ]
+(1—al) Ll — Txyll + alLllzy — Tzl
+ (1 - a,lq) e+ale, (59)
v ol < 6l =Tl + = T+ <6o>
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From the relations (58), (59), and (60)
||Xn+1 —'fml“ < & [1 —ala®(1- 6)] ||xn —'fn”
+{aha2L + (1 - a}) SL} I, — T,
+L|[yn — Tyu|| + ahOL llzu — Tzall

+araidte + (1 - a},) o +arde + e. (61)

Sinceal, a2 € [0,1] and } <a}a? foralln € N

1-aya? <ala?, (62)
1- a}l <1- aia% < a;ai, (63)
1< 2ala?. (64)

Use of the facts 6, 6> € (0,1), (62), (63), and (64) in (61) yields

||xn+1 —3?”“” < [1 —ala®(1- 6)] Hx,, — 3?,1”

sl (1) {L(S (1 + 6) ||, — Tl

1-6

2L|yn = Tyu|| + 26L llzs — Tzall + 5¢
’ 1-06 ’ (65)
Define
ﬁn L= “xn _an ’ (66)
a : =aya (1-06)€(0,1),
LS (1 + 6) llxn = Txull + 2L ||y = Tyul| + 20L |z — Tzall + 5¢
Voot = - > 0.

Hence, the inequality (65) perform all assumptions in Lemma 1.7 and thus an application of Lemma 1.7 to
(65) yields

0 < limsup ”xn —3?,,” (67)
n—o0
L5 (1 +6) llxty — Txull + 2L ||y = Tyu|| + 2L 1lzs — Tzall + 5¢
< limsup T35 .

We know from Theorem 2.1 that lim,,_,., x,, = ©* and since Tu* = u*
lim ||, = Tl = lim [y, = Tya| = lim [lz — Tzll = 0. (68)
Therefore the inequality (67) becomes

5¢
1-6

* ~%

u < (69)
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Applications of Picard-S Iterative Method

In this section we consider the following mixed type Volterra-Fredholm functional nonlinear integral
equation, see [6]:

t i by bin
x(t):F(t,x(t),f f K(t,s,x(s))ds,f H(t,s,x(s))ds), (70)

m

where [a1;b1] X -+ - X [@;;b:] be an interval in R™, K, H : [a1;b1] X - -+ X [a@n;b0] X [a1;01] X -+ - X [@y;6m] X R > R
continuous functions and F : [ay;b1] X - - - X [@m;bm] X R® = R.

We suppose that the following conditions are fulfilled:
(A1) K, H € C([ay;b1] X -+ - X [ap;bm] X [a1;01] X -+ - X [a;b] X R);
(A2) F € C([ayba] X -+ X [ansbu] X R?);

(A3) there exist nonnegative constants «, f8,  such that
IF (¢, u1,01,w1) = F (t, 12,02, )| < afuy — wp| + Bloy — 02| + y |y — wol, (71)

forall t € [ay;b1] X -+ X [ap;bm], ui, v;, w; € R, i=1,2;
(A4) there exist nonnegative constants Lx and Ly such that

IK(t,s,u) — K(t,s,v) < Lg |u—1l, (72)

|H (t,s,u) —H(t,s,v)| < Ly |u -1, (73)
forallt, s € [a;;b1] X -+ X [am;bw], u, v €R;
(As) a + (BLk + yLy) (b1 —a1) -+ - (b — am) < 1.

By a solution of the equation (70) we understand a function x* € C ([a1;b1] X - - - X [2;b]).
In the following result, it has been shown that the equation (70) has a unique solution.

Theorem 2.7. [6] Assume that the conditions (A1) — (As) are satisfied. Then the equation (70) has a unique solution
x* € C(lay,b1] X - - - X [am;b]).

Now we are in a position to give the following result.
Theorem 2.8. We consider the Banach space B = C ([a1;b1] X - - - X [aw;b], |I-|l), where ||| is the Cebyshev’s norm.

Let {afq};ozo, i € {1,2} be real sequences in [0,1] satisfying ¥.;2qa,a; = oo and let {x,},_, be an iterative sequence
defined by Picard-S iteration method (6) for the operator T : B — B defined by

t f by b
T(x)(t):F(t,x(t),f f K(t,s,x(s))ds,f H(t,s,x(s))ds), (74)

where F, K, and H be defined as above. Assume that the conditions (A1) — (As) are fulfilled. Then the equation (70)
has a unique solution, say x*, in C ([a1,b1] X - - - X [a,;b,,]) and Picard-S iteration method (6) converges to x*.

Proof. We will show that x, — x*asn — co.
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From (6), (74), and assumptions (A1)-(A4), we have that

s =1 = ||[Tyn = x| = |T () () - T () ®)]

t tn by b

- ‘F(t,yn(t),f f K(t,s,yn<s>>ds,f f H(t,s,yn<s>>ds)
" t1 o tm h bl umbm

—F(t,x* (t),f f K(t,s,x*(s))ds,f f H(t,s,x* (s))ds)

< a|yn(t)—x*(t)|
t i 1 i
+ﬁf f K(t,s,yn(s))ds—f f K(t,s,x" (s))ds
by ﬂb ) by " b
| [ [ THGsmonds [T [T HEsx @)
m | . ay Am
< 04|yn(t)—x*(t)|+ﬁf f )K(t,S,yn(s))—K(t,s,x*(s))|ds
by bin
+yf f ’H(t,s,yn (s)) —H(t,s,x" (s))(ds
ty tm
< a|yn(t)—x*(t)|+ﬁf f L |y ) - % ()| ds
b i
+yf f LH|yn(s)—x*(s)|dS
< [a+(BLx +yLu) (b —a1) -+~ (b — an)] ||y — x|, (75)
lya-x|| < (1- )|T<xn><t>— X) (O] +ah |T (@) () = T () (1)
b1
= (1 (t x, (1), f f tsxn(s))dsf f H(t,s,x, (s )
by "
—F(t,x*(t),f f K(t,s,x*(s))ds,f f H(t,s,x*(s))ds)
f ' o " by " b
+a}, F(t,zn(t),f f K(t,s,zn(s))ds,f f H(t,s,zn(s))ds)
. . m N ar bmﬂm
—F(t,x*(t),f f K(t,s,x*(s))ds,f f H(t,s,x*(s))ds)
< [a+ (BLic+yLir) 0 = a0) -+ (b — )] (1 = ab) o =
+[a + (BLx + yL) (by = a1) - (b = a)] 4y, ||z, = X711, (76)
lze =l < (1-a2)lbey = %Il + a3 1T, — T

IA

(1 - aﬁ) lxy, — x"|| + [a + (BLk + yLu) (b1 — a1) - - - (by — a)] aﬁ I, — x|
= {1 —a2(1 - [a+ (BLk +yLy) (b1 —a1) -+ (by — um)])} [l = x7|I, (77)
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Combining (75)-(77)

Ixus1 =X < [a+ (BLk + yLu) (b1 — 1) -+ (b — a)]* (78)
x (1= aya; (1= [a+ (BLx + yLir) (b1 = @) -+ (b = @)D} I = X711,

or, from Assumption (As)

s = X1l < {1 = apal (1= [+ (BLic + yLir) (b = a1) -+ (b = a,) D} e = %71 (79)
Inductively
Ixxp1 = x7|| < g — x7| H::O —aja; (1 - [a+ (BLk + yLy) (b1 —a1) -+ (b — ﬂm)])} . (80)

Since afq €[0,1], for all n € N and for each i € {1, 2}, assumption (As) yields
—ayay (1= o + (BLx + yLi) (by = a1) -+ (b — aw)]) < 1. (81)
Utilizing the same argument as in the proof of Theorem 2.1, we obtain
Benst = X1 < llxg = x| e (L Plentn)rma)-Coman ) R i, (82)
which yields lim, e [|x, —x*|| =0. O

We now prove the data dependence of the solution for the integral equation (70) with the help of the
Picard-S iterative method (6).

Let B be defined as in Theorem 2.8 and let T, T : B — B be two operators defined by

b1 i
T(x)() = (t x(t), f f K{(t,s,x(s))ds, f H(t,s,x(s))d ), (83)

t tn by i —
’T‘(x)(t>=F(t,x<t>,f f K(t,s,x<s>)ds,f H(t,s,x(s»ds), (84)

where K, K, H, H € C([a1 ;511 X - - X [ap;b] X [a1;01] X - -+ X [a;b,0] X R).

Theorem 2.9. Let B, F, K, H be as in Theorem 2.8 and {x,},.—o, {Xu} = be two iterative sequences defined by Picard-S
iterative methods (6) and (56) associated to T and T respectively. Let {a;}nzo, i € {1,2} be real sequences in [0,1]
satisfying (i) 3 < ala2 for alln € N, and (ii) Z ala = oo. We suppose further that:

(iii) there exist nonnegative constants &, and &5 such that

|I<(t, s,u) — K(t,s, u)) <e, (85)

|H(t, s,u)— H(t,s, u)| < &, (86)

forall u € Rand for all t,s € [a1;b1] X - -+ X [ay;bm]. If x* and X* are solutions of the corresponding equations (83)
and (84) respectively, then we have that

5 (ﬁgl + sz) (bl - 611) e (bm - am)
[0( + (ﬁLK + VLH) (bl - (11) e (bm - am)] .

(87)
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Proof. It follows from (6), (56), (83), (84), and assumptions (A1)-(A4) and (iii) that

||xn+1 - xn+1||

”yn _?nH

IA

IA

IA

IN

IN

IA

IA

Ty = T

t i by bin
‘F (f, Yu (8), f e f K(t,s,yn (5))ds, f e f H(t,s,yn (5)) ds)
t i by by
#(og, [ [ Resmonas [ [T H6sTo)w)

alyn () = T ()
+ﬁf f K (t,5, yn (5)) = K(t,5, Y0 ()| ds

by b —
+yf f H (8,5, v (9)) = H (t,5, 7 ()] ds
o[y (8) = 5 (1)
t Em T
+f f f (Kt 5, 3 (6)) = K (85, T )] + [K (15,7 () = K (8,5, 7 (5))] ) s

by Dy —
4y f f (H (65 v ) = H (65,7 )] + |H (15, T ) H (1,5, 7 5))]) s

MAGERG]

t] tm

+ﬁf f (L[ ) = 7 9)] + 1) s
by Dy

+yf f (Lt [y (6) = T ()] + £2) ds

a[lyn =%

+B (LK [y = V| + 61) (b1 —ar) -+~ (bw — am)

+y (Lt [yn = Tnl| + £2) (01 = @2) -+ (b — )

[a + (BLk + yLy) (b1 = a1) - (b — a)] |y = V|

+(Ber + yea) (b —ar) -+ - (b — am) (88)

(1-a}) | Tx, = T + a} || T2 — 72|

t i
(1_a;){a|xn(t)—§n(t)1+ﬁf f K (t,5, % () = K (t,5, % (5))| ds

by b —
+Vf f |H(t,s,xn(s))—H(t,s,Yn(s))ws}

+a

,11{04|zn ) -Z, (t)(+‘3ftl...ftm IK (t,5,20 5)) - K (1,5, % (5))] ds

by Din
+yf ... f |H (t,s,2,(s)) — ﬁ(t, S, Zn (S))| ds}
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< (1—ai){a|xn(t)—’fn(t)|+ﬁfu;tl---fa:l (Lin (9 =% (9] + 1) ds
4y f h f b (L [t )~ % (9)] + a}ds}
a! {a 2 () %, (1) +/3f: f (Lic |20 (9) = Z, ()] + e} s
4y f " f b (Lit |2 ()~ 5 )] + Ez}ds}
< [+ (BLx+yLi) (01 —a1) -~ (by — an)] {(1 = ab) [0 = %al| + ab 20 = 2}

+ (;881 + 7/52) (by —ay) -+ (by —am),

lzo =2 < {1-a2(Q—[a+ (BLc +yLu) (b1 = a1) - (0w — @)} |xn — %
+a2 (Ber + €2) (b — @) -+ (b — @) .

Combining (88)-(90)

”xﬂ+1 _}’Vh‘l” < [(X + (;BLK + yLH) (by —ay) - (by — am)]z (1 - a}l) ”xn _an“

+ay {1 - a2 (1= [a + (BLx + yLu) (b1 = a1) - (b — am)D} [xa = %

+{ata? [+ (BLx + yLir) (b1 — a1) <+ (b — )]’
+[a+ (BLk + yLy) (b1 —a1) - - - (b, — am)]
+1} (Ber + ye2) (by —a1) -+ - (b — ay,) .

It follows from assumptions (As) and 1 < ala? that

ner = %na|| < {1-aha2 (1= [a+ (BLk + YLu) (01 = a1) - (b — @)} [0 = T
+a,a; (1= [a + (BLx + yLur) (b1 = a1) - -~ (b — a)])
5(Ber + yea) (by —an) - -~ (b — am)
1—[a+ (BLk +yLu) (b1 —a1) -+~ (bw — am)]

Denote that

o = ||,
un = apas(1—[a+(BLx +yLy) (by —a1) -+ (by — aw)]) € (0,1),
y _ 5(ﬁ€1 +7’€2) (bl _al)"'(bm _am) >0

1—[a+(BLx +yLy) (01 —a1) -+ (b —aw)] ~—
It is clear that inequality (92) satisfies all conditions in Lemma 1.7 and thus, we obtain

5(Ber +ye2) (b —a1) -+ - (bw — am)

b = < e G+ L) Gr =) G — ]

2844

(89)

(90)

1)

(92)

(93)

(94)
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