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Abstract. Our study is mainly devoted to a natural diagonal metric G on the total space TM of the tangent
bundle of a Riemannian manifold (M, 1). We provide the necessary and sufficient conditions under which
(TM,G) is a space form, or equivalently (TM,G) is projectively Euclidean. Moreover, we classify the natural
diagonal metrics G for which (TM,G) is horizontally projectively flat (resp. vertically projectively flat).

1. Introduction

The natural lifts on the total space of the tangent bundle of a (pseudo-)Riemannian manifold, introduced
in [10], were intensively studied in the last decades, e.g. in [1]-[11], [16]-[20], [27].

A general natural metric on the total space TM of the tangent bundle of a Riemannian manifold (M, 1)
is obtained in [16] by lifting the metric 1 to TM, using six coefficients, which are smooth functions of the
energy density t on TM. With respect to a metric of this kind, the horizontal and vertical distributions of
the tangent bundle to TM are not orthogonal to each other. If the two coefficients involved in the mixed
component of the metric vanish, then the metric becomes a natural diagonal metric, i.e. a metric with
respect to which the horizontal and vertical distributions are orthogonal.

In [5], it was shown that TM, endowed with a general natural metric is a space form if and only if the
base manifold is flat, and the metric depends on a real constant and two smooth functions of t .

In the present paper we prove that TM endowed with a natural diagonal metric G has constant sectional
curvature if and only if the base manifold is flat, and the metric has a certain expression, involving a
constant, two smooth functions of t, and their derivatives. Moreover, it follows that TM is flat.

We recall that two linear connections having the same system of geodesics, are obtained one from
another, by a projective transformation (see [28]), generalized by the notion of geodesic mapping (see [13],
[14], [24], [25], and the references therein). The projective curvature tensor field, obtained by Weyl, is an
invariant of any projective transformation on a real manifold. Other invariants of Weyl type, namely the
holomorphically-projective (H− projective) curvature tensor fields in the context of the Kähler manifolds
and resp. para-Kähler manifolds were studied e.g. in [29], [23], and resp. in [21], [22]. The notion of
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holomorphically-projective transformation was generalized by that of holomorphically–projective mapping
(see e.g. in [13] and the references therein). Moreover, in the almost contact case, the C−projective
transformations (which preserve the C−flat paths of an adapted connection without torsion) led to the
notion of C−projective curvature tensor filed, which is an invariant of any C−projective transformation (see
[12], [16]).

It is known that a connected (pseudo-)Riemannian manifold of dimension grater than 3 is a space form
if and only if it is projectively Euclidean (see [23]).

We prove that there exist two classes of natural diagonal metrics G such that (TM,G) is horizontally
projectively flat. Moreover, we classify the natural diagonal metrics G such that (TM,G) is vertically
projectively Euclidean.

2. The sectional curvature of the tangent bundle with natural diagonal metric

On a Riemannian manifold (M, 1), denote by ∇̇ be the Levi-Civita connection of 1, by π : TM → M the
tangent bundle of M, and by (x1, . . . , xn) (resp. (x1, . . . , xn, y1, . . . , yn)) the local coordinates on M (resp. on
TM).

The horizontal (resp. vertical) lift of a vector field X = Xi ∂
∂xi ∈ Γ(TM) to TM has the expression XH = Xi δ

δxi

(resp. XV = Xi ∂
∂yi ), where Γh

ki(x) are the coefficients of ∇̇ and δ
δxi = ∂

∂xi − Γh
kiy

k ∂
∂yh , ∀i = 1,n.

Consider a natural diagonal metric G on TM, given by:
G(XH

y ,YH
y ) = c11π(y)(X,Y) + d11π(y)(X, y)1π(y)(Y, y),

G(XV
y ,YV

y ) = c21π(y)(X,Y) + d21π(y)(X, y)1π(y)(Y, y),
G(XV

y ,YH
y ) = 0,

(1)

for all X,Y ∈ Γ(TM), y ∈ TM, where c1, c2, d1, d2 are smooth functions depending on the energy density t
of y, defined as

t =
1
2
1π(y)(y, y). (2)

The metric G is positive definite provided that

c1, c2 > 0, c1 + 2td1, c2 + 2td2 > 0.

The matrix of the metric G w.r.t the local adapted frame { δδxi ,
∂
∂y j }i, j=1,n is G(1)

i j 0

0 G(2)
i j

 =

(
c11i j + d110i10 j 0

0 c21i j + d210i10 j

)
, (3)

having the inverse Hi j
(1) 0

0 Hi j
(2)

 =

 1
c1

(1i j
−

d1
c1+2td1

)yiy j 0
0 1

c2
(1i j
−

d2
c2+2d2t )yiy j

 . (4)

From [19, Theorem 3.1], by imposing the vanishing of the mixed component of the metric and by using
the expressions of the blocks G(α)

i j (resp. Hi j
(α)), α = 1, 2, from (3) (resp. (4)), we obtain the following:

Proposition 2.1. The Levi-Civita connection ∇ of G has the following expression in the local adapted frame{
∂
∂yi ,

δ
δx j

}
i, j=1,n

:
∇ ∂

∂yi

∂
∂y j = Qh

ij
∂
∂yh , ∇ δ

δxi

∂
∂y j = Γh

ij
∂
∂yh + Ph

ji
δ
δxh ,

∇ ∂
∂yi

δ
δx j = Ph

ij
δ
δxh , ∇ δ

δxi

δ
δx j = Γh

ij
δ
δxh + Sh

ij
∂
∂yh ,



C.L. Bejan, S.L. Druta-Romaniuc / Filomat 29:3 (2015), 401–410 403

where Γh
ij are the Christoffel symbols of ∇̇ and the coefficients involved in the above expressions are given as
Qh

ij = 1
2 (∂iG

(2)
jk + ∂ jG

(2)
ik − ∂kG(2)

i j )Hkh
(2),

Ph
ij = 1

2 (∂iG
(1)
jk + Rl

0 jkG(2)
li )Hkh

(1),

Sh
ij = − 1

2 (∂kG(2)
i j + Rl

0i jG
(2)
lk )Hkh

(2),

where Rh
ki j are the components of the curvature tensor field of the Levi Civita connection ∇̇ of the base manifold (M, 1),

and ∂i denotes the derivative w.r.t. the tangential coordinates yi.

The curvature tensor field K of the connection ∇, defined by the well known formula

K(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, X,Y,Z ∈ Γ(TM),

has the following components w.r.t. { δδxi
∂
∂y j }i, j=1,n:

K
(
δ
δxi ,

δ
δx j

)
δ
δxk = (Ph

liS
l
jk − Ph

ljS
l
ik + Rl

0i jP
h
lk + Rh

ki j)
δ
δxh

K
(
δ
δxi ,

δ
δx j

)
∂
∂yk = (Pl

k jS
h
il − Pl

kiS
h
jl + Rl

0i jQ
h
lk + Rh

ki j)
∂
∂yh

K
(
∂
∂yi ,

∂
∂y j

)
δ
δxk = (∂iPh

jk − ∂ jPh
ik + Pl

jkPh
il − Pl

ikPh
jl)

δ
δxh

K
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk = (∂iQh

jk − ∂ jQh
ik + Ql

jkQh
il −Ql

ikQh
jl)

∂
∂yh

K
(
∂
∂yi ,

δ
δx j

)
δ
δxk = (∂iSh

jk + Sl
jkQh

il − Pl
ikSh

jl − ∇̇ jRr
0ikG(2)

rl H(1)
hl ) ∂

∂yh

K
(
∂
∂yi ,

δ
δx j

)
∂
∂yk = (∂iPh

kj + Pl
k jP

h
il −Ql

ikPh
lj)

δ
δxh .

(5)

In the local adapted frame { δδxi ,
∂
∂y j }i, j=1,n, the curvature tensor field K0 of a Riemannian manifold (TM,G)

of constant sectional curvature k, given by:

K0(X,Y)Z = k[G(Y,Z)X − G(X,Z)Y],

has the components:

K0

( δ
δxi ,

δ

δx j

) δ
δxk

= k
[
G(1)

jk
δ

δxi − G(1)
ik

δ

δx j

]
, K0

( δ
δxi ,

δ

δx j

) ∂
∂yk

= 0,

K0

( ∂
∂yi ,

∂

∂y j

) δ
δxk

= 0, K0

( ∂
∂yi ,

∂

∂y j

) ∂
∂yk

= k
[
G(2)

jk
∂

∂yi − G(2)
ik

∂

∂y j

]
,

K0

( ∂
∂yi ,

δ

δx j

) δ
δxk

= kG(1)
jk
∂

∂yi , K0

( ∂
∂yi ,

δ

δx j

) ∂
∂yk

= −kG(2)
ik

δ

δx j .

Studying the conditions under which the difference K − K0 vanishes, we prove the following results.

Proposition 2.2. Let (M, 1) be a Riemannian manifold. If the tangent bundle TM endowed with a natural diagonal
metric G is a space form, then the base manifold is flat.

Proof: Since (K − K0)
(
δ
δxi ,

δ
δx j

)
∂
∂yk must vanish for every y ∈ TM, it follows that it vanishes for y = 0, too, case

when it reduces to Rh
ki j. The curvature of the base manifold do not depend on the tangent vector y, hence

Rh
ki j = 0, i.e. the base manifold is flat.

Theorem 2.3. Let TM be the total space of the tangent bundle of a Riemannian manifold (M, 1), endowed with a
natural diagonal metric G. Then (TM,G) is a space form if and only if the base manifold is flat and the metric G is
given by (1), provided that c1 is a real constant, d1 = 0 and d2 = c′2

(
1 + t c′2

2c2

)
.Moreover, (TM,G) cannot have nonzero

constant sectional curvature.
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Proof: If (TM,G) is a space form, it follows from Proposition 2.2 that the base manifold (M, 1) is flat. On
the other hand, all the components of the difference between the curvature tensors K and K0 must vanish.
By imposing Rh

ki j = 0, we obtain

(K − K0)
(
δ
δxi ,

δ
δx j

)
∂
∂yk =

d2
1t

2c2(c1+2td1) (1ikδh
j − 1 jkδh

i )+

+
d1(c1d1−2c′1d1t+2c1d′1t)

4c1c2(c1+2td1) (δh
j10i − δh

i 10 j)10k+

+
c1c2d2

1−2c′1c2d2
1t+2c1c2d1d′1t−2c1d2

1d2t
4c1c2(c1+2td1) (1ik10 j − 1 jk10i)yh.

By applying [19, Lemma 3.2], it follows that the above expression vanishes if and only if all its coefficients
vanish, i.e. if and only if d1 = 0.

Then, the component K − K0 corresponding to all horizontal arguments becomes

(K − K0)
( δ
δxi ,

δ

δx j

) δ
δxk

=
[ c′21 t
2c1(c2 + 2td2)

+ kc1

]
(1ikδ

h
j − 1 jkδ

h
i ),

and from its vanishing condition it follows that

k = −
c′21 t

2c2
1(c2 + 2d2t)

. (6)

Replacing the obtained value of k into the expression of (K − K0)
(
∂
∂yi ,

δ
δx j

)
δ
δxk , this component takes the

form

(K − K0)
( ∂
∂yi ,

δ

δx j

) δ
δxk

= −
c1c′1

2(c1c2 + c′1c2t + c1c′2t)
1 jkδ

h
i − α1 jk10iyh, (7)

where α is a rational function depending on c1, c2, their first two order derivatives, and the energy density
t.

Since all the terms of α contain c′1 or c′′1 , the expression (7) is zero if and only if c1 is a real constant. Then,
after replacing k from (6), the component of K − K0 corresponding to all vertical arguments becomes

(K − K0)
( ∂
∂yi ,

∂

∂y j

) ∂
∂yk

=
c′2(2c2 + c′2t) − 2c2d2

2c2(c2 + 2td2)
(1ikδ

h
j − 1 jkδ

h
i )+

+β(10 jδ
h
i − 10iδ

h
j )10k + γ(1ik10 j − 1 jk10i)yh,

where β, γ are two rational functions depending on c1, c2, c′2, c
′′

2 , d2, d′2 and the energy density t.
The above expression is zero if and only if

d2 = c′2 +
c′22 t
2c2

, (8)

and then all the components of the difference K − K0 vanish, hence the proof is completed.

3. The projective curvature of (TM,G)

On a differentiable manifold, the projective curvature tensor field associated to a linear connection ∇ is
invariant under a projective transformation of ∇, i.e. a transformation which preserves the geodesics (see
[23]). In the particular situation of a connected (pseudo-)Riemannian manifold of dimension n ≤ 3, the
manifold has constant sectional curvature if and only if it is projectively flat.
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Definition 3.1. On an n-dimensional differentiable manifold M, the projective curvature tensor field associated to a
linear connection ∇, is a (1, 3)−tensor field P defined by:

P(X,Y)Z = R(X,Y)Z − L(Y,Z)X + L(X,Z)Y + [L(X,Y) − L(Y,X)]Z, ∀X,Y,Z ∈ Γ(TM),

where R and Ric are respectively the curvature tensor field and the Ricci tensor field of ∇, and L is the Brinkman
tensor field, given by:

L(X,Y) =
1

n2 − 1
[Ric(X,Y) + nRic(Y,X)], ∀X,Y ∈ Γ(TM).

Since the Ricci tensor associated to the Levi-Civita connection is symmetric, it follows that the projective
curvature tensor field associated to the Levi-Civita connection has the expression:

P(X,Y)Z = R(X,Y)Z +
1

n − 1
[Ric(X,Z)Y − Ric(Y,Z)X], ∀X,Y,Z ∈ Γ(TM). (9)

Remark: Let (M, 1) be a Riemannian manifold, and TM the total space of its tangent bundle, endowed
with a natural diagonal metric G. Then (TM,G) is a space form if and only if it is projectively flat w.r.t. the
projective curvature tensor field associated to the Levi-Civita connection of G.

Definition 3.2. The Riemannian manifold (TM,G) is called horizontally (resp. vertically) projectively flat if the
projective curvature tensor field associated to the Levi-Civita connection of G vanishes on the horizontal (resp.
vertical) distribution of TTM.

By using Theorem 2.3 and the expression (9) of the projective curvature tensor field, we prove the
following results.

Theorem 3.3. Let (M, 1) be a Riemannian space form. The total space TM of the tangent bundle of M, endowed with
a natural diagonal metric G, is horizontally projectively flat if and only if the base manifold is flat and G is given by
(1), provided that its coefficients satisfy one of the following cases:

Case I) c1 is an arbitrary real constant, d1 = 0, c2 and d2 are two arbitrary smooth functions of the energy density;
Case II) On the nonzero tangent bundle of (M, 1),

c2 =
c0

t
, d1 = 0, d′2 =

2c1c′1k − c′21 kt + 2c1c′′1 kt − 2c′21 d2t3 + 4c1c′′1 d2t3

2c1c′1t3 ,

and c1 is an arbitrary smooth function of the energy density.

Proof: On (TM,G), consider the projective tensor field P associated to the Levi-Civita connection ∇. The
component of P corresponding to all horizontal arguments is given by:

P
( δ
δxi ,

δ

δx j

) δ
δxk

= K
( δ
δxi ,

δ

δx j

) δ
δxk

+
1

n − 1

[
Ric

( δ
δxi ,

δ

δxk

) δ
δx j − Ric

( δ
δx j ,

δ

δxk

) δ
δxi

]
,

where K is the curvature tensor field of ∇ and Ric is the corresponding Ricci tensor, obtained by the
contraction of the components of K as follows:

Ric
( δ
δxi ,

δ

δxk

)
= Kh

ihk + Kh̄
ih̄k, ∀i, j, k, h, h̄ = 1,n,

where the indices i, j, k, h correspond to the horizontal arguments and h̄ to the vertical argument.
Now we study the conditions under which (TM,G) is horizontally projectively flat, i.e. P

(
δ
δxi ,

δ
δx j

)
δ
δxk

vanishes.
By replacing into (9) the component K

(
δ
δxi ,

δ
δx j

)
δ
δxk and the components of the curvature involved in the

expression of the Ricci tensor, we obtain the following expression:

P
(
δ
δxi ,

δ
δx j

)
δ
δxk = (A1 + B1n)(1 jkδh

i − 1ikδh
j )+

+(A2 + B2n)(δh
j10i − δh

i 10 j)10k + A3(1ik10 j − 1 jk10i)yh,
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where Aα, α = 1, 3, Bα, α = 1, 2 are some quite long functions, depending on the coefficients of the metric
G, their first two order derivatives, the constant sectional curvature c of the base manifold, and the energy
density t of y ∈ TM.

According to [19, Lemma 3.2], the above expression vanishes if and only if Aαn + Bα = 0, α = 1, 3.
Moreover, since we study the conditions of vanishing of the expression of P

(
δ
δxi ,

δ
δx j

)
δ
δxk for the tangent

bundle of a Riemannian manifold of arbitrary dimension n, it follows that Aαn + Bα = 0, α = 1, 3 for every
n > 1, i.e. if and only if Aα = Bα = 0, α = 1, 3.

The numerator of the coefficient B1 has the form

c1c′1(c2 + c′2t)(c1 + 2td1)(c2 + 2td2),

and therefore the condition B1 = 0 yields two cases: Case I, when the function c1 is a real constant, and Case
II, when c2 = c0

t , where c0 ∈ R. We mention that the second case holds good only on the nonzero section of
the tangent bundle.

In Case I, the conditions of vanishing of A1, B2 and A3 lead to the following system of equations:
c1d1 + c2c2

2t + d2
1t = 0

(c1 + 2td1)(c2 + 2td2)(c2c3
2 − 2cc2

2d1 − 2c1c′2d1 + c2d2
1 − 2c1c2d′1+

+4c1d1d2 − 2c1c′2d′1t + 2c2c2
2d2t − 4cc2d1d2t + 2d2

1d2t) = 0
3c2c2

2 + 2cc2d1 − d2
1 = 0.

(10)

If the curvature of the base manifold is c , 0, it follows that (10) has the solution

d1 = −
9c1

10t
, c2 = −

3c1

10ct
, d2 =

−27c2
1 + 450cc1c′2t2 + 150c1d′1t2

− 500cc′2d′1t4

720cc1t2 .

By replacing the above values and c′1 = 0 into the expression of P
(
δ
δxi ,

δ
δx j

)
δ
δxk , this reduces to

P
( δ
δxi ,

δ

δx j

) δ
δxk

=
6c
5t

(δh
j10i − δ

h
i 10 j)10k,

which is nonzero since c , 0.
If the base manifold is flat, we obtain that A1, A3, B2 vanish simultaneously if and only if:

d1(c1 + td1t) = 0, d1 = 0,
−2c1c′2d1 + c2d2

1 − 2c1c2d′1 + 4c1d1d2 − 2c1c′2d′1t + 2d2
1d2t = 0,

i.e. d1 = 0.
In Case II, the numerator of B2 is

(c1 + 2d1t)(c2c2
0 + 2c1d1t − 2cd1c0t + d2

1t2)(c0 + 2d2t2)2.

If d1 = 0, it follows that B2 = 0 is equivalent to the flatness of the base manifold: c = 0, and then the
condition of vanishing of P

(
δ
δxi ,

δ
δx j

)
δ
δxk becomes

c1c0t(2c1c′1c0 − tc′21 c0 + 2tc1c′′1 c0 − 2t3c′21 d2 + 4t3c1c′′1 d2 − 2t3c1c′1d′2)

2c2
1c0(c0 + 2t2d2)2(n − 1)

(1 jkδ
h
i − 1 jkδ

h
i ) = 0.

Since in Case II the coefficient c1 is non-constant, the above relation is equivalent to

d′2 =
2c1c′1c0 − c′21 c0t + 2c1c′′1 c0t − 2c′21 d2t3 + 4c1c′′1 d2t3

2c1c′1t3 .

If d1 , 0, then the numerator of B2 is zero if and only if

(c1 + 2d1t)(c2c2
0 + 2c1d1t − 2cd1c0t + d2

1t2)(c0 + 2d2t2)2 = 0,
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i.e. if and only if

c1 =
−c2c2

0 + 2cc0td1 − t2d2
1

2td1
,

which yields the following expression of the numerator of A3:

5cd2
1c2

0 − td3
1c0 + 4tcc2

0d1d′1 + 6t2cc0d2
1d2 + 2t2cc2

0d′21 − 2t3d3
1d2.

In this case, we have that A3 = 0 is equivalent to

d2 =
5cc2

0d2
1 − tc0d3

1 + 4tcc2
0d1d′1 + 2t2cc2

0d′21
2t2d2

1(−3cc0 + td1)
. (11)

After replacing (11), the condition of vanishing of the numerator of A2 becomes:

d1(19c3c3
0 − 12tc2d1c2

0 − 9t2cd2
1c0 + 6t3d3

1) = 0.

Solving the above equation w.r.t. d1, we obtain that its only one real solution is of the form:

d1 =
cc0

t

[1
2

+
11

2 · 31/3(6
√

3 − 69)1/3
+

(16
√

3 − 69)1/3

32/3

]
. (12)

The expression c2 + 2td2 vanishes when c2 is replaced by c0
t , d2 by its value from (11), and d1 from (12).

Hence the subcase d1 , 0 is not a valid subcase of Case II, and then in Case II, the coefficients of the metric
have the expressions mentioned in the statement.

Theorem 3.4. Let TM be the total space of the tangent bundle of a Riemannian space form (M, 1), and let G be a
natural diagonal metric on TM. Then (TM,G) is vertically projectively flat if and only if one of the following cases
hold good:

Case I.1) The base manifold is flat, and the coefficients of G satisfy the following conditions: c1 is a real constant,
d1 = 0, c2 is an arbitrary smooth real function of the energy density t, and

d′2 =
−3c2c′22 + 2c2

2c′′2 + 4c2d2
2 − 4c′22 d2t + 4c2c′′2 d2t

2c2(c2 + c′2t)
.

Case I.2) c′1 =
2cc2(c2+2td2)

c2+tc′2
, d1 = −cc2, d2 = c′2

(
1 + t c′2

2c2

)
, and c2 is an arbitrary smooth real function of the energy

density t.
Case I.3) On the nonzero section of TM, c1 = 2tcc2, d1 = −cc2, and

d2 =
3c1c2

2−6tcc3
2+4tc1c2c′2−4t2cc2

2c′2+2t2c1c′22 −2t3cc2c′22
2tc2(−c1+4tcc2) , where c2 = 1

t (k1 + etk2), with k1 and k2 two arbitrary real constants.

Case II) c1 = (cc2 − d1)t,
d′1
d1

=
c′2
c2
, d2 = c′2 +

c′22 t
2c2

and c2 is an arbitrary smooth real function of the energy density t.

Proof: On the vertical distribution of TTM, the component of the projective curvature tensor correspond-
ing to the Levi-Civita connection of G is:

P
( ∂
∂yi ,

∂

∂y j

) ∂
∂yk

= K
( ∂
∂yi ,

∂

∂y j

) ∂
∂yk

+
1

n − 1

[
Ric

( ∂
∂yi ,

∂

∂yk

) ∂
∂x j − Ric

( ∂
∂y j ,

∂

∂yk

) ∂
∂yi

]
,

where K is the curvature tensor field of ∇ and Ric is the corresponding Ricci tensor, whose component on
the vertical distribution is given as:

Ric
( ∂
∂yi ,

∂

∂yk

)
= Kh

īhk
+ Kh̄

īh̄k
, ∀i, k, h, ī, k̄, h̄ = 1,n,

where the indices i, k, h correspond to the horizontal arguments and ī, k̄, h̄ to the vertical arguments.
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Let (TM,G) be vertically projectively flat, i.e. P
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk = 0, ∀i, j, k = 1,n.

By similar computations to those in the proof of Theorem 3.3, we obtain:

P
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk = (Ā1 + B̄1n)(1 jkδh

i − 1ikδh
j )+

+(Ā2 + B̄2n)(δh
j10i − δh

i 10 j)10k + Ā3(1 jk10i − 1ik10 j)yh
]
,

where Āα, α = 1, 3, B̄α, α = 1, 2 are some quite long functions, depending on the coefficients of the metric
G, their first two order derivatives, the constant sectional curvature c of the base manifold, and the energy
density t of y ∈ TM.

In the same way as in the previous proof, we have that P
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk = 0, ∀i, j, k = 1,n, if and only if

Āα = B̄α = 0, α = 1, 3.
After the computations, the numerator of the coefficient B̄1 has the form:

c2(cc2 + d1)(c1 − cc2t + d1t)(c1 + 2d1t)(c2 + 2d2t)2.

The condition of vanishing of the above expression lead to the following cases: Case I) d1 = −cc2, and
Case II) c1 = (cc2 − d1)t.

In both cases we have that Ā3 = 0 if and only if

3c2c′22 − 2c2
2c′′2 − 4c2d2

2 + 2c2
2d′2 + 4c′22 d2t − 4c2c′′2 d2t + 2c2c′2d′2t = 0.

Notice that c2 + c′2t , 0, since c2 = c0
t , with c0 an arbitrary real constant, would lead to Ā3 = 1

4t2 , 0.
Hence Ā3 vanishes if and only if

d′2 =
−3c2c′22 + 2c2

2c′′2 + 4c2d2
2 − 4c′22 d2t + 4c2c′′2 d2t

2c2(c2 + c′2t)
. (13)

In the sequel we shall study the two cases, separately.
Case I) d1 = −cc2 implies that Ā1 = 0 if and only if

c′1c2 − 2cc2
2 + c′1c′2t − 4cc2d2t = 0,

which is equivalent to

c′1 =
2(cc2

2 + 2cc2d2t)
c2 + c′2t

. (14)

Replacing the above value of c′1 into the expression of P
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk , ∀i, j, k = 1,n, this becomes of the

form

P
(
∂
∂yi ,

∂
∂y j

)
∂
∂yk =

c(2c2c′2−2c2d2+c′22 t)
2c2(c1−2cc2t)2(c2+c′2t)2(n−1) (−3c1c2

2 + 6cc3
2t − 4c1c2c′2t−

−2c1c2d2t + 4cc2
2c′2t2

− 2c1c′22 t2 + 8cc2
2d2t2 + 2cc2c′22 t3)(δh

j10i − δh
i 10 j),

and it vanishes if and only if one of the following subcases holds good:
Case I.1) c = 0 leads to c′1 = 0, d1 = 0 and the expression of d2 remains (13).
On the nonzero section of the tangent bundle we have also other two subcases.
Case I.2) d2 = c′2(1 +

c′2
2c2

t), c′1 has the expression (14), and d1 = −cc2.

Case I.3) d2 =
3c1c2

2−6tcc3
2+4tc1c2c′2−4t2cc2

2c′2+2t2c1c′22 −2t3cc2c′22
2tc2(−c1+4tcc2) and then the value of d′2 is the one given by the relation

(13) if and only if

3(c2 + c′2t)3(c3
1 − 6cc2

1c2t + 14c2c1c2
2t2
− 12c3c3

2t3)

c2
2t2(−c1 + 4cc2t)3

= 0.
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Since we proved that c2 + c′2 , 0, it follows that the above relation is equivalent to the equation

c3
1 − 6cc2

1c2t + 14c2c1c2
2t2
− 12c3c3

2t3 = 0,

which solved w.r.t. c1 has only one real solution:

c1 = 2cc2t.

By imposing the condition (14), we obtain

2c(c2 − 2c′2 + c′2t − c′′2 t) = 0. (15)

The subcase when c = 0 leads to Case I.1), which was already treated.
If c , 0, (15) is equivalent to the second order differential equation:

c′′2 =
c2 − 2c′2 + c′2t

t
,

which has the solution

c2 =
1
t

(k1 + k2et), k1, k2 ∈ R.

Case II) c1 = (cc2 − d1)t yields

B̄2 = (cc2 + d1)2(c2d′1 − c′2d1)(c2 + c′2t)(c2 + 2d2t).

Since c2 + c′2t , 0 and the case d1 = −cc2 was studied at Case I.2), the condition of vanishing of B̄2 is

d′1 =
c′2
c2

d1. (16)

Replacing the value of d′1 from (16) into Ā1, the relation Ā1 = 0 becomes

2c2c′2 − 2c2d2 + c′22 t = 0.

Hence (TM,G) is vertically projectively flat if and only if the coefficients of the metric G satisfy one of
the cases in the above theorem.
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[26] M. S. Stanković, S. M. Minčić, Lj. S. Velimirović, On equitorsion holomorphically projective mappings of generalised Kählerian

spaces, Czech. Math. J., 54(129), (2004) 701–715.
[27] M. Tahara, L. Vanhecke, Y. Watanabe, New Structures on Tangent Bundles, Note di Matematica (Lecce), 18 (1998) 131–141.
[28] N. Tanaka, Projective connections and projective transformations, Nagoya Mathematical Journal 12 (1957) 1–24.
[29] K. Yano,Differential geometry on complex and almost complex spaces, (Pergamon Press, 1965) 255–267.
[30] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker Inc., New York, 1973.


