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Abstract. The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful.
When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff
orthogonality and isosceles orthogonality, which are the most used notions of orthogonality. In 2006, Ji and
Wu introduced a geometric constant D(X) to give a quantitative characterization of the difference between
these two orthogonality types. However, this constant was considered only in the unit sphere SX of the
normed space X. In this paper, we introduce a new geometric constant IB(X) to measure the difference
between Birkhoff and isosceles orthogonalities in the entire normed space X. To consider the difference
between these orthogonalities, we also treat constant BI(X).

1. Introduction

We denote by X a real normed space with the norm ‖ · ‖, the unit ball BX and the unit sphere SX.
Throughout this paper, we assume that the dimension of X is at least two. In the case of that X is an
inner product space, an element x ∈ X is said to be orthogonal to y ∈ X (denoted by x ⊥ y) if the inner
product 〈x, y〉 is zero. In the general setting of normed spaces, many notions of orthogonality have been
introduced by means of equivalent propositions to the usual orthogonality in inner product spaces. For
example, Roberts [11] introduced Roberts orthogonality: for any x, y ∈ X, x is said to be Roberts orthogonal
to y (denoted by x ⊥R y) if

∀λ ∈ R, ‖x + λy‖ = ‖x − λy‖.

Birkhoff [3] introduced Birkhoff orthogonality: x is said to be Birkhoff orthogonal to y (denoted by x ⊥B y) if

∀λ ∈ R, ‖x + λy‖ ≥ ‖x‖.

James [5] introduced isosceles orthogonality: x is said to be isosceles orthogonal to y (denoted by x ⊥I y) if

‖x + y‖ = ‖x − y‖.

These generalized orthogonality types have been studied in a lot of papers ([1, 6] and so on).
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Recently, quantitative studies of the difference between two orthogonality types have been performed:

D(X) = inf
{

inf
λ∈R
‖x + λy‖ : x, y ∈ SX, x ⊥I y

}
,

D′(X) = sup{‖x + y‖ − ‖x − y‖ : x, y ∈ SX, x ⊥B y},

NHX = sup
α>0

{
‖x + αy‖ − ‖x − αy‖

α
: x, y ∈ SX, x ⊥I y

}
,

BR(X) = sup
α>0

{
‖x + αy‖ − ‖x − αy‖

α
: x, y ∈ SX, x ⊥B y

}
(see [4, 7, 10]). We note that these suprema and infima are considered only in the unit sphere SX.

Take arbitrary nonzero elements x, y ∈ X with x ⊥B y. Since Birkhoff orthogonality is homogeneous, we
have x

‖x‖ ⊥B
y
‖y‖ and hence

‖x + y‖ − ‖x − y‖
‖y‖

=

∥∥∥∥ x
‖x‖ +

‖y‖
‖x‖

y
‖y‖

∥∥∥∥ − ∥∥∥∥ x
‖x‖ −

‖y‖
‖x‖

y
‖y‖

∥∥∥∥
‖y‖
‖x‖

≤ BR(X)

Thus, we obtain

BR(X) = sup
{
‖x + y‖ − ‖x − y‖

‖y‖
: x, y ∈ X, x, y , 0, x ⊥B y

}
and so, in a certain sense, the constant BR(X) measures the difference between Birkhoff orthogonality and
isosceles orthogonality in the entire space X.

In this paper, we consider two constant BI(X) and IB(X) to measure the difference between these two
orthogonalities in the entire space X:

BI(X) = sup
{
‖x + y‖ − ‖x − y‖

‖x‖
: x, y ∈ X, x, y , 0, x ⊥B y

}
,

IB(X) = inf
{

infλ∈R ‖x + λy‖
‖x‖

: x, y ∈ X, x, y , 0, x ⊥I y
}
.

We note that, the Birkhoff orthogonality is not symmetric, that is, x ⊥B y does not necessarily imply y ⊥B x
and hence the constants BI(X) and BR(X) are different from each other. In addition, one can easily see that
IB(X) ≤ D(X).

2. The Properties of the Constant BI(X)

For the constant BR(X), one can have

BR(X) = sup
{
‖x + y‖ − ‖x − y‖

‖y‖
: x, y ∈ X, x, y , 0, x ⊥B y

}
.

Moreover, in the paper [10], it is noted that BR(X) is reformulated as

BR(X) = sup
α>0

{
‖αx + y‖ − ‖αx − y‖ : x, y ∈ SX, x ⊥B y

}
.

Suppose that an element x ∈ SX is Birkhoff orthogonal to another element y ∈ SX. Then, from the definition,
we have ‖x +λy‖ ≥ 1 for all λ ∈ R. However, it is known that x ⊥B y does not necessarily imply y ⊥B x, and
hence the norms ‖αx ± y‖ are not necessarily greater than 1. Thus, we consider the constant BI(X) defined
in the above section. One has BI(X) = supα>0

{
‖x + αy‖ − ‖x − αy‖ : x, y ∈ SX, x ⊥B y

}
. First we obtain the

following
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Proposition 2.1. Let X be a normed space. Then 0 ≤ BI(X) ≤ 2 and BI(X) = 0 if and only if X is an inner product
space.

Proof. It is trivial that 0 ≤ BI(X). Take arbitrary x, y ∈ SX with x ⊥B y. From the definition of Birkhoff
orthogonality and the triangle inequality, one has

max{1, |1 − λ|} ≤ ‖x + λy‖ ≤ 1 + |λ|

for all λ ∈ R. If 0 < α < 2, then we have

‖x + αy‖ − ‖x − αy‖ ≤ 1 + α − 1 = α < 2.

On the other hand, when 2 ≤ α we have

‖x + αy‖ − ‖x − αy‖ ≤ 1 + α − (α − 1) = 2.

Hence we obtain BI(X) ≤ 2.
Suppose that BI(X) = 0. Then for each pair of elements x, y with x ⊥B y, one has x ⊥I y. This is a

characteristic property of an inner product space [2, page33–34] . Conversely, if X is an inner product space,
then both Birkhoff and isosceles orthogonalities coincide with the usual orthogonality defined by inner
product. Thus, we obtain BI(X) = 0.

We consider the condition of BI(X) = 2.

Example 2.2. Let X = (R2, ‖ · ‖∞). Then BI(X) = 2.

Proof. Let x = (1, 1) and y = (1, 0). Then we have x, y ∈ SX and x ⊥B y. We note that y 6⊥B x. For a real
number α with α ≥ 2, one has

‖x + αy‖ − ‖x − αy‖ = 1 + α − (α − 1) = 2.

We obtain BI(X) ≥ 2 and hence BI(X) = 2.

One can also obtain a uniformly non-square space in which BI(X) = 2. A normed space X said to be
uniformly non-square if there exits δ > 0 such that ‖x+ y‖ > 2(1−δ) and ‖x‖ = ‖y‖ = 1 imply ‖x− y‖ < 2(1−δ)

Example 2.3. Let X be a Banach space onR2 whose unit circle is the polygon with x = (1, 1), y = (0, 1), z = (−1, 1/2)
and −x, −y, −z as vertices. Then BI(X) = 2.

Proof. Let w = (1, 0). Then we have w ∈ SX and x ⊥B w. For a real number α with α ≥ 3, one has

‖x + αw‖ − ‖x − αw‖ = 1 + α − (α − 1) = 2.

Thus, as in the above example, we obtain BI(X) = 2.

Theorem 2.4. Let X be a normed space. Then the upper bound 2 of BI(X) is attained by a practical pair of SX and a
practical positive number if and only if there exist elements x, y ∈ SX and real number t0 ∈ [1/2, 1) satisfying x ⊥B y,
[x, y] ⊂ SX and x ⊥B (1 − t0)x + t0y.

Proof. Suppose that there exist x, y ∈ SX and α > 0 such that x ⊥B y and ‖x + αy‖ − ‖x − αy‖ = 2. Then from
the inequality

2 = ‖x + αy‖ − ‖x − αy‖ ≤ 1 + α − |1 − α| ≤ 2,

one has α ≥ 2, ‖x + αy‖ = 1 + α and ‖x − αy‖ = α − 1. Letting w = (αy − x)/(α − 1), we have w ∈ SX and

y =
(
1 −

α − 1
α

)
x +

α − 1
α

w.
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Since y ∈ SX, we have [x,w] ⊂ SX.
For any nonnegative number λ we have

‖x + λw‖ = (1 + λ)
∥∥∥∥∥x + λw

1 + λ

∥∥∥∥∥ = 1 + λ ≥ 1.

If λ < 0, then

‖x + λw‖ =

∥∥∥∥∥x + λ
αy − x
α − 1

∥∥∥∥∥ =

∥∥∥∥∥α − 1 − λ
α − 1

x +
λα
α − 1

y
∥∥∥∥∥ ≥ α − 1 − λ

α − 1
> 1.

Thus we also obtain x ⊥B w.
Conversely, let there exist elements x, y ∈ SX and a real number t0 ∈ [1/2, 1) satisfying x ⊥B y, [x, y] ⊂ SX

and x ⊥B (1 − t0)x + t0y. Putting z = (1 − t0)x + t0y, from the assumption, one has z ∈ SX and x ⊥B z.
For any α > 0, we have

‖x + αz‖ = (1 + α)
∥∥∥∥x + αz

1 + α

∥∥∥∥ = 1 + α.

On the other hand, letting α0 = 1/(1 − t0), one can see that α0 ≥ 2 and that

x − α0z = x −
1

1 − t0

{
(1 − t0)x + t0y

}
= −(α0 − 1)y.

Thus we obtain

‖x + α0z‖ − ‖x − α0z‖ = 1 + α0 − (α0 − 1) = 2

and hence the upper bound 2 of BI(X) is attained by elements x, z and the number α0.

Remark 2.5. Even if we connect with a parabola between the points x and z in Example 2.3, then we obtain that
BI(X) = 2 is attained by x, w and α ≥ 3. Thus, the element x ∈ SX in the above theorem is not necessarily the common
endpoint of two segment lines contained in SX (cf. [7, Theorem 2] and [10, Theorem 2.2]).

3. The Properties of the Constant IB(X) and Some Other Constants

To consider the difference between Birkhoff and isosceles orthogonalities, the following results obtained
by James in [5] are important.

Proposition 3.1 ([5]). (i) If x (, 0) and y are isosceles orthogonal elements in a normed space, then ‖x+ky‖ > 1
2‖x‖

for all k.

(ii) If x (, 0) and y are isosceles orthogonal elements in a normed space, and ‖y‖ ≤ ‖x‖, then ‖x+ky‖ ≥ 2(
√

2−1)‖x‖
for all k.

Theorem 3.2. Let X be a normed space. Then 1/2 ≤ IB(X) ≤ 1 and IB(X) = 1 if and only if X is an inner product
space.

Proof. For all x, y ∈ X with x ⊥I y, we apparently have infλ∈R ‖x + λy‖ ≤ ‖x‖. Hence we obtain IB(X) ≤ 1.
On the other hand, from Proposition 3.1 (i), we obtain 1/2 ≤ IB(X).

Under the condition IB(X) = 1, for all x, y ∈ X with x ⊥I y, we always have infλ∈R ‖x + λy‖ = ‖x‖, that
is, isosceles orthogonality implies Birkhoff orthogonality. Thus from [2, page33–34], X is an inner product
space. Because those two orthogonalities coincide in inner product spaces, the converse is also true.
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The upper bound of D(X) is also 1, and D(X) = 1 characterize the inner product spaces, too. On the
other hand, by Proposition 3.1 (ii), the lower bound of D(X) is 2(

√
2 − 1). If D(X) > 2(

√
2 − 1), then X is

uniformly non-square. However, uniform non-squareness does not imply D(X) > 2(
√

2 − 1) (see [7, 10]).
We consider the condition of that IB(X) attains the lower bound 1/2. From [5, Example 4.1], we obtain

that IB(X) = 1/2 when X = (R2, ‖ · ‖∞).

Example 3.3 ([5, Example 4.1]). Let X = (R2, ‖ · ‖∞). Then IB(X) = 1/2.

Proof. Let x = (1, 0) and yn = (n − 1,n). Then x + yn = (n,n) and x − yn = (2 − n,−n). If n ≥ 1, then we have
‖x + yn‖∞ = ‖x − yn‖∞ = n and hence x ⊥I yn.

Moreover, we have

x −
1

2n
yn =

(n + 1
2n

,−
1
2

)
and

∥∥∥∥∥x −
1

2n
yn

∥∥∥∥∥
∞

=
n + 1

2n
.

Thus we obtain IB(X) ≤ (n + 1)/2n for all n ∈N and hence IB(X) = 1/2

We obtain IB(X) = 1/2 also in the space X = (R2, ‖ · ‖1).

Example 3.4. Let X = (R2, ‖ · ‖1). Then IB(X) = 1/2.

Proof. Let x = (1,−1) and yn = (1, 2n − 1). Then x + yn = (2, 2n − 2) and x − yn = (0,−2n). If n ≥ 1, then we
have ‖x + yn‖1 = ‖x − yn‖1 = 2n and hence x ⊥I yn.

In this situation, one has

x +
1

2n − 1
yn =

( 2n
2n − 1

, 0
)

and
∥∥∥∥∥x +

1
2n − 1

yn

∥∥∥∥∥
1

=
2n

2n − 1
.

Thus we have∥∥∥x + 1
2n−1 yn

∥∥∥
1

‖x‖1
=

n
2n − 1

and hence IB(X) ≤ n/(2n − 1) for all n ∈N. Therefore we obtain IB(X) = 1/2.

Let T be a operator from (R2, ‖ · ‖1) onto (R2, ‖ · ‖∞) defined by T(x1, x2) = (x1 − x2, x1 + x2). Then the operator
T is a linear isometry. From this fact, one can have Example 3.4, too. However, the above fundamental
proof helps us to obtain a proposition in section 4.

We show that IB(X) > 1/2 if and only if the space X is uniformly non-square. To do this, we need to
recall the Dunkl-Williams constant defined in [8]:

DW(X) = sup
{
‖x‖ + ‖y‖
‖x − y‖

∥∥∥∥∥ x
‖x‖
−

y
‖y‖

∥∥∥∥∥ : x, y ∈ X, x, y , 0, x , y
}

= sup
{

‖u + v‖
‖(1 − t)u + tv‖

: u, v ∈ SX, 0 ≤ t ≤ 1
}
.

For any normed space X, we have 2 ≤ DW(X) ≤ 4. It is known that a normed space X is uniformly
non-square if and only if DW(X) < 4. In [9], a calculation method of this constant can be found.

We shall prove an equality concerning the constants IB(X) and DW(X). We note that for nonzero
x, y ∈ X, the function λ 7→ ‖x + λy‖ is continuous and so there exists a real number λ0 such that ‖x + λ0y‖ =
infλ∈R ‖x + λy‖.

Theorem 3.5. For any normed space X, IB(X)DW(X) = 2.
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Proof. Take arbitrary nonzero elements x, y ∈ X with x ⊥I y. Then there exist a number λ0 ∈ [−1, 1] such
that ‖x + λ0y‖ = infλ∈R ‖x + λy‖. We may assume that λ0 ∈ [0, 1]. Let

u =
x + y
‖x + y‖

, v =
x − y
‖x − y‖

, and t0 =
1 − λ0

2
.

Then from ‖x + y‖ = ‖x − y‖, we have

(1 − t0)u + t0v =
(1 + λ0)(x + y)

2‖x + y‖
+

(1 − λ0)(x − y)
2‖x − y‖

=
x + λ0y
‖x + y‖

and hence

‖x + λ0y‖
‖x‖

= 2
‖x + y‖
‖2x‖

·
‖x + λ0y‖
‖x + y‖

= 2
‖(1 − t0)u + t0v‖
‖u + v‖

≥
2

DW(X)
.

Thus we obtain IB(X)DW(X) ≥ 2.
Take any u, v ∈ SX with u + v , 0. Then we have u + v ⊥I u − v. On the other hand, we have a real

number t1 ∈ [0, 1] such that ‖(1 − t1)u + t1v‖ = mint∈[0,1] ‖(1 − t)u + tv‖. We may assume that t1 ∈ [0, 1/2].
Letting λ1 = 1 − 2t1, we have

u + v + λ1(u − v) = (1 + λ1)u + (1 − λ1)v = 2{(1 − t1)u + t1v}.

Hence, from the fact that u + v is isosceles orthogonal to u − v, we have

‖u + v‖
‖(1 − t1)u + t1v‖

= 2
‖u + v‖

‖u + v + λ1(u − v)‖
≤

2
IB(X)

.

Thus, we have IB(X)DW(X) ≤ 2.
Therefore we obtain IB(X)DW(X) = 2.

From this theorem, we have the following

Corollary 3.6. A normed space X is uniformly non-square if and only if IB(X) > 1/2.

In addition, one has that in a certain sense the Dunkl-Williams constant measures the difference between
Birkhoff and Isosceles orthogonalities, too.

Now we recall the definitions of D(X) and IB(X):

D(X) = inf
{

inf
λ∈R
‖x + λy‖ : x, y ∈ SX, x ⊥I y

}
,

IB(X) = inf
{

infλ∈R ‖x + λy‖
‖x‖

: x, y ∈ X, x , 0, x ⊥I y
}

= inf
{

inf
λ∈R
‖x + λy‖ : x ∈ SX, y ∈ X, x ⊥I y

}
.

On the other hand, from Proposition 3.1 (ii), we have that, if x (, 0) and y are isosceles orthogonal
elements in a normed space, and ‖y‖ ≤ ‖x‖, then ‖x + ky‖ ≥ 2(

√
2 − 1)‖x‖ for all k. Thus, it is natural for us

to consider the following constant:

IB′(X) = inf
{

infλ∈R ‖x + λy‖
‖x‖

: x, y ∈ X, x, y , 0, ‖y‖ ≤ ‖x‖, x ⊥I y
}

= inf
{

inf
λ∈R
‖x + λy‖ : x ∈ SX, y ∈ BX, x ⊥I y

}
.

From the definitions, we clearly have IB(X) ≤ IB′(X) ≤ D(X) for any normed space X. In addition, we
easily obtain the following
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Proposition 3.7. Let X be a normed linear space. Then

(i) 2(
√

2 − 1) ≤ IB′(X) ≤ 1.

(ii) IB′(X) = 1 if and only if X is an inner product space.

(iii) IB′(X) does not necessarily coincide with IB(X).

Proof. From Proposition 3.1 (ii), the assertion (i) is clear.
(ii) If X is an inner product space, then Birkhoff and isosceles orthogonalities coincide with each other.

Hence we have IB′(X) = 1. Conversely, we suppose that IB′(X) = 1. Then we have

1 = IB′(X) ≤ D(X) ≤ 1

and so D(X) = 1. Hence the space X is an inner product space (cf. [7]).
(iii) Suppose that a normed space X is not uniformly non-square. Then we have IB(X) = 1/2. On the

other hand, from

2(
√

2 − 1) ≤ IB′(X) ≤ D(X) = 2(
√

2 − 1),

one has IB′(X) = 2(
√

2 − 1). Thus we obtain IB(X) < IB′(X).

From Theorem 3.5, one has

IB(X) = 2 inf
{
‖(1 − t)u + tv‖
‖u + v‖

: u, v ∈ SX, 0 ≤ t ≤ 1
}
.

Following the proof of Theorem 3.5, we obtain similar results on D(X) and IB′(X):

Proposition 3.8. Let X be a normed linear space. Then

D(X) = 2 inf
{
‖(1 − t)u + tv‖
‖u + v‖

: u, v ∈ SX,u ⊥I v, 0 ≤ t ≤ 1
}

and

IB′(X) = 2 inf
{
‖(1 − t)u + tv‖
‖u + v‖

: u, v ∈ SX, ‖u + v‖ ≥ ‖u − v‖, 0 ≤ t ≤ 1
}
.

We already have that the constants IB′(X) and D(X) do not necessarily coincide with IB(X). Thus we
have the following

Corollary 3.9. For a normed space X, the Dunkl-Williams constant

DW(X) = sup
{

‖u + v‖
‖(1 − t)u + tv‖

: u, v ∈ SX, 0 ≤ t ≤ 1
}

does not necessarily coincide with the suprema

sup
{

‖u + v‖
‖(1 − t)u + tv‖

: u, v ∈ SX,u ⊥I v, 0 ≤ t ≤ 1
}

and

sup
{

‖u + v‖
‖(1 − t)u + tv‖

: u, v ∈ SX, ‖u + v‖ ≥ ‖u − v‖, 0 ≤ t ≤ 1
}
.
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4. The Constant IB(X) of Some Day-James Spaces

By following Example 3.3, we consider IB(`∞-`p) of the Day-James space `∞-`p. The Day-James space
`∞-`p for 1 ≤ p ≤ ∞ is defined as R2 with the norm

‖(x1, x2)‖∞,p =

{
‖(x1, x2)‖∞ i f x1x2 ≥ 0,
‖(x1, x2)‖p i f x1x2 ≤ 0.

If p = 2, then from [9, Theorem 4.10], we have that the Dunkl-Williams constant of `2-`∞ is equal to 2
√

2.
Hence, by Theorem 3.5, we have the following

Corollary 4.1. IB(`∞-`2) = IB(`2-`∞) = 1/
√

2.

In the case of p , 2, it will be very difficult to calculate IB(`∞-`p). However, one can obtain an upper
bound of IB(`∞-`p).

Proposition 4.2. Let 1 ≤ p ≤ ∞. Then

IB(`∞-`p) ≤ min
{
2−1/q, 8/9

}
, IB′(`∞-`p) ≤ 8/9

and hence

DW(`∞-`p) ≥ max
{
21+1/q, 9/4

}
,

where q is the positive number such that 1/p + 1/q = 1.

Proof. As in Example 3.3, let x = (1, 0) and yn = (n − 1,n). Then x + yn = (n,n) and x − yn = (2 − n,−n). If
n ≥ 2, then we have

‖x + yn‖∞,p = ‖x + yn‖∞ = n = ‖x − yn‖∞ = ‖x − yn‖∞,p

and hence x ⊥I yn in `∞-`p.
Letting

λn = −
(n − 1)q/p

nq + (n − 1)q ,

from the equality 1/p + 1/q = 1, one has

‖x + λnyn‖
p
∞,p = ‖x + λnyn‖

p
p =

{
1 −

(n − 1)1+q/p

nq + (n − 1)q

}p

+

{
n(n − 1)q/p

nq + (n − 1)q

}p

=
np
{nq + (n − 1)q

}

{nq + (n − 1)q}
p

=
np

{nq + (n − 1)q}
p−1

and so

‖x + λnyn‖∞,p =

{
np

{nq + (n − 1)q}
p−1

}1/p

=
n

{nq + (n − 1)q}
1/q =

n
‖(n,n − 1)‖q

.

Hence, from the definition, IB(`∞-`p) ≤ n/‖(n,n − 1)‖q for all n ∈ N. Thus we obtain IB(`∞-`p) ≤ 2−1/q.
We note that infλ∈R ‖yn + λx‖∞,p = 1 for all n ∈N.
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For t ∈ [1/2, 1], let zt = (1, t) and wt = (2t−1,−t). Then ‖zt‖∞,p = 1, zt +wt = (2t, 0) and zt−wt = (2(1−t), 2t).
We have

‖zt + wt‖∞,p = 2t = ‖zt − wt‖∞ = ‖zt − wt‖∞,p

and hence zt ⊥I wt in `∞-`p. Letting λt = (t − 1)/(3t − 1), one has

‖zt + λtwt‖∞,p = ‖zt + λtwt‖∞ =
2t2

3t − 1
.

The function t→ 2t2/(3t − 1) attains the minimum 8/9 at t = 2/3 and hence IB(`∞-`p) ≤ 8/9. For t = 2/3, we
have ‖wt‖∞,p = ‖wt‖p ≤ 1 = ‖zt‖∞,p. Thus we also have IB′(`∞-`p) ≤ 8/9.

From Theorem 3.5, we obtain

DW(`∞-`p) = 2/IB(`∞-`p) ≥
2

min
{
2−1/q, 8/9

} = max
{
21+1/q, 9/4

}
,

too.

By following Example 3.4, one can also estimate IB(`1-`p) of the Day-James space `1-`p. For 1 ≤ p ≤ ∞
the Day-James space `1-`p is defined as R2 with the norm

‖(x1, x2)‖1,p =

{
‖(x1, x2)‖1 i f x1x2 ≥ 0,
‖(x1, x2)‖p i f x1x2 ≤ 0.

Proposition 4.3. Let 1 ≤ p ≤ ∞. Then

IB(`1-`p) ≤ 2−1/p and hence DW(`1-`p) ≥ 21+1/p.

Proof. As in Example 3.4, let x = (1,−1) and yn = (1, 21/pn − 1). Then x + yn = (2, 21/pn − 2) and x − yn =
(0,−21/pn). If n ≥ 2, then we have

‖x + yn‖1,p = ‖x + yn‖1 = 21/pn = ‖x − yn‖1,p

and hence x ⊥I yn in `1-`p.
Letting λn = (21/pn − 1)−1, one has

x + λnyn =

(
21/pn

21/pn − 1
, 0

)
and hence

∥∥∥x + λnyn

∥∥∥
1,p =

21/pn
21/pn − 1

.

Thus we have∥∥∥x + λnyn

∥∥∥
1,p

‖x‖1,p
=

n
21/pn − 1

and hence IB(`1-`p) ≤ n/(21/pn − 1) for all n ∈N. Therefore we obtain IB(`1-`p) ≤ 2−1/p.
We also obtain

DW(`1-`p) = 2/IB(`1-`p) ≥ 2/(2−1/p) = 21+1/p

by Theorem 3.5.

Remark 4.4. If a normed space X is not uniformly non-square, then we have IB(X) = 1/2 < 2(
√

2 − 1) = IB′(X) =
D(X). On the other hand, from the above propositions, we have that

IB(`1-`p) ≤ 2−1/p < 2(
√

2 − 1) ≤ IB′(`1-`p) ≤ D(`1-`p)

for p with 21/p > (
√

2 + 1)/2, and that

IB(`∞-`p) ≤ 2−1/q < 2(
√

2 − 1) ≤ IB′(`∞-`p) ≤ D(`∞-`p)

for p with 21/p < 4(
√

2 − 1). These results imply that the inequality IB(X) < IB′(X) ≤ D(X) occurs even in a
uniformly non-square normed space X.
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