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Abstract. Let 0 # p(x) be a nondecreasing real valued differentiable function on [0, ) such that p(0) = 0
and p(x) — oo as x — co. Given a real valued function f(x) which is continuous on [0, o) and

s(x) = fo (.

We define the weighted mean of s(x) as

1 *
ap(x) = @fo p'(B)s(b)dt,

where p’(t) is derivative of p(t). It is known that if the limit lim s(x) = s exists, then lim ¢, (x) = s also exists.
X—00 X—00
However, the converse is not always true. Adding some suitable conditions to existence of lim o,,(x) which
X—00

are called Tauberian conditions may imply convergence of the integral fow f(t)dt.

In this work, we give some classical type Tauberian theorems to retrieve convergence of s(x) out of
weighted mean integrability of s(x) with some Tauberian conditions.

1. Introduction

Let 0 # p(x) be a nondecreasing real valued differentiable function on [0, o) such that p(0) = 0 and

p(x) = o0 asx — co. Given a real valued continuous function f on [0, c0) and s(x) = fox f(t)dt . The weighted
mean of 5(x) is defined by

1 X 1 X ,
o) = 5 [ s = o [ ostoa
The integral

[ s

2010 Mathematics Subject Classification. Primary 40E05; Secondary 40A10

Keywords. Tauberian theorem, Tauberian condition, weighted mean, integral method, slowly oscillating function, slowly decreas-
ing function, one-sided condition

Received: 01 August 2014; Accepted: 14 October 2014
Communicated by Dragana Cvetkovié¢-Ili¢

Email addresses: utotur@yahoo.com;utotur@adu.edu. tr (Umit Totur), mali.okur2@gmail.com (Muhammet Ali Okur)




U. Totur, M. A. Okur / Filomat 29:10 (2015), 2281-2287 2282

is said to be integrable by weighted mean method determined by the function p(x), in short; (N, p) integrable
to a finite number s if

lim o, (x) = s. (1)

X—00

If p(x) = x in the definition, then the (N, p) integrability method reduces to Cesaro integrability method. If
the integral

fo fHdt =s )

exists, then limit (1) also exists. However, the converse is not always true. For example, lim,_, fox cos tdt
does not exist. Also, by a special case choosing p(x) = x?, from

1 X 1 X t
o) = o fo sOdpt) = fo ( fo Fan)du)dp(t)

_ r% fo fan( f dp(t))du

1 X
- 5 f (p(x) — p() F ()
f 1- &mt)dt

it follows that . )
lim 0,(x) = lim f 1- t—z)cos tdt =
X—00 x—00 Jo X

Notice that (1) may imply (2) by adding some suitable conditions on s(x). Such a condition is called a
Tauberian condition and resulting theorem is said to be a Tauberian theorem.
The weighted De la Vallée Poussin means of s(x) are defined by

> _ 1 e ’
G0 = g ), OO
for A > 1, and

X

T, (%) = ; p'(D)s(b)dt

1
p(x) = p(Ax)
forO<A<1.
The concept of slowly decreasing for a sequence of real numbers was introduced by Schmidt [9].
Similarly, we can define for a real function.
A function s(x) is said to be slowly decreasing if
hm lim inf mm (s(t) -s(x)) =0, 3

-1t x—>00 x<t<A
for A > 1. The condition (3) can be equivalently reformulated as follows:

hnﬁ lim inf Amm (s(x) —=s(t)) =0, 4)
for0<A <1
If the functions s(x) and —s(x) are slowly decreasing, then s(x) is slowly oscillating. An equivalent
definition of slow oscillation is given as follows:
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A real valued function s(x) is slowly oscillating [1] if

}1_)1115 hI;l_)Sotlp xr_r}g}(x [s(t) — s(x)| =0, (5)
for A > 1.

In [1-4, 7], a number of authors presented some Tauberian theorems for Cesaro integrability method.
Also, Canak and Totur [8] obtained a Tauberian condition, known as the Landau’s condition % fx)=0(1)
(see [6]), for weighted mean integrability order a, for some a > —1.

In this paper, we establish that one-sided boundedness of the function ’% f(x) is a Tauberian condition

for weighted mean integrability. Furthermore, we prove that slow decrease of s(x) is a Tauber condition for
weighted mean integrability.
2. Main Results

The results are some classical type Tauberian theorems for the weighted mean method of integrals.
Theorem 2.1. Let
pAx)

lixngg& ") >1, for A>1, (6)
and
lim sup ) >1,for0<A <1 (7)
oo P(AX)
If [ f(Hdt is (N, p) integrable to s and
ﬁ((z))f (x) > -C,

for some C > 0 and enough large x, then the integral fooo f(t)dt converges to s.

Theorem 2.1 is a classical type Tauberian theorem known as the Hardy Littlewood’s Tauberian theorem [5].
A special case of Theorem 2.1 can be obtained by choosing p(x) = x as follows:

Corollary 2.2. If fom f(t)dt be Cesaro integrable to s. If xf(x) > —C for some C > 0 and enough large x, then the
integral fooo f(t)dt converges to s.

Corollary 2.2 is given by Canak and Totur [3].
The following theorem is a version of the generalized Littlewood theorem [9] for real functions.

Theorem 2.3. Let the conditions (6) and (7) be satisfied. If fow f(t)dt is (N, p) integrable to s and s(x) is slowly
decreasing, then the integral fooo f(t)dt converges to s.

An obvious corollary of Theorem 2.3 is represented as follows:

Corollary 2.4. Let the conditions (6) and (7) be satisfied. If fooo f(t)dt is (N, p) integrable to s and s(x) is slowly
oscillating, then the integral fooo f(t)dt converges to s.

A special case of Theorem 2.3 can be obtained by choosing p(x) = x.

Corollary 2.5. If fow f(t)dt is Cesaro integrable to s and s(x) is slowly oscillating, then the integral j:o f(t)dt
converges to s.

Corollary 2.5 is given by Canak and Totur [3].
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3. Proofs

We need the following lemma to be used in the proofs of main theorems.

Lemma3.1. (i) ForA >1,

P 05 IS S Aoy
50 = ,(0) = (6, (00) 0y = s f P (B0 — st
(ii)) ForO0< A <1,
s - 0,00 =~ )~ o) + ——— [ s - st
g p(x) — p(Ax) " y p(x) — p(Ax) Jiy

Proof. (i) From the definition of weighted de la Vallée Poussin means of s(x), we have

Ax
L ) f P ()60 — s)t. ®)

) =50 -

Substracting 0,(x) from the identity (8), we get
s 1 s
s(x) = 0p(x) = 7, (x) = 0p(x) — () —p(®) fx p(E)(s(t) = s(x))dt. ©)

Also T; (x) can be written as

> _ 1 /\X ’ * ’
1
= m(f’p(/\x)i?(/\x) — op(x)p(x))

p(Ax) p(x)

= p - p@ 7 g -
Therefore, we have
s PAX) ([ p)
T, (x) = o) = p() op(Ax) (p—(/\x) e 1) op(x).
Substracting 0,(x) from the last identity, we get
> _ p) __ px)
=900 = = pw MY o — pi P

Writing last identity in (9), we obtain

p(Ax)

0 =0 = Y~ p

1 Ax ,
(0,0) =0y = S f p(E(8) = s

This completes the proof.
(ii) The proof of Lemma 3.1(ii) is similar to that of Lemma 3.1(i). O
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Proof of Theorem 2.1
Suppose that % f(x) = —C for some C > 0. Then, we obtain —s’(x) < C p—) for all x. From Lemma 3.1 (i),

we have

s(x) —op(x) = %(Gp(/\x) — ap(x)) — m j:\x P (£)(s(t) — s(x))dt
- %(%(Ax) — 0,(x)) - m f " ( f t s’(z)dz)p’(t)dt
< #;()(ap(mc) 0,(x)) + m f " ( f ct (( )) )p’(t)dt
_ ;ﬁ_";m(aﬁ(w — 0,(x) + m fx Ml P ((x)) (bt
< %(ap(m) —0,(x)) + Clog ’%,

for A > 1.
After taking lim sup of both sides as x — oo, we obtain
lim sup (s() —0p@) < lim sup (% (0p(A%) = 0,(x)) + Clog 2 ((A )))
< limsup ;#—x;(x) lim sup (0p(A2) = 0,() + limsup (c log ? ;2:;)) .

Since s(x) is weighted mean integrable to s, we have 0,(x) — s as x — co. By the condition (6), we get

) p(Ax) p(Ax)
0=<limsup 09— pe b0

Therefore the first term on the right-hand side of the inequality above vanishes and we obtain

p(Ax) )
p(x) )

<1+ (liminf -Dl<o

lim sup (s(x) - ap(/\x)) < limsup (C log

X—00 X—00

for some C > 0. After taking the limit of both sides as A — 1*, we get

lim sup (s(x) - ap(x)) <0. (10)
From Lemma 3.1 (ii) and the hypothesis —s'(x) < C,f(f() for all x, we have
(Ax) 1
)=o) = (@)~ () + m p (1)(5(x) = s(E)t

p(Ax) ~ ’\X( ‘o ) ’
p(x) — p(Ax) (Up(x) Op(/\X)) + —p(/\JC) ~ o) ]x‘ L‘ s'(z)dz | p’(t)dt

_ P _ N “( ' Cp'(z) )
p(x) — pi) @)~ o (A0) = e <x>f f R

>

_ p(A) o

= 2@ pn W T A = p(x)f 8y Mt
p(Ax) B B p(Ax)

> p—(x)—p()\x)(ap(x) ap(/\x)) Clog px)'
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After taking lim inf of both sides as x — oo, we have

- . p(Ax) P(Ax))
liminf(s(x) — 0,(x)) = liminf|{ ——————(0,(x) —0,(Ax))—Clo
X—00 ( ( ) P( )) X—00 (p(x)—p(Ax)( p( ) P( )) ( )
piAx) . . o ( p(Ax ))
> liminf —————liminf(0,(x) — 0,(Ax)) + liminf [ -Clog
minf o= iminf(0,(2) - 0,(Ax) + lim iz o
By the condition (7), we have
p(Ax) p() 1
O<11m1nf—— su -1)7" < 0.
R —pa ~ P g D
From 0,(x) — sas x — oo, the first term on the right-hand side of the equality above vanishes and we obtain
A
lim inf (s(x) - op()\x)) > lim inf( Clog a o );))
for some C > 0. After taking the limit of both sides as A — 17, we get
lim inf (s(x) — 0,(x)) 2 0. (11)
From (10) and (11), we obtainj}i_r){)l0 s(x) = }1_1}1010 op(x). O
Proof of Theorem 2.3
Let s(x) be slowly decreasing. By Lemma 3.1 (i), we have
p(Ax) f“‘
s(x) —op(x) = —————(0p(Ax) —op(x —_— B)(s(f) — s(x))dt
-0 = 00 - o) - s [P O60 - @)
P (5, 1) = 0, ) [0 min 60 s
——(o x—ox—— min (s(t) — s(x
p(Ax) — p(x) " * p PO —p@) J, PV ek
PO (5 (A~ 0,6 — min (50) — 5(2)
p(Ax) — p(x)" 7 P x<t<dx

After taking lim sup of both sides as x — oo, we have

IA

lim su ﬂ(a (Ax) — 0,(x)) — min (s(t) — s(x))
P p(Ax) —p(x)" 7 p x<t<Ax

liI)lc’l_)S;lp % lir?_)s;lp(ap()\x) —o0p(x)) + liI;l_)Solélp (— xg}g/\lx (s(t) — s(x)))

Since 0,(x) — s as x — oo, by the condition (6), the first term on the right-hand side of the equality above
vanishes and we obtain

lim sup (s(x) - ap(x))

X—00 X—00

IA

lim sup (s(x) - ap(x)) —liminf mm (s(t) — s(x))

xX—00 X—00  x<t<

After taking the limit of both sides as A — 1%, we get
lim sup (s(x) - ap(x)) <0. (12)

On the other hand, from Lemma 3.1 (ii), we have

p(Ax) ~ ~
T i o) =+ s 0o

M(cf (x) = 0p(Ax)) + __ xp'(t) min (s(x) — s(t))dt
P(x) - P(Ax) 4 4 P(x) - P(A.’Xf) Ax Ax<t<x

ﬂ(a (x) = 0p(Ax)) + min (s(x) —s(t))
p(x) = p(Ax) " : Axs<tsx

s(x) = 0p(x)
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After taking lim inf of both sides as x — oo, we have

bmi L p(Ax) :

im glf (s(x) - o,,(x)) > 1131611 g1f m(ap(x) —0p(Ax)) + Arxréltrslx (s(x) —s(t))
> timinf(—M (6 () - 0,(0x) + lim inf( min (s(x) - s(t)))
T o \p(x) - p(Ax) T F 4 ¥ooo \Axst<x

Since 0,(x) — s as x — oo, by the condition (7), the first term on the right-hand side of the equality above
vanishes and we obtain

liminf (s(x) - 0,(0)) 2 liminf (Arriitrg (s(x) — s(t)))

After taking the limit of both sides as A — 17, we get
lim inf (s(x) - op(x)) > 0. (13)

Combining (12) and (13), we have lim s(x) = lim o,(x). O
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