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Abstract. We consider a pair of smooth manifolds, which are the counterparts in the even-dimensional
and odd-dimensional cases. They are separately an almost complex manifold with Norden metric and an
almost contact manifolds with B-metric, respectively. They can be combined as the so-called almost contact
complex Riemannian manifold. This paper is a survey with additions of results on differential geometry of
canonical-type connections (i.e. metric connections with torsion satisfying a certain algebraic identity) on
the considered manifolds.

1. Introduction

The geometry of almost Hermitian manifolds (N, J, h) is well developed. As it is known, P. Gauduchon
gives in [10] a unified presentation of a so-called canonical class of (almost) Hermitian connections, con-
sidered by P. Libermann in [14]. Let us recall, a linear connection D is called Hermitian if it preserves the
Hermitian metric h and the almost complex structure J, Dh = DJ = 0. The potential of D (with respect to the
Levi-Civita connection ∇), denoted by Q, is defined by the difference D − ∇. The connection D preserves
the metric and therefore is completely determined by its torsion T. According to [3, 33, 35], the two spaces
of all torsions and of all potentials are isomorphic as O(n) representations and an equivariant bijection is
the following

T(x, y, z) = Q(x, y, z) −Q(y, x, z), (1)
2Q(x, y, z) = T(x, y, z) − T(y, z, x) + T(z, x, y). (2)

Following E. Cartan [3], there are studied the algebraic types of the torsion tensor for a metric connection,
i.e. a linear connection preserving the metric.

On an almost Hermitian manifold, a Hermitian connection is called canonical if its torsion T satisfies the
following conditions: [10]
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1) the component of T satisfying the Bianchi identity and having the property T(J·, J·) = T(·, ·) vanishes;
2) for some real number t, it is valid (ST)+ = (1 − 2t)(dΩ)+(J·, J·, J·), where S denotes the cyclic sum

by three arguments and (dΩ)+ is the part of type (2, 1) + (1, 2) of the differential dΩ for the Kähler form
Ω = 1(J·, ·).

According to [10], there exists an one-parameter family {∇t
}t∈R of canonical Hermitian connections

∇
t = t∇1+(1−t)∇0, where∇0 and∇1 are the Lichnerowicz first and second canonical connections [15], respectively.

An object of our interest is the class of manifolds with Norden-type metrics.
In comparison, the action of the almost complex structure with respect to the Hermitian metric (respec-

tively, the Norden metric) on the tangent spaces of the almost complex manifold is an isometry (respectively,
an anti-isometry). The latter manifolds are known as generalized B-manifolds [11] or almost complex manifolds
with Norden metric [4] or complex Riemannian manifolds [13]. The Norden metric is a pseudo-Riemannian
metric of neutral signature whereas the Hermitian metric is Riemannian.

In the odd-dimensional case, the additional direction is spanned by a vector field ξ. Then its dual
1-form η determines a codimension one distribution H = ker(η) endowed with an almost complex structure
ϕ. Then we have an almost contact structure (ϕ, ξ, η). If the almost complex structure is equipped with
a Hermitian metric then the almost contact manifold is called metric. In the case when the restriction of
the metric on H is a Norden metric then we deal with an almost contact manifold with B-metric (or an almost
contact complex Riemannian manifold). Any B-metric as an odd-dimensional counterpart of a Norden metric
is a pseudo-Riemannian metric of signature (n + 1,n).

The goal of the present paper is to survey the research on canonical-type connections in the case of
Norden-type metrics as well as some additions and generalizations are made. In Section 2 we consider the
even-dimensional case and in Section 3 — the odd-dimensional one.

Notation 1.1. (a) The notation S
x,y,z

(or simply S) means the cyclic sum by the three arguments x, y, z; e.g.,

S
x,y,z

F(x, y, z) = F(x, y, z) + F(y, z, x) + F(z, x, y);

(b) For the sake of brevity, we shall use the notation {A(x, y, z)}[x↔y] for the difference A(x, y, z) − A(y, x, z) and
{A(x, y, z)}(x↔y) for the sum A(x, y, z) + A(y, x, z), where A is an arbitrary tensor of type (0, 3);

(c) We shall use double subscripts separated by the symbol /. The former and latter subscripts regarding this symbol
correspond to the upper and down signs plus and minus (or, = and ,) in the same equality, respectively. For
example, the notation F8/9 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = ±F(y, x, ξ) = F(ϕx, ϕy, ξ)
meansF8 : F(x, y, z) = F(x, y, ξ)η(z)+F(x, z, ξ)η(y), F(x, y, ξ) = F(y, x, ξ) = F(ϕx, ϕy, ξ) andF9 : F(x, y, z) =
F(x, y, ξ)η(z)+F(x, z, ξ)η(y), F(x, y, ξ) = −F(y, x, ξ) = F(ϕx, ϕy, ξ). Similarly,T1/2 : T(ξ, y, z) = T(x, y, ξ) =

0, T(x, y, z) = −T(ϕx, ϕy, z) = −T(x, ϕy, ϕz), t =
,

0 means T1 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) =
−T(ϕx, ϕy, z) = −T(x, ϕy, ϕz), t , 0 and T2 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) = −T(ϕx, ϕy, z) =
−T(x, ϕy, ϕz), t = 0.

2. Almost complex manifolds with Norden metric

Let us consider an almost complex manifold with Norden metric or an almost complex Norden manifold
(M′, J, 1′), i.e.

J2x = −x, 1′(Jx, Jy) = −1′(x, y) (3)

for all differentiable vector fields x, y on M′. It is 2n-dimensional. The associated metric 1̃′ of 1′ on M′ defined
by 1̃′(x, y) = 1′(x, Jy) is also a Norden metric. The signature of both the metrics is necessarily (n,n).

These manifolds are known as almost complex manifolds with Norden metric [5, 31, 32], almost complex
manifolds with B-metric [6, 8] or almost complex manifolds with complex Riemannian metric [2, 7, 13, 25].
Their structure group is GL(n,C) ∩O(n,n).

Further in this section, x, y, z, w will stand for arbitrary differentiable vector fields on M′ (or vectors
in the tangent space of M′ at an arbitrary point of M′). Moreover, let {ei} (i = 1, 2, . . . , 2n) be an arbitrary
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basis of the tangent space of M′ at any point of M′ and 1′i j be the corresponding components of the inverse
matrix of 1′.

The fundamental tensor F′ of type (0, 3) on M′ is defined by F′(x, y, z) = 1′
((
∇
′
x J

)
y, z

)
, where ∇′ is the

Levi-Civita connection of 1′, and F′ has the following properties: [11]

F′(x, y, z) = F′(x, z, y) = F′(x, Jy, Jz). (4)

The corresponding Lee form θ′ is defined by θ′(z) = 1′i jF′(ei, e j, z). The associated trace with respect
to the metric 1̃′ is defined by θ̃′(z) = 1̃′i jF′(ei, e j, z), which implies the relation θ̃′(z) = θ′(Jz) because of
1̃′i jF′(ei, e j, z) = −1′i jF′(ei, Je j, z) = 1′i jF′(ei, e j, Jz).

In [4], the considered manifolds are classified into three basic classesWi (i = 1, 2, 3) with respect to F′.
All classes are determined as follows:

W0 : F′(x, y, z) = 0;
W1 : F′(x, y, z) = 1

2n

{
1′(x, y)θ′(z) + 1′(x, Jy)θ′(Jz)

}
(y↔z)

;

W2 : S
x,y,z

F′(x, y, Jz) = 0, θ′ = 0;

W3 : S
x,y,z

F′(x, y, z) = 0;

W1 ⊕W2 : S
x,y,z

F′(x, y, Jz) = 0;

W1 ⊕W3 : S
x,y,z

F′(x, y, z) = 1
n Sx,y,z

{
1′(x, y)θ′(z) + 1′(x, Jy)θ′(Jz)

}
;

W2 ⊕W3 : θ′ = 0;
W1 ⊕W2 ⊕W3 : no conditions.

(5)

The classW0 of the Kähler manifolds with Norden metric belongs to any other class.
Let R′ be the curvature tensor of ∇′, i.e. R′ = [∇′ ,∇′ ] − ∇′[ , ] and the corresponding (0, 4)-tensor is

determined by R′(x, y, z,w) = 1′(R′(x, y)z,w). The Ricci tensor ρ′ and the scalar curvature τ′ are defined as
usual by ρ′(y, z) = 1′i jR′(ei, y, z, e j) and τ′ = 1′i jρ′(ei, e j).

A tensor L of type (0,4) having the properties L(x, y, z,w) = −L(y, x, z,w) = −L(x, y,w, z), S
x,y,z

L(x, y, z,w) =

0 is called a curvature-like tensor. Moreover, if the curvature-like tensor L has the property L(x, y, Jz, Jw) =
−L(x, y, z,w), it is called a Kähler tensor [6].

2.1. The pair of the Nijenhuis tensors

As it is well known, the Nijenhuis tensor N′ of the almost complex structure J is defined by

N′(x, y) := [J, J](x, y) =
[
Jx, Jy

]
−

[
x, y

]
− J

[
Jx, y

]
− J

[
x, Jy

]
. (6)

Besides it, we define the following symmetric (1,2)-tensor N̂′ in analogy to (6) by

N̂′(x, y) = {J, J}(x, y) = {Jx, Jy} − {x, y} − J{Jx, y} − J{x, Jy},

where the symmetric braces {x, y} = ∇xy + ∇yx are used instead of the antisymmetric brackets [x, y] =

∇xy − ∇yx. The tensor N̂′ we also call the associated Nijenhuis tensor of the almost complex structure.
The pair of the Nijenhuis tensors N′ and N̂′ plays a fundamental role in the topic of natural connections

(i.e. J and 1′ are parallel with respect to them) on an almost complex Norden manifold. The torsions and
the potentials of these connections are expressed by these two tensors. By this reason we characterize the
classes of the considered manifolds in terms of N′ and N̂′.

As it is known from [4], the classW3 of the quasi-Kähler manifolds with Norden metric is the only basic
class of the considered manifolds with non-integrable almost complex structure J, because N′ is non-zero
there. Moreover, this class is determined by the condition N̂′ = 0. The class W1 ⊕W2 of the (integrable
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almost) complex manifolds with Norden metric is characterized by N′ = 0 and N̂′ , 0. Additionally, the basic
classesW1 andW2 are distinguish from each other according to the Lee form θ′: forW1 the tensor F′ is
expressed explicitly by the metric and the Lee form, i.e. θ′ , 0; whereas forW2 it is valid θ′ = 0.

The corresponding tensors of type (0,3) are denoted by the same letter, N′(x, y, z) = 1′(N′(x, y), z),
N̂′(x, y, z) = 1′(N̂′(x, y), z). Both tensors N′ and N̂′ can be expressed in terms of F′ as follows: [4]

N′(x, y, z) = F′(x, Jy, z) − F′(y, Jx, z) + F′(Jx, y, z) − F′(Jy, x, z), (7)

N̂′(x, y, z) = F′(x, Jy, z) + F′(y, Jx, z) + F′(Jx, y, z) + F′(Jy, x, z). (8)

The tensor N̂′ coincides with the tensor Ñ′ introduced in [4] by an equivalent equality of (8).
By virtue of (3), (4), (7) and (8), we get the following properties of N′ and N̂′:

N′(x, y, z) = N′(x, Jy, Jz) = N′(Jx, y, Jz) = −N′(Jx, Jy, z), N′(Jx, y, z) = N′(x, Jy, z) = −N′(x, y, Jz); (9)

N̂′(x, y, z) = N̂′(x, Jy, Jz) = N̂′(Jx, y, Jz) = −N̂′(Jx, Jy, z), N̂′(Jx, y, z) = N̂′(x, Jy, z) = −N̂′(x, y, Jz). (10)

Theorem 2.1. The fundamental tensor F′ of an almost complex Norden manifold (M′, J, 1′) is expressed in terms of
the Nijenhuis tensors N′ and N̂′ by the formula

F′(x, y, z) = −
1
4

{
N′(Jx, y, z) + N′(Jx, z, y) + N̂′(Jx, y, z) + N̂′(Jx, z, y)

}
. (11)

Proof. Taking the sum of (7) and (8), we obtain

F′(Jx, y, z) + F′(x, Jy, z) =
1
2

{
N′(x, y, z) + N̂′(x, y, z)

}
. (12)

The identities (3) and (4) imply

F′(x, z, Jy) = −F′(x, y, Jz). (13)

A suitable combination of (12) and (13) yields

F′(Jx, y, z) =
1
4

{
N′(x, y, z) + N′(x, z, y) + N̂′(x, y, z) + N̂′(x, z, y)

}
. (14)

Applying (3) to (14), we obtain the stated formula.

As direct corollaries of Theorem 2.1 we have:

W1⊕W2 : F′(x, y, z) = −
1
4

{
N̂′(Jx, y, z)+N̂′(Jx, z, y)

}
, W3 : F′(x, y, z) = −

1
4

{
N′(Jx, y, z)+N′(Jx, z, y)

}
. (15)

According to Theorem 2.1, we obtain the following relation for the corresponding traces:

θ′ =
1
4
ν̂′ ◦ J, (16)

where ν̂′(z) = 1′i jN̂′(ei, e j, z). For the traces with respect to the associated metric 1̃′ of F′ and N̂′, i.e.

θ̃′(z) = 1̃′
i j

F′(ei, e j, z) and ˜̂ν′(z) = 1̃′
i j

N̂′(ei, e j, z), we have θ̃′ = − 1
4 ν̂ = θ′ ◦ J and ˜̂ν′ = 4θ′ = ν̂′ ◦ J, respectively.

Then, bearing in mind (5) and the subsequent comments on the pair of the Nijenhuis tensors, from
Theorem 2.1 and (16) we obtain immediately the following
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Theorem 2.2. The classes of almost complex Norden manifolds are characterized by the Nijenhuis tensors N′ and N̂′

as follows:

W0 : N′ = 0, N̂′ = 0;
W1 : N′ = 0, N̂′ = 1

2n

{̂
ν′ ⊗ 1′ + ˜̂ν′ ⊗ 1̃′};

W2 : N′ = 0, ν̂′ = 0;
W3 : N̂′ = 0;

W1 ⊕W2 : N′ = 0;
W1 ⊕W3 : N̂′ = 1

2n

{̂
ν′ ⊗ 1′ + ˜̂ν′ ⊗ 1̃′};

W2 ⊕W3 : ν̂′ = 0;
W1 ⊕W2 ⊕W3 : no conditions.

(17)

2.2. Natural connections on an almost complex Norden manifold
Let ∇∗ be a linear connection with a torsion T∗ and a potential Q∗ with respect to ∇′, i.e.

T∗(x, y) = ∇∗xy − ∇∗yx − [x, y], Q∗(x, y) = ∇∗xy − ∇′xy.

The corresponding (0,3)-tensors are defined by T∗(x, y, z) = 1′(T∗(x, y), z), Q∗(x, y, z) = 1′(Q∗(x, y), z). These
tensors have the same mutual relations as in (1) and (2).

In [8], it is given a partial decomposition of the space T of all torsion (0,3)-tensors T (i.e. satisfying
T(x, y, z) = −T(y, x, z)) on an almost complex Norden manifold (M′, J, 1′): T = T1 ⊕ T2 ⊕ T3 ⊕ T4, where Ti
(i = 1, 2, 3, 4) are invariant orthogonal subspaces with respect to the structure group GL(n,C) ∩O(n,n):

T1 : T(x, y, z) = −T(Jx, Jy, z) = −T(Jx, y, Jz);
T2 : T(x, y, z) = −T(Jx, Jy, z) = T(Jx, y, Jz);
T3 : T(x, y, z) = T(Jx, Jy, z), S

x,y,z
T(x, y, z) = 0,

T4 : T(x, y, z) = T(Jx, Jy, z), S
x,y,z

T(Jx, y, z) = 0.

Moreover, in [8] there are explicitly given the components Ti of T ∈ T in Ti (i = 1, 2, 3, 4).
A linear connection ∇∗ on an almost complex manifold with Norden metric (M′, J, 1′) is called a natural

connection if ∇∗ J = ∇∗1′ = 0. These conditions are equivalent to ∇∗1′ = ∇∗1̃′ = 0. The connection ∇∗ is natural
if and only if the following conditions for its potential Q∗ are valid:

F′(x, y, z) = Q∗(x, y, Jz) −Q∗(x, Jy, z), Q∗(x, y, z) = −Q∗(x, z, y). (18)

In terms of the components Ti, a linear connection with torsion T on (M′, J, 1′) is natural if and only if

T2(x, y, z) =
1
4

N′(x, y, z), T3(x, y, z) =
1
8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
.

The former condition is given in [8] whereas the latter one follows immediately by (1), (2), (8) and (18).

2.3. The B-connection and the canonical connection
In [6], it is introduced the B-connection ∇̇′ only for the manifolds from the classW1 by

∇̇
′

xy = ∇′xy −
1
2

J
(
∇
′

x J
)

y. (19)

Obviously, the B-connection is a natural connection on (M′, J, 1′) and it exists in any class of the considered
manifolds. Only on aW0-manifold, the B-connection coincides with the Levi-Civita connection.

By virtue of (1), (9), (10), (11), from (19) we express the torsion of the B-connection as follows:

Ṫ′(x, y, z) =
1
8

{
N′(x, y, z) + S

x,y,z
N′(x, y, z) + N̂′(z, y, x) − N̂′(z, x, y)

}
. (20)
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A natural connection with torsion T̈′ on an almost complex manifold with Norden metric (M′, J, 1′) is
called a canonical connection if T̈′ satisfies the following condition [8]

T̈′(x, y, z) + T̈′(y, z, x) − T̈′(Jx, y, Jz) − T̈′(y, Jz, Jx) = 0. (21)

In [8] it is shown that (21) is equivalent to the condition T̈′1 = T̈′4 = 0, i.e. T̈′ ∈ T2 ⊕ T3. Moreover, there
it is proved that on every almost complex Norden manifold there exists a unique canonical connection ∇̈′.
We express its torsion in terms of N′ and N̂′ as follows

T̈′(x, y, z) =
1
4

N′(x, y, z) +
1
8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
. (22)

Taking into account (22) and (20), it is easy to conclude that ∇̈′ ≡ ∇̇′ is valid if and only if the condition
N′ = SN′ holds which is equivalent to N′ = 0. In other words, on a complex Norden manifold, i.e.
(M′, J, 1′) ∈ W1 ⊕W2, the canonical connection and the B-connection coincide.

Now, let (M′, J, 1′) be in the class W1. This is the class of the conformally equivalent manifolds of
the Kähler manifold with Norden metric. The conformal equivalence is made with respect to the general
conformal transformations of the metric 1′ defined by

1
′

= e2u {
cos 2v 1′ + sin 2v 1̃′

)
, (23)

where u and v are differentiable functions on M′ [6]. For v = 0 they are restricted to the usual conformal
transformations. The manifold (M′, J, 1′) is again an almost complex Norden manifold. An important
subgroup of the general group C of the conformal transformations (23) is the group C0 of the holomorphic
conformal transformations, defined by the condition: u + iv is a holomorphic function, i.e. du = dv ◦ J. Then

torsion of the canonical connection is an invariant of C0, i.e. the relation T̈′(x, y) = T̈′(x, y) holds with respect
to any transformation of C0. There are proved that the curvature tensor of the canonical connection is a
Kähler tensor if and only if (M′, J, 1′) ∈ W0

1 , i.e. a manifold inW1 with closed forms θ′ and θ′ ◦ J. Moreover,
there are studied conformal invariants of the canonical connection inW0

1 .
Bearing in mind the conformal invariance of both the basic classes and the torsion T̈′ of the canonical

connection, the conditions for T̈′ are used in [8] for other characteristics of all classes of the almost complex
Norden manifolds as follows:

W0 : T̈′(x, y) = 0;
W1 : T̈′(x, y) = 1

2n
{
ẗ′(x)y − ẗ′(y)x + ẗ′(Jx)Jy − ẗ′(Jy)Jx

}
;

W2 : T̈′(x, y) = T̈′(Jx, Jy), ẗ′ = 0;
W3 : T̈′(Jx, y) = −JT̈′(x, y);

W1 ⊕W2 : T̈′(x, y) = T̈′(Jx, Jy), S
x,y,z

T̈′(x, y, z) = 0;

W1 ⊕W3 : T̈′(Jx, y) + JT̈′(x, y) = 1
n

{
ẗ′(Jy)x − ẗ′(y)Jx

}
;

W2 ⊕W3 : ẗ′ = 0;
W1 ⊕W2 ⊕W3 : no conditions,

(24)

where ẗ′(x) = 1′i jT̈′(x, ei, e j). The special classW0 is characterized by the condition T̈′(x, y) = 0, i.e. there
∇̈
′
≡ ∇

′ holds.
The classes of the almost complex Norden manifolds are determined with respect to the Nijenhuis

tensors in (17), the same classes are characterized by conditions for the torsion of the canonical connection
in (24). By virtue of these results we obtain the following

Theorem 2.3. The classes of the almost complex Norden manifolds M = (M, ϕ, ξ, η, 1) are characterized by an
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expression of the torsion T̈′ of the canonical connection in terms of the Nijenhuis tensors N and N̂ as follows:

W1 : T̈′(x, y, z) = 1
16n

{̂
ν′(x)1′(y, z) + ν̂′(Jx)1′(y, Jz)

}
[x↔y]

;

W2 : T̈′(x, y, z) = 1
8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
, ẗ′ = ν̂′ = 0;

W3 : T̈′(x, y, z) = 1
4 N′(x, y, z);

W1 ⊕W2 : T̈′(x, y, z) = 1
8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
;

W1 ⊕W3 : T̈′(x, y, z) = 1
4 N′(x, y, z) + 1

16n

{̂
ν′(x)1′(y, z) + ν̂′(Jx)1′(y, Jz)

}
[x↔y]

;

W2 ⊕W3 : T̈′(x, y, z) = 1
4 N′(x, y, z) + 1

8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
, ẗ′ = ν̂′ = 0.

(25)

The special classW0 is characterized by T̈′ = 0 and the whole classW1 ⊕W2 ⊕W3 — by (22) only.
Moreover, bearing in mind the classifications with respect to the tensor F′ and the torsion T̈′ in [4] and [8],

respectively, we have:

(i) M ∈ W1 ⊕W2 if and only if T̈′ ∈ T3;

(ii) M ∈ W1 if and only if T̈′ ∈ T 1
3 , where T 1

3 is the subclass of T3 with the vectorial torsions1);

(iii) M ∈ W2 if and only if T̈′ ∈ T 0
3 , where T 0

3 is the subclass of T3 with ẗ′ = 0;

(iv) M ∈ W3 if and only if T̈′ ∈ T2;

(v) M ∈ W1 ⊕W3 if and only if T̈′ ∈ T2 ⊕ T
1
3 ;

(vi) M ∈ W2 ⊕W3 if and only if T̈′ ∈ T2 ⊕ T
0
3 ;

(vii) M ∈ W1 ⊕W2 ⊕W3 if and only if T̈′ ∈ T2 ⊕ T3.

Proof. Let (M′, J, 1′) be a complex Norden manifold, i.e. (M′, J, 1′) ∈ W1 ⊕ W2. According to (22) and
N′ = 0 in this case, we have T̈′ = T̈′3, i.e. T̈′ ∈ T3 and the expression T̈′(x, y, z) = 1

8

{
N̂′(z, y, x) − N̂′(z, x, y)

}
is obtained. Applying (17) to the latter equality, we determine the basic classesW1 andW2 as is given in
(25) and the corresponding subclasses T 1

3 and T 0
3 , respectively. Taking into account the relation between

the corresponding traces ν̂′ = 8ẗ′, which is a consequence of the equality for W1 ⊕W2, we obtain the
characterization for these two basic classes in (24).

Let (M′, J, 1′) be a quasi-Kähler manifold with Norden metric, i.e. (M′, J, 1′) ∈ W3. By virtue of (22) and
N̂′ = 0 for such a manifold, we have T̈′ = T̈′2, i.e. T̈′ ∈ T2 and therefore we give T̈′ = 1

4 N′. Obviously, the
form of T̈′ in the latter equality satisfies the condition forW3 in (24).

In a similar way we get for the rest classes W1 ⊕ W3 and W2 ⊕ W3. The conditions of these two
classes, given in (24), are consequences of the corresponding equalities in (25). The case of the whole class
W1 ⊕W2 ⊕W3 was discussed above.

The canonical connections on quasi-Kähler manifolds with Norden metric are considered in more details
in [28]. There are given the following formulae for the potential Q̈′ and the torsion T̈′ on aW3-manifold:

Q̈′(x, y) =
1
4

{(
∇
′

y J
)

Jx −
(
∇
′

Jy J
)

x + 2
(
∇
′

x J
)

Jy
}
, T̈′(x, y) =

1
2

{(
∇
′

x J
)

Jy +
(
∇
′

Jx J
)

y
}
.

Moreover, some properties for the curvature and the torsion of the canonical connection are obtained.

1)A vectorial torsion is a torsion which is essentially defined by some vector field on the manifold and its metrics.
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2.4. The KT-connection
In [27], it is proved that a natural connection

...
∇
′ with totally skew-symmetric torsion, called a KT-

connection, exists on an almost complex Norden manifold (M′, J, 1′) if and only if (M′, J, 1′) belongs toW3,
i.e. the manifold is quasi-Kählerian with Norden metric. Moreover, the KT-connection is unique and it is
determined by its potential

...
Q′(x, y, z) = −

1
4 Sx,y,z

F′(x, y, Jz). (26)

As mentioned above, the canonical connection and the B-connection coincide on (M′, J, 1′) ∈ W1 ⊕W2
whereas the KT-connection does not exist there.

The following natural connections on (M′, J, 1′) are studied on a quasi-Kähler manifold with Norden
metric: the B-connection ∇̇′ ([26]), the canonical connection ∇̈′ ([28]) and the KT-connection

...
∇
′ ([27]).

From the relations (22) and (20) for aW3-manifold follow

Ṫ′(x, y, z) =
1
8

{
N′(x, y, z) + S

x,y,z
N′(x, y, z)

}
, T̈′(x, y, z) =

1
4

N′(x, y, z). (27)

The equalities (1) and (26) yield
...
T ′(x, y, z) = − 1

2 Sx,y,z
F′(x, y, Jz), which by (15) forW3 and (9) implies

...
T ′(x, y, z) =

1
4 Sx,y,z

N′(x, y, z). (28)

Then from (27) and (28) we have the relation Ṫ′ = 1
2

(
T̈′ +

...
T ′

)
, which by (2) is equivalent to Q̇′ =

1
2

(
Q̈′ +

...
Q
′)

. Therefore, as it is shown in [28], the B-connection is the average connection for the canonical

connection and the KT-connection on a quasi-Kähler manifold with Norden metric , i.e. ∇̇′ = 1
2

(
∇̈′ +

...
∇
′
)
.

3. Almost contact manifolds with B-metric

Let (M, ϕ, ξ, η) be an almost contact manifold, i.e. M is a (2n + 1)-dimensional differentiable manifold
with an almost contact structure (ϕ, ξ, η) consisting of an endomorphism ϕ of the tangent bundle, a vector
field ξ and its dual 1-form η such that the following relations are valid:

ϕξ = 0, ϕ2 = −Id + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1. (29)

Later on, let us equip (M, ϕ, ξ, η) with a pseudo-Riemannian metric 1 of signature (n + 1,n) determined by

1(ϕx, ϕy) = −1(x, y) + η(x)η(y) (30)

for arbitrary differentiable vector fields x, y on M. Then (M, ϕ, ξ, η, 1) is called an almost contact manifold
with B-metric or an almost contact B-metric manifold. The associated metric 1̃ of 1 on M is defined by the
equality 1̃(x, y) = 1(x, ϕy)+η(x)η(y). Both metrics 1 and 1̃ are necessarily of signature (n+1,n). The manifold
(M, ϕ, ξ, η, 1̃) is also an almost contact B-metric manifold. [9]

Let us remark that the 2n-dimensional contact distribution H = ker(η), generated by the contact 1-form
η, can be considered as the horizontal distribution of the sub-Riemannian manifold M. Then H is endowed
with an almost complex structure determined as ϕ|H – the restriction of ϕ on H, as well as a Norden metric
1|H, i.e. 1|H(ϕ|H·, ϕ|H·) = −1|H(·, ·). Moreover, H can be considered as an n-dimensional complex Riemannian
manifold with a complex Riemannian metric 1C = 1|H + i1̃|H [7]. By this reason we refer to these manifolds
as almost contact complex Riemannian manifolds. They are investigated and studied in [9, 17, 19–21, 23, 24, 30].
The structure group of these manifolds is (GL(n,C) ∩O(n,n)) × I1.

Further in this section, x, y, z will stand for arbitrary differentiable vector fields on M (or vectors in the
tangent space of M at an arbitrary point of M). Moreover, let {ei; ξ}2n

i=1 denote an arbitrary basis of the tangent
space of M at an arbitrary point in M and 1i j be the corresponding components of the inverse matrix of 1.
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The fundamental tensor F of type (0,3) on (M, ϕ, ξ, η, 1) is defined by F(x, y, z) = 1
((
∇xϕ

)
y, z

)
, where ∇ is

the Levi-Civita connection for 1 and the following properties are valid: [9]

F(x, y, z) = F(x, z, y) = F(x, ϕy, ϕz) + η(y)F(x, ξ, z) + η(z)F(x, y, ξ). (31)

The relations of the covariant derivatives ∇ξ and ∇η with F are:
(
∇xη

)
y = 1

(
∇xξ, y

)
= F(x, ϕy, ξ).

The following 1-forms, called Lee forms, are associated with F:

θ(z) = 1i jF(ei, e j, z), θ∗(z) = 1i jF(ei, ϕe j, z), ω(z) = F(ξ, ξ, z).

Obviously, the equalities θ∗ ◦ ϕ = −θ ◦ ϕ2 and ω(ξ) = 0 are valid. For the corresponding traces θ̃ and θ̃∗

with respect to 1̃we have θ̃ = −θ∗ and θ̃∗ = θ.
A classification with respect to F of the almost contact B-metric manifolds is given in [9]. This classifi-

cation includes eleven basic classes F1, F2, . . . , F11. Their intersection is the special class F0 : F(x, y, z) = 0.
Further, we use the following characteristic conditions of the basic classes: [9, 18]

F1 : F(x, y, z) = 1
2n

{
1(x, ϕy)θ(ϕz) + 1(ϕx, ϕy)θ(ϕ2z)

}
(y↔z)

;

F2 : F(ξ, y, z) = F(x, ξ, z) = 0, S
x,y,z

F(x, y, ϕz) = 0, θ = 0;

F3 : F(ξ, y, z) = F(x, ξ, z) = 0, S
x,y,z

F(x, y, z) = 0;

F4 : F(x, y, z) = −
θ(ξ)
2n

{
1(ϕx, ϕy)η(z) + 1(ϕx, ϕz)η(y)

}
;

F5 : F(x, y, z) = −
θ∗(ξ)

2n

{
1(x, ϕy)η(z) + 1(x, ϕz)η(y)

}
;

F6/7 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = ±F(y, x, ξ) = −F(ϕx, ϕy, ξ), θ = θ∗ = 0;
F8/9 : F(x, y, z) = F(x, y, ξ)η(z) + F(x, z, ξ)η(y), F(x, y, ξ) = ±F(y, x, ξ) = F(ϕx, ϕy, ξ);
F10 : F(x, y, z) = F(ξ, ϕy, ϕz)η(x);
F11 : F(x, y, z) = η(x)

{
η(y)ω(z) + η(z)ω(y)

}
.

3.1. The pair of the Nijenhuis tensors

An almost contact structure (ϕ, ξ, η) on M is called normal and respectively (M, ϕ, ξ, η) is a normal almost
contact manifold if the corresponding almost complex structure J′ generated on M′ = M × R is integrable
[34]. The almost contact structure is normal if and only if the Nijenhuis tensor of (ϕ, ξ, η) is zero [1].

The Nijenhuis tensor N of the almost contact structure is defined by N := [ϕ,ϕ] + dη ⊗ ξ, where
[ϕ,ϕ](x, y) =

[
ϕx, ϕy

]
+ ϕ2 [

x, y
]
− ϕ

[
ϕx, y

]
− ϕ

[
x, ϕy

]
and dη is the exterior derivative of η.

In [24], it is defined the symmetric (1,2)-tensor N̂ for a (ϕ, ξ, η)-structure by N̂ = {ϕ,ϕ}+ (Lξ1)⊗ξ, where
L denotes the Lie derivative and {ϕ,ϕ} is given by {ϕ,ϕ}(x, y) = {ϕx, ϕy} + ϕ2

{x, y} − ϕ{ϕx, y} − ϕ{x, ϕy} for
{x, y} = ∇xy + ∇yx. The tensor N̂ is also called the associated Nijenhuis tensor for (ϕ, ξ, η).

Obviously, N is antisymmetric and N̂ is symmetric, i.e. N(x, y) = −N(y, x) and N̂(x, y) = N̂(y, x).
The Nijenhuis tensors N and N̂ play a fundamental role in natural connections (i.e. such connections

that the tensors of the structure (ϕ, ξ, η, 1) are parallel with respect to them) on an almost contact B-metric
manifold. The torsions and the potentials of these connections are expressed by these two tensors. By this
reason we characterize the classes of the considered manifolds in terms of N and N̂.

The corresponding tensors of type (0,3) are denoted by the same letters, N(x, y, z) = 1(N(x, y), z),
N̂(x, y, z) = 1(N̂(x, y), z). Both tensors N and N̂ are expressed in terms of F as follows [24]

N(x, y, z) =
{
F(ϕx, y, z) − F(x, y, ϕz) + η(z)F(x, ϕy, ξ)

}
[x↔y]

, (32)

N̂(x, y, z) =
{
F(ϕx, y, z) − F(x, y, ϕz) + η(z)F(x, ϕy, ξ)

}
(x↔y)

. (33)
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Bearing in mind (29), (30) and (31), from (32) and (33) we obtain the following properties of the Nijenhuis
tensors on an arbitrary almost contact B-metric manifold:

N(x, ϕy, ϕz) = N(x, ϕ2y, ϕ2z), N(ϕx, y, ϕz) = N(ϕ2x, y, ϕ2z), N(ϕx, ϕy, z) = −N(ϕ2x, ϕ2y, z),

N̂(x, ϕy, ϕz) = N̂(x, ϕ2y, ϕ2z), N̂(ϕx, y, ϕz) = N̂(ϕ2x, y, ϕ2z), N̂(ϕx, ϕy, z) = −N̂(ϕ2x, ϕ2y, z),

N(ξ, ϕy, ϕz) + N(ξ, ϕz, ϕy) + N̂(ξ, ϕy, ϕz) + N̂(ξ, ϕz, ϕy) = 0.

It is known that the class of the normal almost contact B-metric manifolds, i.e. N = 0, is F1 ⊕ F2 ⊕ F4 ⊕

F5 ⊕ F6. According to [24], the class of the almost contact B-metric manifolds with N̂ = 0 is F3 ⊕ F7. The
latter two statements follow from [23] and [24], where the following form of the Nijenhuis tensors for each
of the basic classes Fi (i = 1, 2, . . . , 11) of (M, ϕ, ξ, η, 1) is given:

F1 : N(x, y) = 0, N̂(x, y) = 2
n

{
1(ϕx, ϕy)ϕθ] + 1(x, ϕy)θ]

}
;

F2 : N(x, y) = 0, N̂(x, y) = 2
{(
∇ϕxϕ

)
y − ϕ

(
∇xϕ

)
y
}

;
F3 : N(x, y) = 2

{(
∇ϕxϕ

)
y − ϕ

(
∇xϕ

)
y
}
, N̂(x, y) = 0;

F4 : N(x, y) = 0, N̂(x, y) = 2
nθ(ξ)1(x, ϕy)ξ;

F5 : N(x, y) = 0, N̂(x, y) = − 2
nθ
∗(ξ)1(ϕx, ϕy)ξ;

F6 : N(x, y) = 0, N̂(x, y) = 4
(
∇xη

)
y ξ;

F7 : N(x, y) = 4
(
∇xη

)
y ξ, N̂(x, y) = 0;

F8 : N(x, y) = 2
{
η(x)∇yξ − η(y)∇xξ

}
, N̂(x, y) = −2

{
η(x)∇yξ + η(y)∇xξ

}
;

F9 : N(x, y) = 2
{
η(x)∇yξ − η(y)∇xξ

}
, N̂(x, y) = −2

{
η(x)∇yξ + η(y)∇xξ

}
;

F10 : N(x, y) = −η(x)ϕ
(
∇ξϕ

)
y + η(y)ϕ

(
∇ξϕ

)
x, N̂(x, y) = −η(x)ϕ

(
∇ξϕ

)
y − η(y)ϕ

(
∇ξϕ

)
x;

F11 : N(x, y) =
{
η(x)ω(ϕy) − η(y)ω(ϕx)

}
ξ, N̂(x, y) =

{
η(x)ω(ϕy) + η(y)ω(ϕx)

}
ξ,

(34)

where θ] and ω] are the corresponding vectors of θ and ω with respect to 1.
In [12], the tensor F is expressed by the Nijenhuis tensors on an arbitrary (M, ϕ, ξ, η, 1) as follows:

F(x, y, z) = −
1
4

{
N(ϕx, y, z) + N(ϕx, z, y) + N̂(ϕx, y, z) + N̂(ϕx, z, y)

}
+

1
2
η(x)

{
N(ξ, y, ϕz) + N̂(ξ, y, ϕz) + η(z)N̂(ξ, ξ, ϕy)

}
.

(35)

As corollaries, in the cases when N = 0 or N̂ = 0, the latter relation takes the following form, respectively:

F(x, y, z) = −
1
4

{
N̂(ϕx, y, z) + N̂(ϕx, z, y)

}
+

1
2
η(x)

{
N̂(ξ, y, ϕz) + η(z)N̂(ξ, ξ, ϕy)

}
,

F(x, y, z) = −
1
4

{
N(ϕx, y, z) + N(ϕx, z, y)

}
+

1
2
η(x)N(ξ, y, ϕz).

3.2. Natural connections on an almost contact B-metric manifold

Let D be a linear connection on (M, ϕ, ξ, η, 1) and let us denote its torsion and potential (with respect to∇)
by T and Q, respectively. The corresponding tensors of type (0,3) are determined by T(x, y, z) = 1(T(x, y), z)
and Q(x, y, z) = 1

(
Q(x, y), z

)
. The relations (1) and (2) are valid.

In [24], it is given a classification of all linear connections on the almost contact B-metric manifolds with
respect to their torsions T in 15 basic classesTi (i = 1, . . . , 15) (which are invariant and orthogonal subspaces
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with respect to the structure group) as follows:

T1/2 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) = −T(ϕx, ϕy, z) = −T(x, ϕy, ϕz), t =
, 0;

T3 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) = −T(ϕx, ϕy, z) = T(x, ϕy, ϕz);

T4/5 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) − T(ϕx, ϕy, z) = S
x,y,z

T(x, y, z) = 0, t =
, 0;

T6 : T(ξ, y, z) = T(x, y, ξ) = 0, T(x, y, z) − T(ϕx, ϕy, z) = S
x,y,z

T(ϕx, y, z) = 0;

T7/8 : T(x, y, z) = η(z)T(ϕ2x, ϕ2y, ξ), T(x, y, ξ) = ∓T(ϕx, ϕy, ξ);

T9/10 : T(x, y, z) = η(x)T(ξ, ϕ2y, ϕ2z) − η(y)T(ξ, ϕ2x, ϕ2z),

T(ξ, y, z) = T(ξ, z, y) = −T(ξ, ϕy, ϕz), t =
, 0, t∗ ,

= 0;

T11 : T(x, y, z) = η(x)T(ξ, ϕ2y, ϕ2z) − η(y)T(ξ, ϕ2x, ϕ2z),
T(ξ, y, z) = T(ξ, z, y) = −T(ξ, ϕy, ϕz), t = 0, t∗ = 0;

T12 : T(x, y, z) = η(x)T(ξ, ϕ2y, ϕ2z) − η(y)T(ξ, ϕ2x, ϕ2z), T(ξ, y, z) = −T(ξ, z, y) = −T(ξ, ϕy, ϕz);

T13/14 : T(x, y, z) = η(x)T(ξ, ϕ2y, ϕ2z) − η(y)T(ξ, ϕ2x, ϕ2z), T(ξ, y, z) = ±T(ξ, z, y) = T(ξ, ϕy, ϕz);

T15 : T(x, y, z) = η(z)
{
η(y)t̂(x) − η(x)t̂(y)

}
,

where the torsion forms associated with T are defined by

t(x) = 1i jT(x, ei, e j), t∗(x) = 1i jT(x, ei, ϕe j), t̂(x) = T(x, ξ, ξ).

Moreover, in [24] there are explicitly given the components Ti of T ∈ T in Ti (i = 1, . . . , 15).
A linear connection D is called a natural connection on (M, ϕ, ξ, η, 1) if the almost contact structure and

the B-metric are parallel with respect to D, i.e. Dϕ = Dξ = Dη = D1 = 0 [19]. As a corollary, we have also
D1̃ = 0. According to [24], a necessary and sufficient condition for a linear connection D to be natural on
(M, ϕ, ξ, η, 1) is Dϕ = D1 = 0.

It is easy to establish (see, e.g. [19]) that a linear connection D is a natural connection on an almost
contact B-metric manifold if and only if

Q(x, y, ϕz) −Q(x, ϕy, z) = F(x, y, z), Q(x, y, z) = −Q(x, z, y).

Let us remark that the condition a linear connection to be natural does not imply that some of the basic
classes Ti (i = 1, . . . , 15) to be empty for natural connections.

In [24], it is proved that an almost contact B-metric manifold M = (M, ϕ, ξ, η, 1) ∈ Fi \ F0 is normal,
i.e. N = 0, (respectively, has N̂ = 0) if the torsion of an arbitrary natural connection on M belongs to
T4 ⊕ T5 ⊕ T9 ⊕ T10 ⊕ T11 (respectively, T3 ⊕ T7).

3.3. The ϕB-connection and the ϕ-canonical connection
In [21], it is introduced a natural connection on (M, ϕ, ξ, η, 1) by

Ḋxy = ∇xy + Q̇(x, y), Q̇(x, y) =
1
2

{(
∇xϕ

)
ϕy +

(
∇xη

)
y ξ

}
− η(y)∇xξ. (36)

In [22], the connection determined by (36) is called a ϕB-connection. It is studied for some classes of the
considered manifolds in [16, 17, 20–22] with respect to properties of the torsion and the curvature as well
as the conformal geometry. The restriction of the ϕB-connection Ḋ on H coincides with the B-connection ∇̇′

on the corresponding almost complex Norden manifold, given in (19) and studied for the classW1 in [6].
The torsion of the ϕB-connection has the form

Ṫ(x, y, z) =
1
2

{
F(x, ϕy, z) + η(z)F(x, ϕy, ξ) + 2η(x)F(y, ϕz, ξ)

}
[x↔y]

. (37)
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Then it belongs to T3 ⊕ T4 ⊕ · · · ⊕ T15, according to [24].
Using (35), (37) and the orthonormal decomposition x = hx + vx, where hx = −ϕ2x, vx = η(x)ξ, we give

the expression of the torsion of the ϕB-connection in terms of the Nijenhuis tensors as follows

Ṫ(x, y, z) =
1
8

{
N(hx, hy, hz) + S

x,y,z
N(hx, hy, hz) + N̂(hz, hy, hx) − N̂(hz, hx, hy)

}
+

1
4

{
2N(vx, hy, hz) + N(hy, hz, vx) + 2N̂(vx, hy, hz) + N(hy, hz, vx)

+ N(hx, hy, vz) + N(vz, hx, hy) − N̂(vz, hx, hy) − 2N̂(vz, vx, hy)
}

[x↔y]
.

(38)

Taking into account (37), (38) and (34), we obtain for the manifolds from F3 ⊕ F7 the following

Ṫ(x, y, z) =
1
8

{
N(hx, hy, hz) + S

x,y,z
N(hx, hy, hz)

}
+

1
4

{
N(hx, hy, vz) + S

x,y,z
N(hx, hy, vz)

}
. (39)

Therefore, using the notation hN(x, y, z) = N(hx, hy, hz), for the basic classes with vanishing N̂ we have:

F3 : Ṫ =
1
8

{
hN +ShN

}
, F7 : Ṫ =

1
2

{
dη ⊗ η + η ∧ dη

}
. (40)

A natural connection D̈ is called a ϕ-canonical connection on (M, ϕ, ξ, η, 1) if its torsion T̈ satisfies the
following identity: [23]{

T̈(x, y, z) − T̈(x, ϕy, ϕz) − η(x)
{
T̈(ξ, y, z) − T̈(ξ, ϕy, ϕz)

}
− η(y)

{
T̈(x, ξ, z) − T̈(x, z, ξ) − η(x)T̈(z, ξ, ξ)

}}
[y↔z]

= 0.

Let us remark that the restriction of the ϕ-canonical connection D̈ on the contact distribution H is the
unique canonical connection ∇̈′ with torsion given in (22) on the corresponding almost complex Norden
manifold studied in [8].

In [23], it is constructed a linear connection D̈ as follows:

1(D̈xy, z) = 1(∇xy, z) + Q̈(x, y, z), Q̈(x, y, z) = Q̇(x, y, z) −
1
8

{
N(ϕ2z, ϕ2y, ϕ2x) + 2N(ϕz, ϕy, ξ)η(x)

}
.

It is a natural connection on (M, ϕ, ξ, η, 1) and its torsion is

T̈(x, y, z) = Ṫ(x, y, z) +
1
8
{
N(hz, hy, hx) + 2N(hz, hy, vx)

}
[x↔y] ,

which is equivalent to

T̈(x, y, z) = Ṫ(x, y, z) +
1
8

{
N(hx, hy, hz) − S

x,y,z
N(hx, hy, hz)

}
+

1
4

{
N(hx, hy, vz) − S

x,y,z
N(hx, hy, vz)

}
. (41)

Obviously, D̈ is a ϕ-canonical connection on (M, ϕ, ξ, η, 1) and it is unique. Moreover, the torsion forms of
the ϕ-canonical connection coincide with those of the ϕB-connection.

In [23], it is proved that the ϕ-canonical connection and the ϕB-connection coincide on an almost con-
tact B-metric manifold if and only if N(hx, hy) vanishes, or equivalently, (M, ϕ, ξ, η, 1) belongs to the class
U0 = F1 ⊕F2 ⊕F4 ⊕F5 ⊕F6 ⊕F8 ⊕F9 ⊕F10 ⊕F11. In other words, bearing in mind (38), the torsions of the
ϕ-canonical connection and the ϕB-connection on a manifold fromU0 have the form

T̈(x, y, z) = Ṫ(x, y, z) =
1
8

{
N̂(hz, hy, hx) − N̂(hz, hx, hy)

}
+

1
4

{
2N(vx, hy, hz) + N(vz, hx, hy)

+ 2N̂(vx, hy, hz) − N̂(vz, hx, hy) − 2N̂(vz, vx, hy)
}

[x↔y]
.
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The torsions Ṫ and T̈ are different each other on a manifold belonging to the only basic classes F3 and
F7 as well as to their direct sums with other classes. For F3 ⊕ F7, using (39) and (41), we obtain the form of
the torsion of the ϕ-canonical connection as follows

T̈(x, y, z) =
1
4

N(hx, hy, hz) +
1
2

N(hx, hy, vz).

Therefore, using (34), the torsion of the ϕ-canonical connection for F3 and F7 is expressed by

F3 : T̈ =
1
4

hN, F7 : T̈ = dη ⊗ η. (42)

The general contactly conformal transformations of an almost contact B-metric structure are defined by

ξ̄ = e−wξ, η̄ = ewη, 1̄(x, y) = e2u cos 2v 1(x, y) + e2u sin 2v 1(x, ϕy) + (e2w
− e2u cos 2v)η(x)η(y), (43)

where u, v, w are differentiable functions on M [17]. These transformations form a group denoted by G. If
w = 0, we obtain the contactly conformal transformations of the B-metric, introduced in [20]. By v = w = 0,
the transformations (43) are reduced to the usual conformal transformations of 1.

Let us remark that G can be considered as a contact complex conformal gauge group, i.e. the compo-
sition of an almost contact group preserving H and a complex conformal transformation of the complex
Riemannian metric 1C = e2(u+iv)1C on H.

Note that the normality condition N = 0 is not preserved by G. In [23], it is established that the tensor
N(ϕ·, ϕ·) is an invariant of G on any almost contact B-metric manifold andU0 is closed with respect to G.
By direct computations is established there that each of Fi (i = 1, 2, . . . , 11) is closed by the action of the
subgroup G0 of G defined by the conditions du◦ϕ2 +dv◦ϕ = du◦ϕ−dv◦ϕ2y = du(ξ) = dv(ξ) = dw◦ϕ = 0.
Moreover, G0 is the largest subgroup of G preservingθ,θ∗,ω andF0. Moreover, the torsion of theϕ-canonical
connection is invariant with respect to the general contactly conformal transformations if and only if these
transformations belong to G0 [23].

Bearing in mind the invariance of Fi (i = 1, 2, . . . , 11) and T̈ with respect to the transformations of G0,
each of the basic classes of (M, ϕ, ξ, η, 1) is characterized by the torsion of the ϕ-canonical connection as
follows: [23]

F1 : T̈(x, y) = 1
2n

{
ẗ(ϕ2x)ϕ2y − ẗ(ϕ2y)ϕ2x + ẗ(ϕx)ϕy − ẗ(ϕy)ϕx

}
;

F2 : T̈(ξ, y) = 0, η
(
T̈(x, y)

)
= 0, T̈(x, y) = T̈(ϕx, ϕy), ẗ = 0;

F3 : T̈(ξ, y) = 0, η
(
T̈(x, y)

)
= 0, T̈(x, y) = ϕT̈(x, ϕy);

F4 : T̈(x, y) = 1
2n t′∗(ξ)

{
η(y)ϕx − η(x)ϕy

}
;

F5 : T̈(x, y) = 1
2n t′(ξ)

{
η(y)ϕ2x − η(x)ϕ2y

}
;

F6 : T̈(x, y) = η(x)T̈(ξ, y) − η(y)T̈(ξ, x), T̈(ξ, y, z) = T̈(ξ, z, y) = −T̈(ξ, ϕy, ϕz);
F7/8 : T̈(x, y) = η(x)T̈(ξ, y) − η(y)T̈(ξ, x) + η(T̈(x, y))ξ,

T̈(ξ, y, z) = −T̈(ξ, z, y) = ∓T̈(ξ, ϕy, ϕz) = 1
2 T̈(y, z, ξ) = ∓ 1

2 T̈(ϕy, ϕz, ξ);
F9/10 : T̈(x, y) = η(x)T̈(ξ, y) − η(y)T̈(ξ, x), T̈(ξ, y, z) = ±T̈(ξ, z, y) = T̈(ξ, ϕy, ϕz);
F11 : T̈(x, y) =

{
ˆ̈t(x)η(y) − ˆ̈t(y)η(x)

}
ξ.

According to the classification of the torsions in [24] and the characterization above, we have that the
correspondence between the classesFi of M and the classesT j of the torsion T̈ of theϕ-canonical connection
on M = (M, ϕ, ξ, η, 1) is given as follows: [23]

M ∈ F0 ⇔ T̈ ∈ T1 ⊕ T2 ⊕ T6 ⊕ T12; M ∈ F4 ⇔ T̈ ∈ T10; M ∈ F8 ⇔ T̈ ∈ T8 ⊕ T14;
M ∈ F1 ⇔ T̈ ∈ T4; M ∈ F5 ⇔ T̈ ∈ T9; M ∈ F9 ⇔ T̈ ∈ T13;
M ∈ F2 ⇔ T̈ ∈ T5; M ∈ F6 ⇔ T̈ ∈ T11; M ∈ F10 ⇔ T̈ ∈ T14;
M ∈ F3 ⇔ T̈ ∈ T3; M ∈ F7 ⇔ T̈ ∈ T7 ⊕ T12; M ∈ F11 ⇔ T̈ ∈ T15.
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3.4. The ϕKT-connection
In [19], it is introduced a natural connection

...
D on (M, ϕ, ξ, η, 1), called a ϕKT-connection, which torsion...

T is totally skew-symmetric, i.e. a 3-form. There it is proved that the ϕKT-connection exists on an almost
contact B-metric manifold if and only if N̂ vanishes on it, i.e. when (M, ϕ, ξ, η, 1) ∈ F3 ⊕ F7. The ϕKT-
connection is the odd-dimensional analogue of the KT-connection introduced in [27] on the corresponding
class of quasi-Kähler manifolds with Norden metric. The unique ϕKT-connection

...
D is determined by

1(
...
Dxy, z) = 1(∇xy, z) +

1
2

...
T(x, y, z),

where the torsion is defined by

...
T(x, y, z) = −

1
2 Sx,y,z

{
F(x, y, ϕz) − 3η(x)F(y, ϕz, ξ)

}
=

1
4 Sx,y,z

N(x, y, z) +
1
2
(
η ∧ dη

)
(x, y, z). (44)

Obviously, the torsion forms of the ϕKT-connection are zero.
The torsion

...
T of the ϕKT-connection belongs to T3 ⊕ T6 ⊕ T7 ⊕ T12, according to [24].

From (44) and (34), for the classes F3 and F7 we obtain

F3 :
...
T =

1
4 Sx,y,z

hN, F7 :
...
T = η ∧ dη. (45)

As mentioned above, the ϕB-connection and the ϕ-canonical connection coincide (i.e. Ḋ ≡ D̈) if and
only if (M, ϕ, ξ, η, 1) belongs to Fi, i ∈ {1, 2, . . . , 11} \ {3, 7} (where the ϕKT-connection

...
D does not exist).

For the rest basic classes F3 and F7 (where the ϕKT-connection exists), according to [24], it is valid
that the ϕB-connection is the average connection of the ϕ-canonical connection and the ϕKT-connection, i.e.
Ḋ = 1

2

{
D̈ +

...
D
}
. This relation holds also because of (40), (42) and (45).
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