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Classical Linear Connections from Projectable Ones
on Vertical Weil Bundles
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Abstract. We essentially reduce the problem of describing all natural operators Qproj  QVA lifting
projectable classical linear connections on fibred manifolds to classical linear connections on vertical Weil
bundles.

1.

All manifolds are assumed to be without boundaries, finite dimensional, Hausdorff, second countable
and smooth (of class C∞) and maps to be of class C∞. Unless otherwise specified, we use the terminology
from [3]. In particular, FMm,n denotes the category of all fibred manifolds with n-dimensional fibres and
m-dimensional bases and their (fibred) embeddings.

In [4], given a Weil algebra A, k + 1 = dimRA, we reduced the problem of finding of all natural operators
Λ : Q QTA lifting classical linear connections to the Weil functor TA to the one of finding of all natural
operators C : Q  (T × . . . × T,T∗ ⊗ T∗ ⊗ T) sending classical linear connections ∇ ∈ Con(M) into fibred
maps CM(∇) : TM×M . . .×M TM(k times of TM)→ T∗M⊗T∗M⊗TM. In the present note we study the same
problem for TA replaced by the vertical Weil functor VA. More precisely, we reduce the problem of finding
of all natural operators Λ : Qproj  QVA lifting projectable classical linear connections to VA to the one of
finding of all natural operators C : Qproj  (V × . . . × V,F∗1 ⊗ F∗2 ⊗ F3) sending projectable classical linear
connections ∇ ∈ Conproj(Y) on fibred manifolds Y into fibred maps CY(∇) : VY×Y . . .×Y VY(k times of VY)→
(F1Y)∗ ⊗ (F2Y)∗ ⊗ F3Y covering idY, where F1,F2,F3 are T or V, and where T is the tangent functor and V is
the vertical functor.

2.

A Weil algebra A is a finite dimensional real local commutative algebra with unity 1A (i.e. A = R.1A⊕NA,
where NA is an ideal of nilpotent elements). In [6], A. Weil introduced the concept of near A-points on a
manifold M as an algebra homomorphisms of the algebra C∞(M) of smooth real valued functions on M into
a Weil algebra A. The space TA of all near A-points on M is called a Weil bundle. The functor TA sending
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any manifold M into TAM and any map f : M → N into TA f : TAM → TAN is called the Weil functor
corresponding to A.

Given a Weil algebra A, the vertical Weil functor VA sends any fibred manifold Y→ M into the bundle
VAY :=

⋃
x∈M TAYx over Y and any fibred map f : Y→ Y1 into VA f :=

⋃
x∈M TA fx : VAY→ VAY1 . If A = D

is the Weil algebra of dual numbers, then TD = T and VD = V is the (usual) vertical functor.

3.

A linear connection in a vector bundle E over N is a bilinear map D : X(N) × ΓE→ ΓE such that

D f Xσ = f DXσ and DX fσ = X fσ + f DXσ

for any X ∈ X(N), f ∈ C∞(N) and σ ∈ ΓE, where C∞(N) is the algebra of C∞-maps N → R, X(N) is the
C∞(N)-module of vector fields on N and ΓE is the C∞(N)-module of smooth sections of E.

In particular, a linear connection∇ in the tangent space TN of a manifold N is a classical linear connection
on N.

It is well known (see [2]), that if ∇ is a classical linear connection on a manifold N and x ∈ N then there
is a so called ∇-normal coordinate system ϕ : (N, x)→ (Rn, 0) with center x. If ψ : (N, x)→ (Rn, 0) is another
∇-normal coordinate system with center x then there is B ∈ GL(n) with ψ = B ◦ ϕ near x.

A classical linear connection ∇ on the total space Y of a fibred manifold p : Y→M is projectable if there
is a (unique) classical linear connection ∇ on M such that ∇ and ∇ are p-related.

If ∇ is a projectable classical linear connection on a fibred manifold Y over M being p-related to ∇, then
there is a ∇-normal fibred coordinate system ϕ with center y ∈ Y (covering a ∇-normal one with center
p(y)). If ψ is another such ∇-normal fibred coordinate system with (the same) center y then ψ = B ◦ ϕ for
some fibred linear isomorphism B.

4.

We have the following important proposition.

Proposition 1. Let A = R.1A ⊕ NA be a Weil algebra with k + 1 = dimRA and ∇ be a projectable classical linear
connection on a fibred manifold Y. There is a (canonical in ∇) fibred diffeomorphism

I∇ : VAY→ VY ⊗NA = VY ×Y ... ×Y VY (k times of VY)

covering the identity map of Y.

Proof. Let v ∈ VA
y Y, y ∈ Y. Let ϕ : (Y, y) → (Rm,n, (0, 0)) be a ∇-normal fibred coordinate system on Y with

center y, where Rm,n is the trivial bundle over Rm with fiber Rn. We put

I∇(v) = Iϕ
∇

(v) = (Vϕ−1
⊗ idA) ◦ I ◦ VAϕ(v) ∈ VyY ⊗NA ,

where I : VA
(0,0)(R

m,n) = TA
0 Rn = Rn

⊗NA → V(0,0)(Rm,n)⊗NA = T0Rn
⊗NA = Rn

⊗NA is the obvious GL(m,n)-
invariant identification (the ”identity” map). Clearly, GL(m,n) is the space of fibred linear isomorphisms
Rm,n

→ Rm,n. If ψ : (Y, y) → (Rm,n, (0, 0)) is another ∇-normal fibred coordinate system on Y with center
y, then ψ = B ◦ ϕ (near y) for some B ∈ GL(m,n). Using the GL(m,n)-invariance of I we easily see that
Iϕ
∇

(v) = Iψ
∇

(v). So, I∇(v) is independent of the choice of ϕ.
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5.

In [1], J. Gancarzewicz presented a canonical construction of a classical linear connection on the total
space of a vector bundle E over N from a linear connection D in E by means of a classical linear connection
∇ on N. More precisely, if X is a vector field on N and σ is a section of E, then DXσ is a section of E. Further,
let XD denote the horizontal lift of a vector field X with respect to D. Moreover, using the translations in
the individual fibers of E, we derive from every section σ : N → E a vertical vector field σV on E called the
vertical lift of σ. In [1] J. Gancarzewicz proved the following fact.

Proposition 2. For every linear connection D in a vector bundle E over N and every classical linear connection ∇
on N there exists a unique classical linear connection Θ = Θ(D,∇) on the total space E with the following properties

ΘXD YD = (∇XY)D, ΘXDσV = (DXσ)V ,

ΘσV XD = 0, ΘσVσV
1 = 0

for all vector fields X,Y on N and all sections σ, σ1 of E.

6.

The general concept of natural operators one can find in [3]. In the present note we use the following
particular cases of natural operators.

An FMm,n-natural operator Λ : Qproj  QVA (lifting projectable classical linear connections to VA) is
an FMm,n-invariant family Λ = {ΛY} of regular operators

ΛY : Conproj(Y)→ Con(VAY)

for any FMm,n-object Y, where Conproj(Y) is the space of all projectable classical linear connections on Y and
Con(VAY) is the space of all classical linear connections on VAY. The invariance means that if ∇ ∈ Conproj(Y)
and ∇1 ∈ Conproj(Y1) are ϕ-related for an FMm,n-map ϕ : Y → Y1 then Λ(∇) and Λ(∇1) are VAϕ-related.
The regularity means that ΛY transforms smoothly parametrized families of projectable classical linear
connections on Y into smoothly parametrized families of classical linear connections on VAY.

For example, if ∇ is a projectable classical linear connection on a fibred manifold Y over M, we have a
linear connection D∇ in the vector space VY ×Y . . . ×Y VY (k times) over Y (where k + 1 = dimRA) given by

D∇X(σ1, . . . , σk) := (∇Xσ1, . . . ,∇Xσk) ,

σ = (σ1, . . . , σk) ∈ Γ(VY ×Y . . . ×Y VY), X ∈ X(Y), and then (because of Propositions 1 and 2) we have the
classical linear connection

∇
VA

:= (I−1
∇

)∗Θ(D∇,∇)

on VAY. We call ∇VA
the horizontal lift of ∇ to VAY. The construction of ∇VA

is an FMm,n-natural operator
ΛVA

: Qproj QVA. Actually, ΛVA

Y (∇) = ∇VA
for any ∇ ∈ Conproj(Y).

Another example of FMm,n-natural operator Λ : Qproj  QVA (without using Proposition 2) one can
find in [5].

Quite similarly, an FMm,n natural operator C : Qproj  (V × . . . × V,T∗ ⊗ T∗ ⊗ T) is an FMm,n-invariant
system C = {CY} of regular operators

CY : Conproj(Y)→ C∞Y (VY ×Y . . . ×Y VY,T∗Y ⊗ T∗Y ⊗ TY)

for anyFMm,n-object Y, where C∞Y (VY×Y . . .×Y VY,T∗Y⊗T∗Y⊗TY) is the space of all fibred maps VY×Y . . .×Y

VY → T∗Y ⊗ T∗Y ⊗ TY covering idY. Now, the invariance means that if ∇ ∈ Conproj(Y) and ∇1
∈ Conproj(Y1)

are ϕ-related for some FMm,n-map ϕ : Y→ Y1 then CY(∇) and CY1 (∇1) are (Vϕ× . . .×Vϕ,T∗ϕ⊗T∗ϕ⊗Tϕ)-
related, i.e. CY1 (∇1) ◦ (Vϕ × . . . × Vϕ) = (T∗ϕ ⊗ T∗ϕ ⊗ Tϕ) ◦ CY(∇). Replacing (in respective place) functor
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T by functor V we obtain the concepts of FMm,n-natural operators Qproj  (V × . . . × V,V∗ ⊗ V∗ ⊗ V),
Qproj (V × . . . × V,V∗ ⊗ V∗ ⊗ T), e.t.c.

Many FMm,n-natural operators Qproj (V × . . . ×V,T∗ ⊗ T∗ ⊗ T) or Qproj (V × . . . ×V,V∗ ⊗ T∗ ⊗ T) or
Qproj  (V × . . . × V,T∗ ⊗ V∗ ⊗ T) or Qproj  (V × . . . × V,T∗ ⊗ T∗ ⊗ V∗) one can produce from the (higher
order) covariant derivatives of the curvature tensor R∇ or the torsion tensor T∇ of ∇ ∈ Conproj(Y) by taking
respective tensor product, contractions, symmetrization and linear combinations. For example we have the
following FMm,n-natural operators in question.

— The family C : Qproj (V × . . . × V,T∗ ⊗ T∗ ⊗ T) given by

(∗) CY(∇)(v1, . . . , vk)(u,w) := ∇k−1R∇(v1, . . . , vk,u,w) ∈ TyY

for v1, . . . , vk ∈ VyY ⊂ TyY, u,w ∈ TyY and y ∈ Y is an FMm,n-natural operator.
— AnFMm,n-natural operator Qproj (V×. . .×V,V∗⊗T∗⊗T) is given by formula (*) for v1, . . . , vk ∈ VyY,

u ∈ VyY, w ∈ TyY and y ∈ Y.
— AnFMm,n-natural operator Qproj (V×. . .×V,T∗⊗V∗⊗T) is defined by formula (*) for v1, . . . , vk ∈ VyY,

u ∈ TyY, w ∈ VyY and y ∈ Y.
— An FMm,n-natural operator C : Qproj (V × V × V,T∗ ⊗ T∗ ⊗ V) is given by

CY(∇)(v1, v2, v3)(u,w) := Ric∇(u,w)R∇(v1, v2, v3) ,

v1, v2, v3 ∈ VyY, u,w ∈ TyY, y ∈ Y, where Ric∇ is the Ricci tensor field of ∇. (Indeed, if X1,X2,X3 are vertical
vector fields on Y, then R∇(X1,X2,X3) = ∇X1∇X2 X3 − ∇X2∇X1 X3 − ∇[X1,X2]X3 is vertical because of ∇UW is
vertical for any projectable vector field U on Y and any vertical vector field W on Y (as ∇ is projectable).)

The problems of complete description of FMm,n-operators Qproj  (V × . . . × V,T∗ ⊗ T∗ ⊗ T) and
Qproj (V × . . .×V,V∗ ⊗ T∗ ⊗ T) and Qproj (V × . . .×V,T∗ ⊗V∗ ⊗ T) and Qproj (V × . . .×V,T∗ ⊗ T∗ ⊗V)
are unsolved (and in our opinion rather unsolvable).

7.

Let Λ : Qproj  QVA be an FMm,n-natural operator. Let ∇ ∈ Conproj(Y). We have the difference tensor
field ∆Λ(∇) := ΛY(∇) − ∇VA

of type T∗ ⊗ T∗ ⊗ T on VAY. Applying I∇ : VAY → VY ×Y . . . ×Y VY (from
Proposition 1) we treat ∆Λ(∇) as tensor field

∆Λ(∇) = (I∇)∗(ΛY(∇) − ∇VA
)

of type T∗ ⊗T∗ ⊗T on VY×Y . . .×Y VY. On the other hand, using D∇ (see above) we have the decomposition

Tv(VY ×Y . . . ×Y VY) = Vv(VY ×Y . . . ×Y VY) ⊕HD∇
v

for any v ∈ (VY×Y . . .×Y VY)y, y ∈ Y. Since Vv(VY×Y . . .×Y VY) = VyY× . . .×VyY and HDΛ

v = TyY (modulo
the usual identifications), then

Tv(VY ×Y . . . ×Y VY) = VyY × . . . × VyY × TyY

(modulo the identifications). Hence ∆Λ(∇)(v) ∈ T∗v(VY×Y . . .×YVY)⊗T∗v(VY×Y . . .×YVY)⊗Tv(VY×Y . . .×YVY)
can be treated as the system of (k + 1)3-tuples of k3 elements from (VyY)∗ ⊗ (VyY)∗ ⊗ VyY and k2 elements
from (VyY)∗ ⊗ (VyY)∗ ⊗ TyY and . . . and one element from (TyY)∗ ⊗ (TyY)∗ ⊗ TyY.

Thus we have proved the following reducibility theorem.

Theorem 1. Let A be a Weil algebra, k + 1 = dimRA. The FMm,n-natural operators Λ : Qproj  QVA lifting
projectable classical linear connections to VA are in bijection with the (k + 1)3-tuples (CI,CII

a ,CIII
b , . . . , CVIII

1 ) of
FMm,n-natural operators

CI : Qproj (V × . . . × V,T∗ ⊗ T∗ ⊗ T) and
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CII
a : Qproj (V × . . . × V,V∗ ⊗ V∗ ⊗ V) for a = 1, . . . , k3 ,

CIII
b : Qproj (V × . . . × V,V∗ ⊗ V∗ ⊗ T) for b = 1, . . . , k2 ,

CIV
c : Qproj (V × . . . × V,V∗ ⊗ T∗ ⊗ V) for c = 1, . . . , k2 ,

CV
d : Qproj (V × ... × V,T∗ ⊗ V∗ ⊗ V) for d = 1, . . . , k2 ,

CVI
e : Qproj (V × ... × V,V∗ ⊗ T∗ ⊗ T) for e = 1, . . . , k ,

CVII
f : Qproj (V × ... × V,T∗ ⊗ V∗ ⊗ T) for f = 1, . . . , k ,

CVIII
1 : Qproj (V × ... × V,T∗ ⊗ T∗ ⊗ V) for 1 = 1, . . . , k .

The above theorem reduces the problem of finding all FMm,n-natural operators Qproj  QVA lifting
projectable classical linear connections to VA to the one of finding FMm,n-natural operators of some types
being simpler than Qproj  QVA and depending only on the dimension of A. This ”reduction” shows that
the problem of finding all FMm,n-natural operators Qproj  QVA is rather unsolvable. On the other hand,
this ”reduction” brings a possibility to give many examples of FMm,n-natural operators Qproj QVA.
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