
Filomat 29:10 (2015), 2227–2237
DOI 10.2298/FIL1510227S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract.
In this paper we consider multiple orthogonal trigonometric polynomials of semi–integer degree,

which are necessary for constructing of an optimal set of quadrature rules with an odd number of nodes
for trigonometric polynomials in Borges’ sense [Numer. Math. 67 (1994) 271–288]. We prove that such
multiple orthogonal trigonometric polynomials satisfy certain recurrence relations and present numerical
method for their construction, as well as for construction of mentioned optimal set of quadrature rules.
Theoretical results are illustrated by some numerical examples.

1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polynomials in the sense that
they satisfy orthogonality conditions with respect to more than one measure. Such polynomials in the
algebraic case arise in the theory of simultaneous rational approximation, in particular in Hermite–Padé
approximation of a system of r ∈ Z+ Markov functions (see [14, 15]). For more details about multiple
orthogonal algebraic polynomials see, e.g., [1–3, 6, 8, 11, 12, 14, 16–18, 20–22].

A generalization of orthogonal trigonometric polynomials of semi–integer degree in the sense that they
satisfy orthogonality conditions spread over p ∈ N different measures leads to the concept of multiple
orthogonal trigonometric polynomials of semi–integer degree, which were introduced in [13], where also
their main properties were proved. In this paper we restrict our attention to the multiple orthogonal
trigonometric polynomials of semi–integer degree with respect to p ∈N even weight functions.

The paper is organized as follows. Some basic facts about the type I and type II multiple orthogonal
trigonometric polynomials of semi–integer degree from [13] are repeated in Section 2. In Section 3 we
consider multiple orthogonality with respect to a set of even weight functions. Section 4 is devoted to
nearly diagonal multi–indices and the corresponding recurrence relations, while Section 5 is devoted to
applications in numerical integration, where one numerical example is given, too.
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2. Multiple orthogonal trigonometric polynomials of semi–integer degree

For nonnegative integer m by T
1/2
m we denote the linear space of all trigonometric polynomials of semi–

integer degree less than or equal to m + 1/2, i.e., the linear span of the set {cos(k + 1/2)x, sin(k + 1/2)x : k =
0, 1, . . . ,m}. By T1/2 we denote the linear space of all trigonometric polynomials of semi–integer degree, and
by Pm the space of all algebraic polynomials of degree less than or equal to m.

Let p be a positive integer and let n = (n1,n2, . . . ,np) be a multi–index, i.e., a vector of p nonnegative
integers, with length |n| = n1 + n2 + · · · + np. We introduce a partial order on multi–indices in the following
way: m � n ⇔ mν ≤ nν for every ν = 1, 2, . . . , p.

Let W = (w1,w2, . . . ,wp) be a vector of p weight functions, which are integrable and nonnegative on
some interval E of length 2π, vanishing there only on a set of a measure zero. In what follows, we always
assume that interval E is closed on the left and open on the right, i.e., that interval E is of the form [L, 2π+L),
for L ∈ R. We introduce the following inner products

〈 f , 1〉ν =

∫
E

f (x)1(x) wν(x) dx, ν = 1, 2, . . . , p, f , 1 ∈ T1/2. (1)

There are two types of multiple orthogonal trigonometric polynomials of semi–integer degree (see [13]).
1◦ Type I multiple orthogonal trigonometric polynomials of semi–integer degree with respect to W are

collected in a vector (A1/2
n,1 ,A

1/2
n,2 , . . . ,A

1/2
n,p ) of trigonometric polynomials of semi–integer degree, where A1/2

n,ν

has semi–integer degree nν − 1/2, ν = 1, 2, . . . , p, such that the following orthogonality conditions hold:
p∑
ν=1

〈
A1/2

n,ν (x), cos
(
k +

1
2

)
x
〉
ν

= 0, k = 0, 1, 2, . . . , |n| − 2, (2)

p∑
ν=1

〈
A1/2

n,ν (x), sin
(
k +

1
2

)
x
〉
ν

= 0, k = 0, 1, 2, . . . , |n| − 2,

with the normalizations:
p∑
ν=1

〈
A1/2

n,ν (x), cos
(
|n| −

1
2

)
x
〉
ν

= 1, (3)

p∑
ν=1

〈
A1/2

n,ν (x), sin
(
|n| −

1
2

)
x
〉
ν

= 1.

2◦ Type II multiple orthogonal trigonometric polynomial of semi–integer degree with respect to W is
trigonometric polynomial T1/2

n of semi–integer degree |n| + 1/2 which satisfies the following orthogonality
conditions〈

T1/2
n (x), cos

(
kν +

1
2

)
x
〉
ν

= 0, kν = 0, 1, . . . ,nν − 1, (4)〈
T1/2

n (x), sin
(
kν +

1
2

)
x
〉
ν

= 0, kν = 0, 1, . . . ,nν − 1,

for ν = 1, 2, . . . , p.
For p = 1 multiple orthogonal trigonometric polynomials reduce to the ordinary orthogonal trigono-

metric polynomials of semi–integer degree (see [5, 9, 10, 19]).
The orthogonality conditions (4) give system of 2(n1 + n2 + · · ·+ np) = 2|n| linear equations for the 2|n|+ 2

unknown coefficients ak, bk, k = 0, 1, . . . , |n|, of trigonometric polynomial

T1/2
n (x) =

|n|∑
k=0

(
ak cos

(
k +

1
2

)
x + bk sin

(
k +

1
2

)
x
)
∈ T

1/2
|n| .
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Thus, we have to fix two coefficients in advance and we choose to fix the leading coefficients a|n| and b|n|,
(a|n|, b|n|) , (0, 0). For the following two special choices of the leading coefficients, (a|n|, b|n|) ∈ {(1, 0), (0, 1)},
we introduce the notation

TC,1/2
n (x) = cos

(
|n| +

1
2

)
x +

|n|−1∑
k=0

(
c(n)

k cos
(
k +

1
2

)
x + d(n)

k sin
(
k +

1
2

)
x
)
, (5)

TS,1/2
n (x) = sin

(
|n| +

1
2

)
x +

|n|−1∑
k=0

(
f (n)
k cos

(
k +

1
2

)
x + 1(n)

k sin
(
k +

1
2

)
x
)
.

We call TC,1/2
n (x) and TS,1/2

n (x) the monic cosine and the monic sine multiple orthogonal trigonometric
polynomial of semi–integer degree, respectively.

If the system (4) has a unique solution, then the multi–index n is normal (see [13]). If all multi–indices
are normal, then we have a perfect system.

The matrix of coefficients of systems (4) can be singular, thus we need to impose some additional
conditions on the p weight functions to provide the uniqueness of multiple orthogonal trigonometric
polynomials of semi–integer degree. The uniqueness is guaranteed if the following set of functions

{wν cos(kν + 1/2)x,wν sin(kν + 1/2)x : ν = 1, 2, . . . , p, kν = 0, 1, . . . ,nν − 1},

form a Chebyshev system on E for the multi–index n. Such W = (w1,w2, . . . ,wp) is called trigonometric AT
system (TAT system) of weight functions for multi–index n.

The following theorem about the zeros of type II multiple orthogonal trigonometric polynomial of
semi–integer degree was proved in [13].

Theorem 2.1. Suppose that n is a multi–index such that W = (w1,w2, . . . ,wp) is a TAT system of weight functions
for all multi–indices m such that m � n. Type II multiple orthogonal trigonometric polynomial of semi–integer degree
T1/2

n (x) with respect to W has exactly 2|n| + 1 simple zeros on E.

3. TAT system of even weight functions

Let W = (w1,w2, . . . ,wp) be a TAT system for multi–index n on the interval E = [−π, π), such that each
wk, k = 1, 2, . . . , p, is an even function on (−π, π).

Theorem 3.1. Let n be a multi–index and W = (w1,w2, . . . ,wp) be a TAT system with respect to n on the interval
E = [−π, π). If all the weight functions from W are even on the interval (−π, π), then all coefficients d(n)

k and
f (n)
k , k = 0, 1, . . . , |n| − 1, in (5) are equal to zero, i.e., the monic multiple orthogonal trigonometric polynomials of

semi–integer degree reduce to

TC,1/2
n (x) = cos

(
|n| +

1
2

)
x +

|n|−1∑
k=0

c(n)
k cos

(
k +

1
2

)
x (6)

and

TS,1/2
n (x) = sin

(
|n| +

1
2

)
x +

|n|−1∑
k=0

1
(n)
k sin

(
k +

1
2

)
x. (7)
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Proof. Let us consider the monic cosine multiple orthogonal trigonometric polynomial of semi–integer
degree TC,1/2

n (x). Since all the weight functions from W are even, the system (4) reduces to the following
two independent systems

|n|−1∑
k=0

c(n)
k

〈
cos

(
k +

1
2

)
x, cos

(
kν +

1
2

)
x
〉
ν

= −
〈
cos

(
|n| +

1
2

)
x, cos

(
kν +

1
2

)
x
〉
ν
, kν = 0, 1, . . . ,nν−1, ν = 1, 2, . . . , p,

and

|n|−1∑
k=0

d(n)
k

〈
sin

(
k +

1
2

)
x, sin

(
kν +

1
2

)
x
〉
ν

= 0, kν = 0, 1, . . . ,nν − 1, ν = 1, 2, . . . , p, (8)

with unknown coefficient c(n)
k and d(n)

k , k = 0, 1, . . . , |n|−1, respectively. Since W is a TAT system with respect
to n on the interval E = [−π, π), system (4) has the unique solution, so the previous two systems have the
unique solutions. Therefore, system (8) has only the trivial solution d(n)

k = 0, k = 0, 1, . . . , |n| − 1. Due to
uniqueness, we conclude that TC,1/2

n (x) depends only on cosine functions.
The statement for TS,1/2

n (x) can be proved analogously.

The following corollary follows immediately from (6) and (7).

Corollary 3.2. Suppose that n is a multi–index such that W = (w1,w2, . . . ,wp) is a TAT system of weight functions
with respect to n on interval [−π, π). If all weight functions from W are even on the interval (−π, π), then

TC,1/2
n (−π) = 0 and TS,1/2

n (0) = 0.

Theorem 3.3. Let n = (n1,n2, . . . ,np) be a multi–index such that W = (w1,w2, . . . ,wp) is a TAT system with respect
to n on the interval [−π, π). If all weight functions from W are even on the interval (−π, π), then we have∫ 1

−1
Cn(x)Ckν (x)

√
1 + x
1 − x

wν(arccos x) = 0, kν = 0, 1, . . . ,nν − 1,

and ∫ 1

−1
Sn(x)Skν (x)

√
1 − x
1 + x

wν(arccos x) = 0, kν = 0, 1, . . . ,nν − 1,

for ν = 1, 2, . . . , p, where Ckν ,Skν ∈ Pkν , Cn,Sn ∈ P|n|, are algebraic polynomials given by

Cn(x) =

|n|∑
k=0

c(n)
k

(
Tk(x) − (1 − x)Uk−1(x)

)
and

Sn(x) =

|n|∑
k=0

1
(n)
k

(
Tk(x) + (1 + x)Uk−1(x)

)
),

Tk and Uk, k ∈N0, are Chebyshev polynomials of the first and second kind, respectively.

Proof. Since all the weight functions wν(x), ν = 1, 2, . . . , p, are even on the interval (−π, π), from the orthog-
onality conditions for TC,1/2

n , we conclude that∫ π

0
TC,1/2

n (x)TC,1/2
kν

(x) wν(x) dx = 0, kν = 0, 1, . . . ,nν − 1, ν = 1, 2, . . . , p.
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Applying the substitution x := arccos x, we get∫ 1

−1
TC,1/2

n (arccos x)TC,1/2
kν

(arccos x)
wν(arccos x)
√

1 − x2
dx = 0. (9)

By using elementary trigonometric transformations we get

cos
((

k +
1
2

)
arccos x

)
=

√
1 + x

2
Tk(x) −

√
1 − x

2

√

1 − x2Uk−1(x),

where Tk(x) and Uk−1(x), are Chebyshev polynomials of the first and second kind, respectively. Thus,

TC,1/2
n (arccos x) =

√
1 + x

2

|n|∑
k=0

c(n)
k

(
Tk(x) − (1 − x)Uk−1(x)

)
.

By substituting the obtained formulas in (9), after some elementary transformations, we get the first
assertion.

According to orthogonality conditions for TS,1/2
n and equality

sin
((

k +
1
2

)
arccos x

)
=

√
1 − x

2
Tk(x) +

√
1 + x

2

√

1 − x2Uk−1(x),

the second assertion can be proved in the same way.

From the proof of Theorem 3.3 we conclude that

TC,1/2
n (arccos x) =

√
1 + x

2
Cn(x), (10)

where Cn is the type II multiple orthogonal algebraic polynomial with respect to the multi–index n and
weight functions

√
1 + x
1 − x

w1(arccos x),

√
1 + x
1 − x

w2(arccos x), . . . ,

√
1 + x
1 − x

wp(arccos x)

 (11)

on the interval [−1, 1). This implies that the zeros the type II multiple orthogonal trigonometric polynomial
of semi–integer degree TC,1/2

n can be calculated from the zeros of the corresponding type II multiple orthog-
onal algebraic polynomial (see [11], [12]). Connection between the zeros of these polynomials is given by
the following Lemma.

In what follows we simple say that W = (w1,w2, . . . ,wp) is a TAT system of even weight functions on the
interval [−π, π) when all weight functions from W are even on the interval (−π, π).

Lemma 3.4. Let n be a multi–index and let W = (w1,w2, . . . ,wp) be a TAT system of even weight functions on the
interval [−π, π) with respect to n. If τk, k = 1, 2, . . . , |n|, are the zeros of the type II multiple orthogonal algebraic
polynomial of degree |n| with respect to the vector of weight functions (11) on the interval [−1, 1), then the zeros of
the type II multiple orthogonal trigonometric polynomial of semi–integer degree |n| + 1/2 with respect to (W,n) on
the interval [−π, π) are given by:

x0 = −π, x2|n|−k+1 = −xk = arccos τk, k = 1, 2, . . . , |n|.

Proof. From Corollary 3.2 we have that x0 = −π. From (10) we get:

x2|n|−k+1 = −xk = arccos τk, k = 1, 2, . . . , |n|,

where τk, k = 1, 2, . . . , |n|, are zeros of the type II multiple orthogonal algebraic polynomial with respect to
the multi–index n and the vector of weight functions (11) on the interval [−1, 1).
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Completely similar arguments can be applied for the proof the following Lemma.

Lemma 3.5. Let n be a multi–index and let W = (w1,w2, . . . ,wp) be a TAT system of even weight functions on the
interval (−π, π) with respect to n. If τk, k = 1, 2, . . . , |n|, are the zeros of the type II multiple orthogonal algebraic
polynomial of degree |n| with respect to the vector of weight functions

√
1 − x
1 + x

w1(arccos x),

√
1 − x
1 + x

w2(arccos x), . . . ,

√
1 − x
1 + x

wp(arccos x)


on the interval [−1, 1), then the zeros of the type II multiple orthogonal trigonometric polynomial of semi–integer
degree |n| + 1/2 with respect to (W,n) on the interval [−π, π) are given by:

x|n| = 0, x2|n|−k = −xk = arccos τk+1, k = 0, 1, . . . , |n| − 1.

4. Recurrence relations in the case of nearly diagonal multi–index

Since multiple orthogonal algebraic polynomials for nearly diagonal multi–index satisfy recurrence
relations of order p + 1 (see [11], [21]), the natural extension is investigation of recurrence relations for
type II multiple orthogonal trigonometric polynomials of semi–integer degree, and we derive the similar
recurrence relations in the case when weight functions are even on (−π, π).

Let n ∈N and write it as n = `p+ j, for ` = [n/p] and j ∈ {0, 1, . . . , p−1}. The nearly diagonal multi–index
d(n) corresponding to n is given by

d(n) = (` + 1, ` + 1, . . . , ` + 1︸                    ︷︷                    ︸
j times

, `, `, . . . , `︸    ︷︷    ︸
p− j times

).

For the corresponding type II monic multiple orthogonal trigonometric polynomials of semi–integer degree
with respect to the even weight functions W = (w1,w2, . . . ,wp) we use the following simple notation:

TC,1/2
n = TC,1/2

d(n) , TS,1/2
n = TS,1/2

d(n) .

Theorem 4.1. Let m be a nonnegative integer and let W = (w1,w2, . . . ,wp) be a TAT system of even weight functions
on the interval [−π, π) with respect to all nearly diagonal multi–indices d(k) � d(m + 1), k ∈N. The type II multiple
orthogonal trigonometric polynomials of semi–integer degree with nearly diagonal multi–indices TC,1/2

m and TS,1/2
m

satisfy the following recurrence relations:

2 cos xTC,1/2
m (x) = TC,1/2

m+1 (x) +

p∑
k=0

αm,p−kTC,1/2
m−k (x), (12)

2 cos xTS,1/2
m (x) = TS,1/2

m+1 (x) +

p∑
k=0

βm,p−kTS,1/2
m−k (x), (13)

with the initial conditions TC,1/2
0 (x) = cos(x/2), TC,1/2

i (x) = 0, i = −1,−2, . . . ,−p and TS,1/2
0 (x) = sin(x/2),

TS,1/2
i (x) = 0, i = −1,−2, . . . ,−p, for relations (12) and (13), respectively.

Proof. Due to (6) we have the following simple equality:

2 cos xTC,1/2
m (x) = TC,1/2

m+1 (x) +

m∑
k=0

αm,kTC,1/2
k (x). (14)
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Let us assume that m = `p + j. Notice that for m ≤ p equality (14) is of the form (12) with the given initial
conditions.

Suppose that m > p. We need to prove that αm,rp+i = 0 for r = 0, 1, . . . , ` − 2 and i = 0, 1, . . . , p − 1, and for
r = ` − 1 and i = 0, 1, . . . , j − 1, which means that the right hand side of (14) reduces to

TC,1/2
m+1 (x) +

m∑
k=m−p

αm,kTC,1/2
k (x),

i.e., to the right hand side of (12).
For all r = 0, 1, . . . , ` − 2 we multiply the both hand sides of (14) by TC,1/2

r (x)w1(x) and integrate on the
interval [−π, π). According to the orthogonality conditions (4) (the first coordinate of the multi–index d(m)
is equal to ` + 1, ` ≥ r + 2) the left hand side, i.e.,∫ π

−π
cos xTC,1/2

r (x)TC,1/2
m (x) w1(x) dx,

is equal to zero whenever m > p, and the right hand side reduces to

αm,rp

∫ π

−π
TC,1/2

r (x)TC,1/2
rp (x) w1(x) dx.

The previous integral cannot be zero, because if we assume the contrary, then we have one orthogonality
condition more which implies that TC,1/2

rp (x) ≡ 0. Therefore, we obtain αm,rp = 0. In order to prove that
αm,rp+1 = 0 we multiply the both hand sides of equality (14) by TC,1/2

r (x)w2(x) and integrate on [−π, π).
Generally, multiplying (14) with TC,1/2

r (x)wi+1(x) and integrating on the interval [−π, π), from orthogonality
conditions (4) we obtain that αm,rp+i = 0, i = 0, 1, 2, . . . , p − 1.

Finally, suppose that r = ` − 1. Multiplying (14) by TC,1/2
`−1 (x)wi+1(x) and integrating on [−π, π), due to

orthogonality, we obtain that αm,(`−1)p+i = 0 for i = 0, 1, . . . , j − 1.
In a similar way one can obtain the recurrence relation (13) for TS,1/2

m (x).

According to the previous theorem, the type II multiple orthogonal trigonometric polynomials of semi–
integer degree TC,1/2

m and TC,1/2
m can be obtained if we have coefficients of the recurrence relations.

First, we consider the simplest case p = 2 for trigonometric polynomials TC,1/2
m (in a similar way one

can obtain corresponding coefficients of the recurrence relations for trigonometric polynomials TS,1/2
m ). In

this case we have the multi–indices d(m) = (m1,m2), where m1 = [(m + 1)/2] and m2 = [m/2] (obviously,
m1 + m2 = m). Recurrence relation (12) reduces to

TC,1/2
m+1 (x) = (2 cos x − αm,2)TC,1/2

m − αm,1TC,1/2
m−1 (x) − αm,0TC,1/2

m−2 (x), m = 0, 1, 2, . . . , (15)

with the initial conditions TC,1/2
0 (x) = cos(x/2), TC,1/2

−1 (x) = TC,1/2
−2 (x) = 0. In order to determine the recursion

coefficients we use (15) and the orthogonality conditions〈
TC,1/2

m ,TC,1/2
i

〉
1

= 0 for i ≤
[m − 1

2

]
,

〈
TC,1/2

m ,TC,1/2
i

〉
2

= 0 for i ≤
[m − 2

2

]
,

where 〈 · , · 〉i, i = 1, 2, are the inner products given by (1). Since
〈
TC,1/2

1 ,TC,1/2
0

〉
1

= 0, from (15) for m = 0 we
get

α02 =

〈
2 cos xTC,1/2

0 ,TC,1/2
0

〉
1〈

TC,1/2
0 ,TC,1/2

0

〉
1

. (16)
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By using (15) for m = 1, as well as the facts that
〈
TC,1/2

2 ,TC,1/2
0

〉
1

= 0 and
〈
TC,1/2

2 ,TC,1/2
0

〉
2

= 0, we obtain

α11 =

〈
2 cos xTC,1/2

1 ,TC,1/2
0

〉
1〈

TC,1/2
0 ,TC,1/2

0

〉
1

, α12 =

〈
2 cos xTC,1/2

1 − α1,1TC,1/2
0 ,TC,1/2

0

〉
2〈

TC,1/2
1 ,TC,1/2

0

〉
2

. (17)

In a similar way, (15) for m = 2 and the orthogonality conditions
〈
TC,1/2

3 ,TC,1/2
0

〉
1

= 0,
〈
TC,1/2

3 ,TC,1/2
0

〉
2

= 0,

and
〈
TC,1/2

3 ,TC,1/2
1

〉
1

= 0

α20 =

〈
2 cos xTC,1/2

2 ,TC,1/2
0

〉
1〈

TC,1/2
0 ,TC,1/2

0

〉
1

, (18)

α21 =

〈
2 cos xTC,1/2

2 − α2,0TC,1/2
0 ,TC,1/2

0

〉
2〈

TC,1/2
1 ,TC,1/2

0

〉
2

,

α2,2 =

〈
2 cos xTC,1/2

2 − α20TC,1/2
0 − α2,1TC,1/2

1 ,TC,1/2
1

〉
1〈

TC,1/2
2 ,TC,1/2

1

〉
1

.

In general, continuing this procedure one can prove the following result.

Theorem 4.2. Let m = 2` + ν, where ` = [m/2] and ν ∈ {0, 1}. The recursion coefficients in (15) can be expressed in
the form

αm,0 =

〈
2 cos xTC,1/2

m ,TC,1/2
[(m−2)/2]

〉
ν+1〈

TC,1/2
m−2 ,T

C,1/2
[(m−2)/2]

〉
ν+1

, (19)

αm,1 =

〈
2 cos xTC,1/2

m − αm,0TC,1/2
m−2 ,T

C,1/2
[(m−1)/2]

〉
ν〈

TC,1/2
m−1 ,T

C,1/2
[(m−1)/2]

〉
ν

,

αm,2 =

〈
2 cos xTC,1/2

m − αm,0TC,1/2
m−2 − αm,1TC,1/2

m−1 ,T
C,1/2
[m/2]

〉
ν+1〈

TC,1/2
m ,TC,1/2

[m/2]

〉
ν+1

,

where we put 〈·, ·〉 j+2k = 〈·, ·〉 j, j = 1, 2, for each k ∈ Z.

The previous theorem can be extended to p ∈ N, p ≥ 3, and even weight functions w j, j = 1, 2, . . . , p.
Taking 〈·, ·〉 j+pk = 〈·, ·〉 j, k ∈ Z, the following result holds.

Theorem 4.3. Let m be a nonnegative integer, W = (w1,w2, . . . ,wp) be a TAT system of even weight functions on
the interval [−π, π) with respect to all nearly diagonal multi–indices d(k) � d(m + 1), k ∈ N. The type II multiple
orthogonal trigonometric polynomials of semi–integer degree with nearly diagonal multi–indices TC,1/2

m and TS,1/2
m

satisfy the recurrence relations:

TC,1/2
m+1 (x) = (2 cos x − αm,p)TC,1/2

m (x) −
p−1∑
k=0

αm,kTC,1/2
m−p+k(x), (20)

TS,1/2
m+1 (x) = (2 cos x − βm,p)TS,1/2

m (x) −
p−1∑
k=0

βm,kTS,1/2
m−p+k(x), (21)
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with coefficients given by

αm,0 =

〈
2 cos xTC,1/2

m ,TC,1/2
[(m−p)/p]

〉
j+1〈

TC,1/2
m−p ,T

C,1/2
[(m−p)/p]

〉
j+1

, αm,k =

〈
2 cos xTC,1/2

m −

k−1∑
i=0
αm,iTC,1/2

m−p+i,T
C,1/2
[(m−p+k)/p]

〉
j+k+1〈

TC,1/2
m−p+k,T

C,1/2
[(m−p+k)/p]

〉
j+k+1

, k = 1, 2, . . . , p,

and

βm,0 =

〈
2 cos xTS,1/2

m ,TS,1/2
[(m−p)/p]

〉
j+1〈

TS,1/2
m−p ,T

S,1/2
[(m−p)/p]

〉
j+1

, βm,k =

〈
2 cos xTS,1/2

m −

k−1∑
i=0
βm,iTS,1/2

m−p+i,T
S,1/2
[(m−p+k)/p]

〉
j+k+1〈

TS,1/2
m−p+k,T

S,1/2
[(m−p+k)/p]

〉
j+k+1

, k = 1, 2, . . . , p,

for ` = [m/p] and j = m − `p ∈ {0, 1, . . . , p − 1}.

All of the necessary inner products can be computed exactly, except for rounding errors, by using the
quadrature rules of Gaussian type for trigonometric polynomials with respect to the corresponding weight
functions (see [9, 10, 19])∫ π

−π
1(t) wν(t) dt =

2N∑
k=0

A(N)
ν,k 1(τ

(N)
ν,k ) + Rν,N(1), ν = 1, 2, . . . , p. (22)

Thus, for the numerical construction of the type II multiple orthogonal trigonometric polynomials of semi–
integer degree TC,1/2

m and TS,1/2
m , m ≥ 0, for nearly diagonal multi–indices with respect to even weight

functions we use only recurrence relations (20) and (21) and quadrature rules of Gaussian type for trigono-
metric polynomials (22). This procedure is a kind of discretized Stieltjes–Gautschi procedure (see [7]).

5. Applications

Motivated by the paper of Borges [4], Milovanović, Stanić, and Tomović in [13] introduced the following
definition of an optimal set of quadrature rules for trigonometric polynomials.

Definition 5.1. Let n be a multi–index and let W = (w1,w2, . . . ,wp) be a TAT system for n on interval E. A set of
quadrature rules of the form∫

E
f (x)wν(x) dx ≈

2|n|∑
k=0

Aν,k f (xk), ν = 1, 2, . . . , p, (23)

is an optimal set with respect to (W,n) if and only if the weight coefficients, Aν,k, ν = 1, 2, . . . , p, k = 0, 1, . . . , 2|n|,
and nodes, xk, k = 0, 1, . . . , 2|n|, satisfy the following equations:

2|n|∑
k=0

Aν,k =

∫
E

wν(x) dx, (24)

2|n|∑
k=0

Aν,k cos(mνxk) =

∫
E

cos(mνx) wν(x) dx, mν = 1, 2, . . . , |n| + nν,

2|n|∑
k=0

Aν,k sin(mνxk) =

∫
E

sin(mνx) wν(x) dx, mν = 1, 2, . . . , |n| + nν,

for ν = 1, 2, . . . , p.
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For the optimal set of quadrature rules for trigonometric polynomials the following generalization of
fundamental theorem of Gaussian rules holds (see [13]).

Theorem 5.2. Let n be a multi–index and let W = (w1,w2, . . . ,wp) be a TAT system for n on an interval E. A set of
quadrature rules (23) is the optimal set with respect to (W,n) if and only if:

1◦ all rules are exact for all polynomials from T|n|;

2◦ T1/2
n (x) =

2|n|∏
k=0

sin((x− xk)/2) is the type II multiple orthogonal trigonometric polynomial of semi–integer degree

|n| + 1/2 with respect to (W,n).

The nodes xk, k = 0, 1, . . . , 2|n|, of the optimal set of quadrature rules for trigonometric polynomials
can be computed as the zeros of corresponding type II multiple orthogonal trigonometric polynomials of
semi–integer degree T1/2

n , which, in the case of nearly diagonal multi–indices d(n), for even weight functions
on the interval E = (−π, π), can be obtained using recurrence relations given in Section 4. Notice that, from
Theorem 2.1, the type II multiple orthogonal trigonometric polynomials of semi–integer degree T1/2

n have
exactly 2|n| + 1 simple zeros on the interval E.

The weights coefficients Aν,k, ν = 1, 2, . . . , p, k = 0, 1, . . . , 2|n|, can be computed by requiring that each
rule integrates exactly trigonometric polynomials from T|n|.

Now we give a numerical example to illustrate the obtained theoretical results and proposed numerical
procedure.

Example 5.3. Let us construct the optimal set of quadrature rules on E = [−π, π), for p = 2, multi–index
n = (2, 2), and with respect to the even weight functions w1(x) = 1 + cos x and w2(x) = 1 + cos 2x on the
interval (−π, π).

It is easy to see that the following set{
cos

x
2

w1(x), sin
x
2

w1(x), cos
3x
2

w1(x), sin
3x
2

w1(x), cos
x
2

w2(x), sin
x
2

w2(x), cos
3x
2

w2(x), sin
3x
2

w2(x)
}

is a Chebyshev system on the interval [−π, π).
We obtain the type II multiple orthogonal trigonometric polynomial of semi–integer degree TC,1/2

n ∈ T
1/2
4

by using the recurrence relations given in Section 4. From the initial condition TC,1/2
0 (x) = cos(x/2) and (16)

we get α0,2 = 4/3, which with (15) for m = 0 gives

TC,1/2
1 (x) = cos

3x
2
−

1
3

cos
x
2
.

In the following step, by using (17) we get α1,1 = 5/9 and α1,2 = 8/3, and then

TC,1/2
2 (x) = cos

5x
2
− 3 cos

3x
2

+ cos
x
2
.

In a similar way, by using equations (18) and (15) for m = 2, we get TC,1/2
3 (x) = cos(7x/2). Finally, from (19),

for m = 3, and (15) for m = 3, we obtain TC,1/2
4 (x) = cos(9x/2), so the nodes of the optimal set of quadrature

rules are:

x0 = −π, x1 = −
7π
9
, x2 = −

5π
9
, x3 = −

3π
9
, x4 = −

π
9
, x5 =

π
9
, x6 =

3π
9
, x7 =

5π
9
, x8 =

7π
9
.

For each ν = 1, 2, the corresponding weight coefficients Aν,k, k = 0, 1, . . . , 8, are given in Table 1 (numbers
in parentheses denote decimal exponents).
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k A1,k A2,k
0 −6.890988372772788(−29) 1.396263401595464
1 1.633317908364284(−1) 8.193609984127726(−1)
2 5.769024031826910(−1) 4.210249322138756(−2)
3 1.047197551196598 3.490658503988659(−1)
4 1.354160908374076 1.232931610759035
5 1.354160908374076 1.232931610759035
6 1.047197551196598 3.490658503988659(−1)
7 5.769024031826910(−1) 4.210249322138756(−2)
8 1.633317908364284(−1) 8.193609984127726(−1)

Table 1: Weight coefficients Aν,k, ν = 1, 2, k = 0, 1, . . . , 8, of the optimal set of quadrature rules with respect to W = (1 + cos x, 1 + cos 2x)
and n = (2, 2).
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[10] G. V. Milovanović, A. S. Cvetković, M. P. Stanić, Explicit formulas for five–term recurrence coefficients of orthogonal trigonometric

polynomials of semi–integer degree, Appl. Math. Comput. 198 (2008) 559–573.
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