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Sharp Bounds on the Signless Laplacian Estrada Index of Graphs

Shan Gao?, Huiqing Liu?

?School of Mathematics and Computer Science, Hubei University, Wuhan 430062, China.

Abstract. Let G be a connected graph with n vertices and m edges. Let q1,4», ..., g, be the eigenvalues of
the signless Laplacian matrix of G, where q; > g, > --- > g,. The signless Laplacian Estrada index of G is
defined as SLEE(G) = Y., ¢%. In this paper, we present some sharp lower bounds for SLEE(G) in terms of
the k-degree and the first Zagreb indeXx, respectively.

1. Introduction

Let G = (V, E) be a simple connected undirected graph with V = {vy,v,,...,v,} and |[E(G)| = m. Some-
times, we refer to G as an (n,m) graph. For v; € V(G), N¢(v;) is the set of all neighbors of the vertex v; in
G and d¢(v;) = INg(v;)|. The average of G is defined as d(G) = % Y., dc(v). For v; € V(G), the number of
walks of length k of G starting at v; is denoted by di(v;), and also called k-degree of the vertex v; (see [16]).
Clearly, one has dy(v;) = 1, d1(vi) = dc(vi) and dys1(vs) = ZweN(v,-) di(w). For two vertices v; and v; (i # j), the
distance between v; and v; is the number of edges in a shortest path joining v; and v;. The diameter of a
graph, denoted by diam(G), is the maximum distance between any two vertices of G.

The first Zagreb index is one of the oldest and most used molecular structure-descriptor, defined as the
sum of squares of the degrees of the vertices, i.e.,

Mi(G) = ) d2(0).
i=1

Zagreb index M;(G) was first introduced in [14] and the survey of properties of M; is given in [3], [4].

Let A(G) be the adjacency matrix of G and D(G) = diag(di, ds, ..., d,) be the diagonal matrix of vertex
degrees. The Laplacian matrix of Gis L(G) = D(G)—A(G). Clearly, L(G) is a real symmetric matrix. From this
fact and Gersgorin’s Theorem, it follows that its eigenvalues are nonnegative real numbers. The signless
Laplacian matrix of G is Q(G) = D(G) + A(G). Sometimes, Q(G) is also called the unoriented Laplacian
matrix of G (see [12], [18]). The matrix Q(G) is symmetric and nonnegative, and, when G is connected, it
is irreducible. The eigenvalues of an n X n matrix M are denoted by A1(M), A,(M), ..., A,(M) and assume
that A{(M) > A,(M) > -+ = A,(M), while for a graph G, we will denote A; := A;(L(G)), g; := Ai(Q(G)) and
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ui == Ai(A(G)), i = 1,2,...,n. Research on signless Laplacian matrix has become popular recently (see

[5]-[11]).

Some graph-spectrum-based invariants, put forward [10] and [13], respectively, are defined as
EE(G)=Y!",e" and LEE(G)=Y",e".
EE was eventually called the Estrada index [2], LEE was called the Laplacian Estrada index, and for details

on the theory of EE and LEE see the reviews [9], [17], [19] and [20]. Ayyaswamy et al. [1] defined the signless
Laplacian Estrada index of a graph G, denoted by SLEE(G), as

n

SLEE(G) = Z ¢l

i=1

and obtain some upper and lower bounds for it in terms of the number of vertices and number of edges.
Although SLEE(G) = LEE(G) for G is a bipartite graph, it is chemically interesting for the fullerenes,
fluoranthenes and other non-alternant conjugated species, in which SLEE and LEE(G) differ.

In this paper, we present some lower bounds for SLEE(G) in terms of the k-degree and the first Zagrab
index, and characterize the equality cases, respectively.

2. Results

The following results will be useful in the sequel.

Lemma 2.1 [15]. Let A be a nonnegative symmetric matrix and x be a unit vector of R". If p(A) = xT Ax, then
Ax = p(A)x.

Lemma 2.2 [6]. Let G be a connected graph. If Q(G) has exactly k distinct eigenvalues, then diam(G) + 1 < k.

In the following, we denote My = YL, d2(vi), Ny = LiL; (d1(0i)di(0:) + dia (v;))* for k > 1. Then M; =
Y., di(v)? is the first Zagreb index.

Lemma 2.3. Let G be a connected graph with n vertices and k-degree sequence di(v1), dx(v2), . . ., dx(v,). Then

N
71(G) 2 ]Wkl (1)
with equality holds in (1) if and only if Q**(G)J= 2(G)Q"(G)J.

Proof. Let X = (x1,x2, ..., X,)" be the unit positive eigenvector of Q(G) corresponding to 41(G). Take

C:JEZ%%ﬁﬁwﬂ@@ﬂw@@m?

Noting that C is a unit positive vector, and hence we have

01(G) = \Jp(Q¥G)) = VXTQXG)X = \/CTQA(G)C.

Since

QG)C

T
(dl(vl)dk(vl) + Z a1 (07), ..., d1(0n)di(v,) + Z i (0})

j=1 j=1

gnl 2 (v;)

Egﬁammmm»mmm»wmmmmwmmmﬂ
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we have

(dl vl)dk(vl) + di1 (U,))
G) > \/CTQ2(G = .
71(G) = Q*G)C \/ Y 2(0)

If the equality holds in (1), then
p(Q¥G)) = "R G)C.

By Lemma 2.1, we have p (QQ(G)) C = Q*(G)C. Since Q(G) is a nonnegative irreducible positive semidefinite
matrix, all eigenvalues of Q(G) are nonnegative. By Perron-Frobenius Theorem, the multiplicity of p (Q(G))
is one. Since p (Q2(G)) = (p(Q(G))Z, we have the multiplicity of p (Qz(G)) is one. Hence, if the equality
holds, if and only if C = X is the eigenvector of Q*(G) corresponding to the eigenvector p (Q(G))?, that is, if
and only if Q"2(G)J= 4*(G)Q*(G)J. n
Remark 1. A known lower bound

4m
nz— 2)

was given in [5], where the equality holds if and only if G is a regular graph. Note that

NiMi_1 2(dl<v,)dk(vz>+dk+l<v,)> Xd (@)

i=1

\%

2
Z (e (01 (0)dl(o) + dk_1<vi>dk+1<vi>>]

i=1

= | ) i@ )d(e) + Y dia@i) ) | aijdk(vj)]
i=1 i=1 =1

i=1

= | X A @da@)A) + ) di0) Y dk<vj>]
i=1 i=1 j=1

= Z (d1(0)dk-1 (V) + di(01)) Z d;(07) = N1 M
P P

= Z dh (03)di1 (03)di(0) + Z di(0)) Z ajidi1(v1) ]

a1 (vi)dx (i) +dis1 (©i) 2 _
di-1(0i) (=12

Nk N1 4M1 4dm
N2 A7 227 2 — 22—
Y Mg N M, n n

as Ny = n YLy (d2(v) + da(02))? = (L1 (d(01) + da(0:))* = (L d(0i) + Lty do(@)? = Q LIy d%(0)* =
and nM; = n Y, d?(v;) > (X1, d(v;))? = 4m?. This shows that (1) is better than (2). n

and equality holds if and only if all the ., n) are equal. Hence

Remark 2. Another lower bound M
(G 2 —* ©

was given in [6], where the equality holds if and only if G is a regular graph or a bipartite semi-regular
graph. Recall that (3) is better than (2). [

Remark 3. Let G; and G; be the graph obtained from K3 by attaching a pendant edge and three pendant
edges to one vertex of K3, respectively. For G, the bound (1) is 4.5 when k = 1 and the bound (3) is 3.8842,
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and so (1) is better than (3); and for G;, the bound (1) is 6 when k = 1 and the bound (3) is 6.1779, and so (3)
is better than (1). Hence, the bounds (1) and (3) are incomparable. L]

Lemma 2.4 [6]. Let  be a nonnegative. Then (i, j)-entry of A(G)" is the number of walks of length h from v; to v;.
In the following, we present our main results. The idea of the following proofs comes from [1] and [2].

Theorem 2.5. If G is a connected (n, m) graph with the k-degree sequence di(v1), dx(v2), . . ., dk(vy). Then

N, N,
SLEE(G) = eV + (n - 1)3(2’”’ Vit o @)
with equality in (4) holds if and only if G = K,,.
Proof. First we note that if G = K, thengq; =2n-2and g = g3 = --- = g, = n — 2, and then SLEE(G) =

N,
e?"2 4+ (n — 1)e"2. Also, we have My = n(n — 1)*,Ny = 4n(n — 1)**2 by Lemma 2.4. Then e‘/Mji +(n—-

N,
1)3(2% ‘/Mji>/(n71) =¢?"2 4+ (n — 1)¢" 2. Hence (4) holds.
Since g1 > g > --- > g, > 0 and tr (Q(G)) = YLi-, qi = 2m, we have

SLEE(G)

e+ e 4. 4 e

4 - e

v

)1/(”—1) 5)

1/(n=1)

en+(n—-1) (ezm_ql)

1/(n-1
Let f(x) =e*+(n—1) (62’””‘) [ and it is easy to see that f(x) is an increasing function when x > 0. By
Lemma 2.2, we have

SLEE(G) > e\/;\\]’fj’}i + (7’1 _ 1)6(27”* \/%)/(n—l).

If equality holds in (4), then equality must be taken in inequality (5). So, we have g, = g3 = --- = g,,, and
hence, by Lemma 2.3, diam(G) = 1. Thus, G = K. [ ]

Now we give another lower bound on SLEE(G) in terms of the Zagrab index M, of G.
Theorem 2.6. If G is a connected (n, m) graph with the Zagrab index M. Then

2m

SLEE(G) > e + ™= + (n - 2)e¥ ©)
with equality in (6) holds if and only if G = Kyyjp4/2.
Proof. Since g1 > g2 > -+ > g, = 0 and tr (Q(G)) = Y.i; qi = 2m, we have
SLEE(G)

el +ef2 4 ... 4 el 4 e

v

1
e +ef + (n-2) (eqz+~--+e%71 )H -

2m—q1—qm
el +el + (n— 2)6%

Let f(x,y) =e* +e¥ +(n— 2)ezmn_—xz_y, where x > 0 and y > 0. Then f(x, y) has a minimum value e* + ¢*"/"~* +
(n—2)e™7" atx+y = 4m/n (see [1]). Note that ¢* + ¢*"/"~% + (n — 2)e™"%" is an increasing function for

x > 0, and hence, by (2), we have

e + M 4 (n — 2)32"153’/" > et e 4 (n- 2)6%. 8)

Thus (6) holds.
If equality holds in (6), then the above inequalities would be equalities. From (3) and (7), we have that G
is regular or bipartite semi-regular. From (8) and )., g; = 2m, wehaveq, = - -- = -1 = @m—q1—q,)/(n—2).

Since g1 + g, =4m/n, q1 =4m/n, g, =0and g, = -+ = g,-1 = 2m/n. Hence G = K2 /2. [
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Remark 4. From Remark 2 and the proof of Theorem 2.6, we have the bound (6) is better that the bound
(15) of [1]. L]

Next we establish a lower bound for SLEE(G) in terms of n and m.

Theorem 2.7. Let G be an (n, m)-graph. Then

SLEE(G) > \/eL +1+m2=2)er. 9)
Proof. Note that )./, g; = 2m and
n
SLEE(G)? = Z i 42 Z eliel. (10)
i=1 i<j

By the arithmetic-geometric inequality, we have
2
n(n-1)

2 Z etieli nn—-1) H elieli (11)

i<j i<j

v

_2
n(n-1)

nn=1)| (] J ey
i=1

2
= nn-1) (ezizl q")" = n(n —1)e*™/".

On the other hand, by an argument similar to the proof of Theorem 2.6, we have

n R
E i > P 42 4 (n—2) <e2172+'"+2€”"’1 )”*2
i=1
4m-2q71-2qm
R ()
_ 4m
L N ()

4m

MM 4 e 4 (n—2)en (12)

vV

v

and the equality in (12) holds if and only G = K2 /2. Butif G = K,;/2,4/2, then the inequality (11) should be
strict. Hence, by (10)

8m

SLEE(G) > 4Je™ +1+ (n2 = 2)e™.
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