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Abstract. In this paper, we introduce lacunary statistical ward continuity in a 2-normed space. A function
f defined on a subset E of a 2-normed space X is lacunary statistically ward continuous if it preserves
lacunary statistically quasi-Cauchy sequences of points in E where a sequence (xk) of points in X is lacunary
statistically quasi-Cauchy if

lim
r→∞

1
hr
|{k ∈ Ir : ||xk+1 − xk, z|| ≥ ε}| = 0

for every positive real number ε and z ∈ X, and (kr) is an increasing sequence of positive integers such that
k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞, Ir = (kr−1, kr]. We investigate not only lacunary statistical ward
continuity, but also some other kinds of continuities in 2-normed spaces.

1. Introduction

In 1928, Menger ([22]) introduced a concept of a generalized metric, and later on, Vulich ([31]) gave a
notion of a higher dimensional normed linear space which had been neglected by many analysists until
it was developed by Gähler in the mid of 1960’s ([15], [16], and [17]). Recently, Mashadi [20], and many
others ([8, 21, 23]) have studied this concept and obtained various results.

The concept of lacunary statistical convergence of a sequence of real numbers was introduced by Fridy
and Orhan in [12, 13], and further investigated by several authors in [24], [27], [28], [29].

The idea in the definition of sequential continuity enabled some authors to introduce, and investigate
certain kinds of continuities in [1, 3–5, 9, 30]. Lacunary statistical ward continuity, or Sθ ward continuity of
a real function was introduced by Cakalli, Aras and Sonmez in [6].

The aim of this paper is to study the concept of lacunary statistical ward continuity in 2-normed spaces,
and prove some interesting theorems.

2. Preliminaries

In this paper, N, and R will denote the set of all positive integers, and the set of all real numbers,
respectively. Now we recall the definition of a 2-normed space. Let X be a real linear space with dimX > 1
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and ||., .|| : X×X→ R a function. Then (X, ||., .||) is called a linear 2-normed space if (i)
∥∥∥x, y∥∥∥ = 0⇔ x and y are

linearly dependent, (ii)
∥∥∥x, y∥∥∥ =

∥∥∥y, x∥∥∥, (iii)
∥∥∥αx, y

∥∥∥ = |α|
∥∥∥x, y∥∥∥, (iv)

∥∥∥x, y + z
∥∥∥ ≤ ∥∥∥x, y∥∥∥ + ‖x, z‖ for α ∈ R and

x, y, z ∈ X. The function ||., .|| is called a 2-norm on X. Throughout the paper X will denote a 2-normed space.
Observe that in any 2-normed space (X, ‖., .‖) we have ‖., .‖ is nonnegative, ||x− z, x− y|| = ||x− z, y− z||, and∥∥∥x, y + αx

∥∥∥ =
∥∥∥x, y∥∥∥ for all x, y ∈ X, α ∈ R. A classical example is the 2-normed space X = R2 with the 2-norm

‖., .‖ defined by ‖a, b‖ = |a1b2 − a2b1|where a = (a1, a2), b = (b1, b2) ∈ R2. This is the area of the parallelogram
determined by the vectors a and b. A sequence (xn) of points in X is said to converge to L ∈ X in the 2-norm
X if limn→∞ ‖xn − L, z‖ = 0 for every z ∈ X. This is denoted by limn→∞||xn, z|| = ||L, z||. A sequence (xn) of
points in X is said to be a Cauchy sequence with respect to the 2-norm X if limn,m→∞ ‖xn − xm, z‖ = 0 for
every z ∈ X. A sequence of functions

(
fn
)

is said to be uniformly convergent to a function f on a subset
E of X if for each ε > 0, an integer N can be found such that

∥∥∥ fn (x) − f (x) , z
∥∥∥ < ε for n ≥ N and for all

x, z ∈ X ([14]). A lacunary sequence θ = (kr) is an increasing sequence of positive integers such that k0 = 0
and hr = kr − kr−1 → ∞ as r→ ∞. The intervals determined by θ will be denoted by Ir = (kr−1, kr], the ratio
kr/kr−1 will be abbreviated by qr, q1 = 0 for convention, and we assume that lim in fr qr > 1. A sequence (xk)
of points in X is called lacunary statistically convergent, or Sθ-convergent, to an element L of X if

lim
r→∞

1
hr
|{k ∈ Ir : ||xk − L, z|| ≥ ε}| = 0,

for every positive real number ε and z ∈ X ([12], [2]), it is denoted by Sθ − limk→∞||xk, z|| = ||L, z|| for every
z ∈ X.

3. Results

First we note that lacunary statistical limit is unique.

Proposition 3.1. If a sequence is lacunary statistically convergent to L1 and L2 in X, then L1 = L2.

Proof. Although the proof follows from the fact that the set of semi-norms {pz : z ∈ X}, where pz(x) = ||x, z|| for
every x ∈ X and for each z ∈ X separates points, we give a direct proof for completeness. Now suppose that
a sequence (xk) of points in X has two different lacunary statistical limits, L1 and L2, say. Write αk = L1 − L2

for every k ∈N. Take any z ∈ X, then write ε0 = ||L1−L2,z||
2 . So for all r ∈Nwe have

{k ∈ Ir : ||αk, z|| ≥ ε0} ⊂

{
k ∈ Ir : ||L1 − xk, z|| ≥

ε0

2

}
∪

{
k ∈ Ir : ||xk − L2, z|| ≥

ε0

2

}
.

Now it follows from this that for all z ∈ X, r ∈N

|{k ∈ Ir : ||αk, z|| ≥ ε0}| ≤

∣∣∣∣∣{k ∈ Ir : ||L1 − xk, z|| ≥
ε0

2

}∣∣∣∣∣ + ∣∣∣∣∣{k ∈ Ir : ||xk − L2, z|| ≥
ε0

2

}∣∣∣∣∣ .
Lacunary statistical convergence of (xk) to L1 implies that

lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : ||L1 − xk, z|| ≥
ε0

2

}∣∣∣∣∣ = 0,

and lacunary statistical convergence of (xk) to L2 implies that

lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : ||L2 − xk, z|| ≥
ε0

2

}∣∣∣∣∣ = 0

for all z ∈ X. Thus for all z ∈ X

1 = limr→∞
1
hr
|{k ∈ Ir : ||αk, z|| ≥ ε0}|

≤ lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : ||L1 − xk, z|| ≥
ε0

2

}∣∣∣∣∣ + lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : ||xk − L2, z|| ≥
ε0

2

}∣∣∣∣∣ = 0 + 0 = 0.

It follows from this contradiction that L1 = L2.
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Definition 3.2. A subset E of X is called Sθ-sequentially compact if any sequence of points in E has an Sθ-convergent
subsequence with an Sθ-limit in E.

We note that the union of two Sθ-sequentially compact subsets of X is Sθ-sequentially compact, the sum
of two Sθ-sequentially compact subsets of X is Sθ-sequentially compact, the intersection of any family of
Sθ-sequentially compact subsets is Sθ-sequentially compact, any compact subset of X is Sθ-sequentially
compact, and any finite subset of X is Sθ-sequentially compact.

Definition 3.3. A function f defined on a subset E of X is said to be Sθ-sequentially continuous on E if it preserves
Sθ-convergent sequences, i.e. ( f (xk)) is an Sθ-convergent sequence whenever (xk) is an Sθ-convergent sequence.

We see that if (xk) is an Sθ-convergent sequence with Sθ − limk→∞||xk, z|| = ||x0, z|| for every z ∈ X, then
( f (xk)) is an Sθ-convergent sequence with Sθ − limk→∞|| f (xk), z|| = || f (x0), z|| for every z ∈ X. We note that the
sum of two Sθ-sequentially continuous function at a point x0 of X is Sθ-sequentially continuous at x0, and
the composition of two Sθ-sequentially continuous function at a point x0 of X is Sθ-sequentially continuous
at x0. In the classical case, that is in the single normed case it is known that uniform limit of sequentially
continuous functions is sequentially continuous, now we see that it is also true that not only uniform limit
of sequentially continuous functions is sequentially continuous, but also uniform limit of Sθ-sequentially
continuous functions is Sθ-sequentially continuous in 2-normed spaces. Now we give the latter in the
following.

Theorem 3.4. Let fk be a lacunary statistically sequentially continuous function defined on a subset E of X into X
for each k ∈ N, and ( fn) be uniformly convergent to a function f , and then f is lacunary statistically sequentially
continuous.

Proof. Let ( fk) be a uniformly convergent sequence with uniform limit f , and (xk) be any Sθ-convergent
sequence of points in E with Sθ − limk→∞||xk, z|| = ||x0, z|| for every z ∈ X. Take any ε > 0. By uniform
convergence of ( fk), there exists an N ∈N such that || f (x)− fk(x), z|| < ε

3 for k ≥ N and every x ∈ E and z ∈ X.
Since fN is lacunary statistically sequentially continuous on E we have

lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(x0) − fN(xk), z|| ≥
ε
3

}∣∣∣∣∣ = 0.

On the other hand, we have{
k ∈ Ir : || f (x0) − f (xk), z|| ≥ ε

}
⊂

{
k ∈ Ir : ||vk, z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(x0) − fN(xk), z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(xk) − f (xk), z|| ≥

ε
3

}
where vk = f (x0) − fN(x0) for every k ∈N. Thus it follows from this inclusion that

lim
r→∞

1
hr

∣∣∣{k ∈ Ir : || f (x0) − f (xn), z|| ≥ ε
}∣∣∣ ≤ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : ||vk, z|| ≥
ε
3

}∣∣∣∣∣
+ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(x0) − fN(xn), z|| ≥
ε
3

}∣∣∣∣∣ + lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xn) − f (xn), z|| ≥
ε
3

}∣∣∣∣∣ = 0

for every z ∈ X. So f is lacunary statistically sequentially continuous on E, and the proof is completed.

Theorem 3.5. Sθ-sequentially continuous image of any Sθ-sequentially compact subset of X is Sθ-sequentially
compact.

Proof. Assume that f is an Sθ-sequentially continuous function on a subset E of X, and A is an Sθ-sequentially
compact subset of E. Let ( f (xn)) be any sequence of points in f (A) where xn ∈ A for each positive integer n.
Since A is Sθ-sequentially compact, there is a subsequence (γk) = (xnk ) of (xn) with Sθ− limk→∞ ||γk, z|| = ||`, z||
for every z ∈ E. Write (tk) = ( f (γk)). As f is Sθ-sequentially continuous, ( f (γk)) is Sθ-sequentially convergent
which is a subsequence of the sequence ( f (xn)) with Sθ − limk→∞ ||tk, z|| = ||`, z|| for ∀z ∈ E. This completes
the proof of the theorem.
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The concept of a strongly lacunary quasi-Cauchy sequence in a 2-normed space was studied in [8]. Now
we give the following definition of an Sθ-quasi-Cauchy sequence.

Definition 3.6. A sequence (xk) of points in X is called to be lacunary statistically quasi-Cauchy if Sθ−limk→∞||∆xk, z|| =
0 for every z ∈ X where ∆xk = xk+1 − xk for each k ∈ N. The set of lacunary statistically quasi-Cauchy sequences is
denoted by ∆Sθ.

Definition 3.7. A subset E of X is called Sθ-ward compact if any sequence of points in E has an Sθ-quasi-Cauchy
subsequence.

The union of two Sθ-ward compact subset of X is Sθ-ward compact. The intersection of any family of
Sθ-ward compact subsets is Sθ-ward compact. Any finite subset of X is Sθ-ward compact.

Now we state the definition of lacunary statistical ward continuity in a 2-normed space in the following:

Definition 3.8. A real valued function f defined on a subset E of X is called lacunary statistically ward continuous,
or Sθ-ward continuous on E if it preserves lacunary statistically quasi-Cauchy sequences of points in E, i.e. ( f (xk))
is a lacunary statistically quasi-Cauchy sequence whenever (xk) is a lacunary statistically quasi-Cauchy sequence of
points in E.

The sum of two lacunary statistically ward continuous functions is lacunary statistically ward continu-
ous, and the composition of lacunary statistically ward continuous functions is lacunary statistically ward
continuous.

Theorem 3.9. If a real valued function is lacunary statistically ward continuous on a subset E of X, then it is
lacunary statistically sequentially continuous on E.

Proof. Suppose that f is a lacunary statistically ward continuous function on a subset E of X. Let (xn) be a
lacunary statistically quasi-Cauchy sequence of points in E. Then the sequence

(x1, x0, x2, x0, x3, x0, ..., xn−1, x0, xn, x0, ...)

is a lacunary statistically quasi-Cauchy sequence. Since f is lacunary statistically ward continuous, the
sequence

(yn) = ( f (x1), f (x0), f (x2), f (x0), ..., f (xn), f (x0), ...)

is a lacunary statistically quasi-Cauchy sequence. Therefore Sθ− limn→∞ ||∆yn, z|| = 0 for every z ∈ X. Hence
Sθ − limn→∞ || f (xn) − f (x0), z|| = 0 for ∀z ∈ X. It follows that the sequence ( f (xn)) is lacunary statistically
convergent to f (x0). This completes the proof of the theorem.

Now we prove the following theorem.

Theorem 3.10. If a real valued function f is uniformly continuous on a subset E of X, then ( f (xn)) is lacunary
statistically quasi-Cauchy whenever (xn) is a quasi-Cauchy sequence of points in E.

Proof. Let f be uniformly continuous on E. Take any quasi-Cauchy sequence (xn) of points in E. Let ε be
any positive real number. Since f is uniformly continuous, there exists a δ > 0 such that || f (x)− f (y),w|| < ε
for any w ∈ X whenever ||x − y, z|| < δ for any x, y ∈ E and z ∈ X. As (xn) is a quasi-Cauchy sequence, for
this δ there exists an n0 ∈ N such that ||∆xn, z|| < δ for n ≥ n0 for z ∈ X. Therefore ||∆ f (xn), z|| < ε for n ≥ n0,
so the number of indices k for which || f (xn+1) − f (xn), z|| ≥ ε is less than n0. Hence

limr→∞
1
hr
|{k ∈ Ir : || f (xn+1) − f (xn), z|| ≥ ε}| ≤ limr→∞

n0
hr

= 0.
This completes the proof of the theorem.

Theorem 3.11. Uniform limit of lacunary statistically ward continuous function is lacunary statistically ward
continuous.
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Proof. Let ( fk) be a uniformly convergent sequence with uniform limit f . To prove that f is lacunary
statistically ward continuous on E, take any lacunary statistically quasi-Cauchy sequence (xn) of points in
E. Let ε be any positive real number. Since ( fn) is uniformly convergent to f , there exists a positive integer
N such that || fn(x) − f (x), z|| < ε

3 whenever n ≥ N for all x, z ∈ E. Since fN is lacunary statistically ward
continuous on E we have

lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk+1) − fN(xk), z|| ≥
ε
3

}∣∣∣∣∣ = 0.

On the other hand we have{
k ∈ Ir : || f (xk+1) − f (xk), z|| ≥ ε

}
⊂

{
k ∈ Ir : || f (xk+1) − fN(xk+1), z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(xk+1) − fN(xk), z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(xk) − f (xk), z|| ≥

ε
3

}
.

So it follows from this inclusion that

lim
r→∞

1
hr

∣∣∣{k ∈ Ir : || f (xk+1) − f (xk), z|| ≥ ε
}∣∣∣ ≤ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || f (xk+1) − fN(xk+1), z|| ≥
ε
3

}∣∣∣∣∣
+ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk+1) − fN(xk), z|| ≥
ε
3

}∣∣∣∣∣ + lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk) − f (xk), z|| ≥
ε
3

}∣∣∣∣∣ = 0

for every z ∈ X. So f is lacunary statistically ward continuous on E, and the proof is completed.

Theorem 3.12. Let fk be a function defined on a subset E of X into X that transforms convergent sequences to
lacunary statistically quasi-Cauchy sequences for each k ∈N, and ( fk) be uniformly convergent to a function f , then
f transforms convergent sequences to lacunary statistically quasi-Cauchy sequences.

Proof. Let ( fk) be a uniformly convergent sequence with uniform limit f , and (xk) be a convergent sequence
of points in E with lim ||xk, z|| = ||x0, z|| for every z ∈ X. Take any ε > 0. By uniform convergence of ( fk), there
exists an N ∈ N such that || f (x) − fk(x), z|| < ε

3 for k ≥ N and every x ∈ E and z ∈ X. Since fN transforms
convergent sequences to lacunary statistically quasi-Cauchy sequences on E we have

lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk+1) − fN(xk), z|| ≥
ε
3

}∣∣∣∣∣ = 0

for each z ∈ X. On the other hand, we have{
k ∈ Ir : || f (xk+1) − f (xk), z|| ≥ ε

}
⊂

{
k ∈ Ir : || f (xk+1) − fN(xk), z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(xk) − fN(xk+1), z|| ≥

ε
3

}
∪

{
k ∈ Ir : || fN(xk+1) − f (xk), z|| ≥

ε
3

}
.

So it follows from this inclusion that

lim
r→∞

1
hr

∣∣∣{k ∈ Ir : || f (xk+1) − f (xk), z|| ≥ ε
}∣∣∣ ≤ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || f (xk+1) − fN(xk+1), z|| ≥
ε
3

}∣∣∣∣∣
+ lim

r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk+1) − fN(xk), z|| ≥
ε
3

}∣∣∣∣∣ + lim
r→∞

1
hr

∣∣∣∣∣{k ∈ Ir : || fN(xk) − f (xk), z|| ≥
ε
3

}∣∣∣∣∣ = 0

for every z ∈ X. Thus f transforms convergent sequences to lacunary statistically quasi-Cauchy sequences,
so the proof of the theorem is completed.

We note that any lacunary statistically ward continuous function transforms not only convergent se-
quences, but also slowly oscillating sequences to lacunary statistically quasi-Cauchy sequences.



Hüseyin Çakallı and Sibel Ersan / Filomat 29:10 (2015), 2257–2263 2262

4. Conclusion

We have introduced not only lacunary statistical ward continuity, but also some other kinds of continu-
ities and proved interesting theorems. The results are more comprehensive than existing related ones in the
literature, and there are some results obtained in this research that have not been appeared in the classical
real number system as well. We note that lacunary statistical quasi-Cauchyness is equivalent to the notion
of a lacunary statistical convergence in a complete non-Archimedean 2-normed space, and so the set of
lacunary statistically ward continuous functions is the same as the set of lacunary statistically sequentially
continuous functions in a complete non-Archimedean 2-normed space (see [25], and [10] for the related
concepts in a non-Archimedean 2-normed space). As a further study, our suggestion is to investigate
lacunary statistically quasi-Cauchy sequences of fuzzy points, lacunary statistical ward continuity of the
fuzzy functions in a 2-normed fuzzy space. However due to the change in the setting, the definitions and
methods of proofs will not always be analogous to those of the present work (see [7, 18, 24]). For another
further study, we suggest to investigate lacunary statistically quasi-Cauchy sequences of double sequences
in a 2-normed space, and lacunary statistical ward double continuity to find out whether lacunary statistical
ward double continuity coincides with lacunary statistical ward (single) continuity or not (see [26] for the
definitions and related concepts in the double case).
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