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Some Equalities on q-Gamma and q-Digamma Functions
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Abstract. In this paper, we give some equalities on q-gamma and q-digamma functions for negative integer
values of x by aid of using the concepts of neutrix and neutrix limit.

1. Introduction and Preliminaries

Q-calculus; the q-analogue of the classical calculus; is a quite popular subject today. The deformed
calculus has found a lot of applications in mathematics, statistics and physics. These are many q-functions
of the ordinary special functions such as q-beta, q-gamma and q-zeta functions. In a rude way, the definition
of a q-analogue Mq of a mathematical object M is such that the limit of Mq as q tends to 1 is M. In
this paper we aim to give some equalities on q-gamma and q-digamma functions by using their q-integral
representations and the neutrix calculus developed by van der Corput.

Definition 1.1. (Neutrix)Let N′ be a nonempty set and letN be a commutative, additive group of functions mapping
N′ into a commutative, additive group N′′. The group N is called neutrix if the function which is identically equal
to zero is the only constant function occurringN . The function which belongs toN is called ”negligible function” in
N .
Let N′ be a domain lying in a topological space with a limit point b not belonging to N′ and N be a commutative
additive group of functions defined on N′ with the following property:

” f ∈ N , lim
ε→b

f (ε) = c (constant) for ε ∈ N
′

then c = 0”.

Then this groupN is a neutrix.

Definition 1.2. (Neutrix limit) Let f be a real valued function defined on N′ and suppose that it is possible to find a
constant c such that f (x) − c is negligible inN . Then c is called the neutrix limit of f (x) as x tends to y and denoted
by

N−lim
x→y

f (x) = c. (1)
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The reader may find the general definition of the neutrix and neutrix limit in [3].
In this work, we let N be the neutrix having domain the open interval N′ = (0, (1 − q)−1) and range N′′ as
the real numbers with the negligible functions being finite linear sums of the functions

ελ lnr−1 ε, lnr ε, [ε]λ, λ < 0, r = 1, 2, ...

and all being functions f (ε) which converge to zero in the usual sense as ε tends to zero.
Let q be a positive number 0 < q < 1. For any complex number x, the basic number [x] and the q-factorial
[n]! are defined by

[x] =
1 − qx

1 − q
, [n]! = [n][n − 1] . . . [2][1], n ∈N.

Let f be a function defined on a subject of real or complex plane. The q-analogue of the derivative of f (x),
called its q-derivative is given by

Dq f (x) =
f (qx) − f (x)

(q − 1)x
if x , 0 and (Dq f )(0) = f ′(0)

provided f ′(0) exists.
The q-Jackson integral is defined for a function f to be∫ a

0
f (x)dqx = (1 − q)a

∞∑
n=0

qn f (aqn)

provided the sum converges absolutely and∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx.

The q-integrating by parts is given for suitable functions f and 1 by∫ b

a
1(qx)dq f (x) = f (b)1(b) − f (a)1(a) −

∫ b

a
f (x)dq1(x). (2)

One of the q-analogues of the exponential function ex is defined as

Ex
q =

∞∑
i=0

q( i
2) xi

[i]!
= (−(1 − q)x; q)∞.

Note that the q-derivative of Ex
q is Eqx

q . More information about q-calculus can be found in [1, 2].
The q-analogue of gamma function Γ(x) is defined in [7, 8] by the q-integral representation

Γq(x) =

∫ 1
1−q

0
tx−1E−qt

q dqt

and its derivatives are defined by

Γ(r)
q =

∫ 1
1−q

0
tx−1 lnr tE−qt

q dqt, r = 0, 1, 2, . . . . (3)

Using the regularization technique, it has been shown in [6] that for x > −n,n = 1, 2, . . . , x , 0,−1,−2, . . .,
the q-gamma function is defined by the neutrix limit as

Γq(x) = N−lim
ε→0

∫ 1/1−q

ε
tx−1E−qt

q dqt
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and in [9] the authors give an equation for the function Γq(x) for negative integer values of x with using the
Heaviside’s function H(x); which is equal to zero for x < 0 and to 1 for x > 0. That is

Γq(−n) =

∫ 1/1−q

0
t−n−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+ (1 − q)n+1
n−1∑
j=0

(−1) jq
j( j+1)

2

(q, q)i(1 − qi−n)
. (4)

2. Main Results

In this section, using neutrix calculus, we give some results on q-gamma function with its first derivative
and then show that q-digamma function can be defined at negative integers. At first, we need the following
lemmas.

Lemma 2.1. We have

Γq(0) =
q − 1
lnq

Γ′q(1). (5)

Proof. By taking 1(qt) = E−qt
q , dq( f (t)) = t−1 and using q-integration by parts given in (2), then we obtain

Γq(0) = N−lim
ε→0

∫ 1/1−q

ε
t−1E−qt

q dqt

= N−lim
ε→0

{
q − 1
ln q

ln (1 − q)E
−

1
1−q

q −
q − 1
ln q

ln εE−qε
q +

q − 1
ln q

∫ 1/1−q

ε
ln tE−qt

q dqt
}
.

Since Et
q = (1 + (1− q)t)∞q , the first term on the right side is equal to zero and second one includes ln ε, which

is negligible function, so the neutrix limit of the last term collides with ordinary one which is equal to the
equation (3) at x = 1, then we get the desired result. �

Lemma 2.2. For n = 1, 2, . . .,

Γq(−n) =
1

[−n]
Γq(−n + 1) +

(−1)nq
n(n+1)

2

[n][n]!
. (6)

Proof. On q-integrating by parts to equation (4) we have

Γq(−n) =
1

[−n]

{∫ 1/1−q

1
t−nE−qt

q dqt +

∫ 1

0
t−n

[
E−t

q −

n∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
]
dqt

}

−

E−1
q

[−n]
+

1
[−n]

[
E−1

q −

n∑
j=0

(−1) jq
j( j−1)

2

[ j]!

]
+

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]

=
1

[−n]

{∫ 1/1−q

1
t−nE−qt

q dqt +

∫ 1

0
t−n

[
E−t

q −

n∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
]
dqt

+

n−2∑
j=0

(−1) jq
j( j+1)

2

[i]![−n + j + 1]

}
−

(−1)nq
n(n−1)

2

[−n][n]!

=
1

[−n]
Γq(−n + 1) +

(−1)nq
n(n+1)

2

[n][n]!
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as desired. �
Note that by using the equations (5) and (6) and mathematical induction, q-gamma function satisfies the
equation

Γq(−n) =
(−1)nq

n(n+1)
2

[n]!

(
ϕq(n) + Γq(0)

)
(7)

where (for example, see [10] and references therein)

ϕq(n) =

n∑
j=1

1
[ j]

for n = 0,−1,−2, . . . and this result tends to the equation

Γ(−n) = (−1)n
(
ϕ(n) + Γ(0)

)
where

ϕ(n) =

n∑
j=0

1
j

shown in [4] and [11] as q→ 1.

Theorem 2.3. Let H denotes Heaviside’s function. Then for n ∈N,

Γq(−n) =

∫ 1/1−q

0
t−n−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+ ln q−1(1 − q)−1
n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]
(1 − q)n− j +

ln q−1

q − 1

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]2 (1 − q)n− j. (8)

Proof. By definitions, we have∫ 1
1−q

ε
t−n−1 ln tE−qt

q dqt =

∫ 1/1−q

ε
t−n−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!

∫ 1
1−q

ε
t−n+ j−1 ln tdqt +

(−1)nq
n(n+1)

2

[n]!

∫ 1

ε
t−1 ln tdqt.

Now calculating the last two integrals on the right side of the equation and then taking the neutrix limit of
the both sides of the equation we get

N−lim
ε→0

∫ 1
1−q

ε
t−n−1 ln tE−qt

q dqt =

∫ 1/1−q

ε
t−n−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!

{
(1 − q)n− j ln(q−1(1 − q)−1)

[−n + j]
+

ln q−1(1 − q)n− j

(q − 1)[−n + j]2

}
as desired. �
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Theorem 2.4. For n = 1, 2, . . .

Γ′q(−n) =
ln q−1

(q − 1)[−n]
Γq(−n) +

ln q−1

[−n]
Γq(−n + 1) +

1
[−n]

Γ′q(−n + 1). (9)

Proof. On q-integrating by parts to equation (8) we have

Γ′q(−n) =
ln q−1

[−n](q − 1)

∫ 1/1−q

0
t−n−1

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+
ln q−1

[−n]

∫ 1/1−q

0
t−n

[
E−qt

q −

n−2∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)n−1q
n(n−1)

2

[n − 1]!
tn−1H(1 − t)

]
dqt

+
1

[−n]

∫ 1/1−q

0
t−n ln t

[
E−qt

q −

n−2∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)n−1q
n(n−1)

2

[n − 1]!
tn−1H(1 − t)

]
dqt

+ ln q−1(1 − q)−1
n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]
(1 − q)n− j +

ln q−1

q − 1

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]2 (1 − q)n− j

−
ln q−1

[−n]

n∑
j=0

(−1) jq
j( j−1)

2

[ j]!
(1 − q)n− j

−
ln (1 − q)−1

[−n]

n∑
j=0

(−1) jq
j( j−1)

2

[ j]!
(1 − q)n− j.

The first three terms on the right side of the equation are the integral parts of the definitions of Γq(−n),
Γq(−n + 1) and Γ′q(−n + 1) respectively, because of that, adding and extracting the missing series of these
definitions one can see that sums of the remaining series are equal to zero and this completes the proof. �

Theorem 2.5. For all real values of x,

Γ′q(x) = N−lim
ε→0

Γ′q(x + ε). (10)

Proof. Since Γ′q(x) is a continuous function for x , 0,−1,−2, . . . its neutrix limit becomes normal limit as ε
tends to zero and the result follows for x , 0,−1,−2, . . .. Now we will consider Γ′q(x) at the point x = −n,
n = 1, 2, . . .. For 0 < ε < 1, we have from equation (8) that

Γ′q(−n + ε) =

∫ 1/1−q

0
t−n+ε−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j)

]
dqt

+ ln q−1(1 − q)−1
n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + ε + j]
(1 − q)n−ε− j +

ln q−1

q − 1

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + ε + j]2 (1 − q)n−ε− j

=

∫ 1/1−q

0
t−n+ε−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+ ln q−1(1 − q)−1
n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + ε + j]
(1 − q)n−ε− j +

ln q−1

q − 1

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + ε + j]2 (1 − q)n−ε− j

+
(−1)nq

n(n+1)
2

[n]!

∫ 1

ε
tε−1 ln tdqt.
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Note that the neutrix limit is unique and its precisely the same as the ordinary one, if it exists. Then taking
neutrix limit of both sides, we obtain

N−lim
ε→0

Γ′q(−n + ε) =

∫ 1/1−q

0
t−n−1 ln t

[
E−qt

q −

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]!
t j
−

(−1)nq
n(n+1)

2

[n]!
tnH(1 − t)

]
dqt

+ ln q−1(1 − q)−1
n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]
(1 − q)n− j +

ln q−1

q − 1

n−1∑
j=0

(−1) jq
j( j+1)

2

[ j]![−n + j]2 (1 − q)n− j

= Γq(−n).

The case of x = −n − ε for 0 < ε < 1 can be proved similarly. �

For any x > 0, we have

Γq(x + 1) = [x]Γq(x). (11)

It has been shown in [9] that equation (11) can be given for all real numbers by the neutrix limit such that

Γq(x + 1) = N−lim
ε→0

[x + ε]Γq(x + ε). (12)

Differentiating equation (11), we get

Γ′q(x + 1) =
−qx ln q

1 − q
Γq(x) + [x]Γ′q(x) (13)

for x , 0,−1,−2, · · · .
Now we give that, equation (13) can be extended for all real values of x.

Theorem 2.6. For all x we have

Γ′q(x + 1) = N−lim
ε→0

qx+ε ln q
q − 1

Γq(x + ε) + [x + ε]Γ′q(x + ε).

Proof. The result can easily be obtained because of the continuity of Γ′q(x) for x , 0,−1,−2, . . .. Equation (8)
also satisfies for all real values of x. By rewriting this equation for n = 1, 2, . . . and 0 < ε < 1 as

Γ′q(−n + ε + 1) = [−n]Γ′q(−n + ε) −
ln q−1

q − 1
Γq(−n + ε) − ln q−1Γq(−n + ε + 1)

then we get from taking the neutrix limit of both sides that

N−lim
ε→0

Γ′q(−n + ε + 1) = N−lim
ε→0

[−n + ε]Γ′q(−n + ε) −
ln q−1

q − 1
Γq(−n + ε) − ln q−1Γq(−n + ε + 1).

Hence with the previous theorem and equation (2) we have

= N−lim
ε→0

[−n + ε]Γ′q(−n + ε) +
ln q

q − 1
N−lim
ε→0

Γq(−n + ε) + ln q N−lim
ε→0

[−n + ε]Γq(−n + ε)

= N−lim
ε→0

[−n + ε]Γ′q(−n + ε) +
ln q

q − 1
N−lim
ε→0

[
1 + (q − 1)[−n + ε]

]
Γq(−n + ε)

= N−lim
ε→0

[−n + ε]Γ′q(−n + ε) +
ln q

q − 1
N−lim
ε→0

[
1 + q−n+ε

− 1
]
Γq(−n + ε)

= N−lim
ε→0

−q−n+ε ln q
1 − q

Γq(−n + ε) + [−n + ε]Γ′q(−n + ε)
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as desired. �
The ψq(x) function is defined by

ψq(x) =
(

ln Γq(x)
)′

=
Γ′q(x)

Γq(x)

for n , 0,−1,−2, . . .. By the previous results, it gives the idea that we define the q-digamma function ψq(−n)
by

ψq(−n) = N−lim
ε→0

Γ′q(−n + ε)

Γq(−n + ε)

for n = 0,−1,−2, . . ., provided the neutrix limit exists. Now we will show the existence of the function
ψq(−n) for n = 0, 1, 2, . . ..

Theorem 2.7. For n = 0, 1, 2, . . .

ψq(−n) = ψq(1) +
ln q

q − 1
ϕq(n).

Proof. If we take 0 < |ε| < 1 and use equation (11) and (13), we get

Γ′q(ε)

Γq(ε)
=

Γ′q(ε + 1) +
qε ln q
1−q Γq(ε)

[ε]Γq(ε)

=
Γ′q(ε + 1)

Γq(ε + 1)
+

qε ln q
(1 − q)[ε]

.

Now taking neutrix limit of both sides, it follows that

N−lim
ε→0

Γ′q(ε)

Γq(ε)
= N−lim

ε→0

Γ′q(ε + 1)

Γq(ε + 1)
+

qε ln q
(1 − q)[ε]

=
Γ′q(1)

Γq(1)
= ψq(1).

providing thatψq(0) exists andψq(0) = ψq(1). For the case of n = 1, 2, . . ., assuming the existence ofψq(−n+1),
we have

Γ′q(−n + ε)

Γq(−n + ε)
=

Γ′q(−n + ε + 1) +
q−n+ε ln q

1−q Γq(−n + ε)

[−n + ε]Γq(−n + ε)
=

Γ′q(−n + ε + 1)

Γq(−n + ε + 1)
+

q−n+ε ln q
(1 − q)[−n + ε]

.

Then we get

N−lim
ε→0

Γ′q(−n + ε)

Γq(−n + ε)
= N−lim

ε→0

Γ′q(−n + ε + 1)

Γq(−n + ε + 1)
+

q−n+ε ln q
(q − 1)[−n + ε]

ψq(−n) = ψq(−n + 1) +
ln q

(1 − q)[n]
.

By induction, it follows that

ψq(−n) = ψq(1) +
ln q

q − 1
ϕq(n)

for n = 1, 2, . . .. Hence the proof is completed. �

Note that all results that we obtain in this paper, tends to the results in [4] and [5] as q→ 1.
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