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Abstract. In this paper, we prove common fixed point theorems for a pair of mappings satisfying rational
inequality. Also, we prove common fixed point theorems for weakly compatible maps, weakly compatible
along with (CLR) and E.A. properties that generalizes the results of Sintunavarat et al. [15]. Further, we
apply our results to find the solution of Urysohn integral equations

x(t) =

∫ b

a
K1(t, s, x(s))ds + 1(t),

x(t) =

∫ b

a
K2(t, s, x(s))ds + h(t),

where t ∈ [a, b] ⊆ R, x, 1, h ∈ X and K1,K2 : [a, b] × [a, b] ×Rn
→ Rn.

1. Introduction

In 2011, Azam et al. [2] introduced the notion of complex valued metric space which is a generalization
of the classical metric spaces. They established some fixed point results for a pair of mapping satisfying a
rational inequality.

A complex number z ∈ C is an ordered pair of real numbers, whose first co-ordinate is called Re(z) and
second coordinate is called Im(z). A complex-valued metric d is a function from X × X into C, where X is a
nonempty set and C is the set of complex numbers.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:
z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2), that is, z1 - z2 if one of the following holds:
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(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2);

(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2);

(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

In particular, we will write z1 � z2 if z1 , z2 and one of (C2), (C3), and (C4) is satisfied and we will write
z1 ≺ z2 if only (C4) is satisfied.

Remark 1.1. We note that the following statements hold:

(i) a, b ∈ R and a ≤ b⇒ az - bz ∀ z ∈ C.

(ii) 0 - z1 � z2 ⇒ |z1| < |z2|,

(iii) z1 - z2 and z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.2. Let X be a nonempty set. Suppose that the mapping d : X×X→ C satisfies the following conditions:

(i) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Example 1.3. Let X = C. Define the mapping d : X × X→ C by

d(z1, z2) = 2ι|z1 − z2|, for all z1, z2 ∈ X .

Then (X, d) is a complex valued metric space.

Definition 1.4. Let (X, d) be a complex valued metric space and {xn} be a sequence in X and x ∈ X. If for every c ∈ C,
with 0 ≺ c there is k ∈ N such that for all n > k,

(i) d(xn, x) ≺ c, then {xn} is said to be convergent, {xn} converges to x and x is the limit point of {xn}. We denote
this by {xn} → x as n→∞ or lim

n→∞
xn = x.

(ii) d(xn, xn+m) ≺ c, where m ∈N, then {xn} is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete complex valued metric space.

Lemma 1.5. Let (X, d) be a complex valued metric space and {xn} be a sequence in X. Then {xn} converges to x if and
only if |d(xn, x)| → 0 as n→∞.

Lemma 1.6. Let (X, d) be a complex valued metric space and let {xn} be a sequence in X. Then {xn} is a Cauchy
sequence if and only if |d(xn, xn+m)| → 0 as n→∞, where m ∈N.

Further, In 2013, Sintunavarat et al. [15] introduced the notion of a C-Cauchy sequence in C-complete
complex valued metric space as follows:

Definition 1.7. Let (X, d) be a complex valued metric space and {xn} be a sequence in X and x ∈ X.

(i) If for any c ∈ C, with 0 ≺ c, there exists k ∈ N such that, for all m,n > k, d(xn, xm) ≺ c, then {xn} is called a
C-Cauchy sequence in X.
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(ii) If every C-Cauchy sequence in X is convergent, then (X, d) is said to be a C-complete complex valued metric
space.

In 1996, Jungck [8] introduced the notion of weakly compatible maps as follows:

Definition 1.8. Two self maps f and 1 are said to be weakly compatible if they commute at coincidence points.

In 2002, Aamri et al. [1] introduced the notion of E.A. property as follows:

Definition 1.9. Two self-mappings f and 1 of a metric space (X, d) are said to satisfy E.A. property if there exists a
sequence {xn} in X such that lim

n→∞
f xn = lim

n→∞
1xn = t for some t in X.

In 2011, Sintunavarat et al. [12] introduced the notion of (CLR) property as follows:

Definition 1.10. Two self-mappings f and 1 of a metric space (X, d) are said to satisfy (CLR f ) property if there exists
a sequence {xn} in X such that lim

n→∞
f xn = lim

n→∞
1xn = f x for some x in X.

Some of the interesting works for (CLR) property can be cited in [3, 4, 6, 7, 9–11]. In a similar mode, we
use these properties in complex valued metric spaces.

Example 1.11. Let X = C. Define the mapping d : X × X→ C by

d(z1, z2) = 2i|z1 − z2|, for all z1, z2 ∈ X.

Then (X, d) is a complex valued metric space.
Define S,T : X→ X by

Sz = z + i and Tz = 2z, for all z ∈ X.

Consider a sequence {zn} =
{
i − 4

n

}
, n ∈N, in X, then

lim
n→∞

Szn = lim
n→∞

(zn + i) = lim
n→∞

i −
4
n

+ i = 2i.

lim
n→∞

Tzn = lim
n→∞

2zn = lim
n→∞

2
(
i −

4
n

)
= 2i, where 2i ∈ X.

Thus, S and T satisfies E.A. property.
Also, we have

lim
n→∞

Szn = lim
n→∞

Tzn = 2i = S(i), where i ∈ X.

Thus, S and T satisfies (CLRS) property.

Lemma 1.12 ([5]). Let X be a nonempty set and T : X → X be a function. Then there exists a subset E ⊆ X such
that T(E) = T(X) and T : E→ X is one-to-one.

2. Main Results

Throughout this paper, C+ denotes a set {c ∈ C : 0 - c} and Γ denotes the class of all functions
δ : C+ × C+ → [0, 1) which satisfies the condition:
for (xn, yn) in C+ × C+,

δ(xn, yn)→ 1⇒ (xn, yn)→ 0.

In 2013, Sintunavarat et al. [15] proved the following fixed point result:
“Let S and T be self mappings of a C-complete complex value metric space (X, d). If there exists mappings

α, β : C+ → [0, 1) such that for all x, y in X:
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(a) α(x) + β(x) < 1,

(b) the mapping γ : C+ → [0, 1) defined by γ(x) =
α(x)

1 − β(x)
belongs to Γ,

(c) d(Sx,Ty) - α(d(x, y))d(x, y) + β(d(x, y)) d(x,Sx)d(y,Ty)
1+d(x,y) .

Then S and T have a unique common fixed point.”
Now, we prove our results in a more general way as follows:

Theorem 2.1. Let S and T be self mappings of a C-complete complex valued metric space (X, d). If there exists
mappings α, β, γ : C+ × C+ → [0, 1) such that for all x, y in X:

α(x, y) + β(x, y) + γ(x, y) < 1, (2.1)

the mapping δ : C+ × C+ → [0, 1) defined by δ(x, y) =
α(x, y)

1 − β(x, y)
belongs to Γ, (2.2)

d(Sx,Ty) - α(x, y)d(x, y) + β(x, y)
d(x,Sx)d(y,Ty)

1 + d(x, y)
+ γ(x, y)

d(y,Sx)d(x,Ty)
1 + d(x, y)

. (2.3)

Then S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. We construct the sequence {xn} in X such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1, for all n ≥ 0. (2.4)

For n ≥ 0, we get

d(x2n+1, x2n+2) = d(Sx2n,Tx2n+1)

- α(x2n, x2n+1)d(x2n, x2n+1) + β(x2n, x2n+1)
d(x2n,Sx2n)d(x2n+1,Tx2n+1)

1 + d(x2n, x2n+1)

+ γ(x2n, x2n+1)
d(x2n+1,Sx2n)d(x2n,Tx2n+1)

1 + d(x2n, x2n+1)

= α(x2n, x2n+1)d(x2n, x2n+1) + β(x2n, x2n+1)
d(x2n, x2n+1)d(x2n+1, x2n+2)

1 + d(x2n, x2n+1)

+ γ(x2n, x2n+1)
d(x2n+1, x2n+1)d(x2n, x2n+2)

1 + d(x2n, x2n+1)

= α(x2n, x2n+1)d(x2n, x2n+1) + β(x2n, x2n+1)d(x2n+1, x2n+2)
d(x2n, x2n+1)

1 + d(x2n, x2n+1)
- α(x2n, x2n+1)d(x2n, x2n+1) + β(x2n, x2n+1)d(x2n+1, x2n+2),

which implies that,

d(x2n+1, x2n+2) - δ(x2n, x2n+1)d(x2n, x2n+1), where δ(x, y) =
α(x, y)

1 − β(x, y)
. (2.5)
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Similarly, for n ≥ 0, we get

d(x2n+2, x2n+3) = d(x2n+3, x2n+2)
= d(Sx2n+2,Tx2n+1)

- α(x2n+2, x2n+1)d(x2n+2, x2n+1) + β(x2n+2, x2n+1)
d(x2n+2,Sx2n+2)d(x2n+1,Tx2n+1)

1 + d(x2n+2, x2n+1)

+ γ(x2n+2, x2n+1)
d(x2n+1,Sx2n+2)d(x2n+2,Tx2n+1)

1 + d(x2n+2, x2n+1)

= α(x2n+2, x2n+1)d(x2n+2, x2n+1) + β(x2n+2, x2n+1)
d(x2n+2, x(2n + 3))d(x2n+1, x2n+2)

1 + d(x2n+1, x2n+2)

+ γ(x2n+2, x2n+1)
d(x2n+1, x(2n + 3))d(x2n+2, x2n+2)

1 + d(x2n+1, x2n+2)

= α(x2n+2, x2n+1)d(x2n+2, x2n+1) + β(x2n+2, x2n+1)d(x2n+2, x(2n + 3))
d(x2n+1, x2n+2

1 + d(x2n+1, x2n+2))
- α(x2n+2, x2n+1)d(x2n+2, x2n+1) + β(x2n+2, x2n+1)d(x2n+2, x(2n + 3)),

that is,

d(x2n+3, x2n+2) - δ(x2n+2, x2n+1)d(x2n+2, x2n+1). (2.6)

From (2.5) and (2.6), we get

d(xn, xn + 1) - δ(xn−1, xn)d(xn−1, xn), for all n ∈N.

Therefore, we get

|d(xn, xn+1)| ≤ δ(xn−1, xn)|d(xn−1, xn)| ≤ |d(xn−1, xn)|, for all n ∈N. (2.7)

This implies that the sequence {|d(xn−1, xn)|}, n ∈ N is monotone non-increasing and bounded below,
therefore, |d(xn−1, xn)| → r for some r ≥ 0.

Next, we claim that r = 0. Assume to the contrary that r > 0. Proceeding limit as n→ ∞, we have from
(2.7) δ(xn−1, xn) → 1. Since δ ∈ Γ, we get (xn−1, xn) → 0, that is, |d(xn−1, xn)| → 0, which is a contradiction.
Therefore, we have r = 0, that is,

|d(xn−1, xn)| → 0. (2.8)

Next, we show that {xn} is a C-Cauchy sequence. According to (2.8), it is sufficient to prove that the
subsequence {x2n} is a C-Cauchy sequence. Let, if possible, {x2n} is not a C-Cauchy sequence. So, there is
c ∈ Cwith 0 ≺ c, for which, for all k ∈N, there exists m(k) > n(k) ≥ k, such that

d(x2n(k), x2m(k)) % c. (2.9)

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest integer with
m(k) > n(k) ≥ k satisfying (2.9). Then, we have

d(x2n(k), x2m(k)) % c (2.10)

and

d(x2n(k), x2m(k)−2) ≺ c. (2.11)

From (2.10) and (2.11), we have

c - d(x2n(k), x2m(k))
- d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k))
≺ c + d(x2m(k)−2, x2m(k)−1) + d(x2m(k)−1, x2m(k)).
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This implies that

|c| ≤ |d(x2n(k), x2m(k))| ≤ |c| + |d(x2m(k)−2, x2m(k)−1)| + |d(x2m(k)−1, x2m(k))|.

Letting k→∞, we get

|d(x2n(k), x2m(k))| → |c|. (2.12)

Further, we have

d(x2n(k), x2m(k)) - d(x2n(k), x2m(k)+1) + d(x2m(k)+1, x2m(k))
- d(x2n(k), x2m(k)) + d(x2m(k), x2m(k)+1) + d(x2m(k)+1, x2m(k)),

implies that,

|d(x2n(k), x2m(k))| ≤ |d(x2n(k), x2m(k))| + |d(x2m(k), x2m(k)+1)| + |d(x2m(k)+1, x2m(k))|.

Letting k→∞, and using (2.8) and (2.12), we get

|d(x2n(k), x2m(k)+1)| → |c|. (2.13)

Now,

d(x2n(k), x2m(k)+1) - d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k)+2) + d(x2m(k)+2, x2m(k)+1)
= d(x2n(k), x2n(k)+1) + d(Sx2n(k),Tx2m(k)+1) + d(x2m(k)+2, x2m(k)+1)
- d(x2n(k), x2n(k)+1) + α(x2n(k), x2m(k)+1)d(x2n(k), x2m(k)+1)

+ β(x2n(k), x2m(k)+1)
d(x2n(k),Sx2n(k))d(x2m(k)+1,Tx2m(k)+1)

1 + d(x2n(k), x2m(k)+1)

+ γ(x2n(k), x2m(k)+1)
d(x2m(k)+1,Sx2n(k))d(x2n(k),Tx2m(k)+1)

1 + d(x2n(k), x2m(k)+1)
+ d(x2m(k)+2, x2m(k)+1)

= d(x2n(k), x2n(k)+1) + α(x2n(k), x2m(k)+1)d(x2n(k), x2m(k)+1)

+ β(x2n(k), x2m(k)+1)
d(x2n(k), x2n(k)+1)d(x2m(k)+1, x2m(k)+2)

1 + d(x2n(k), x2m(k)+1)

+ γ(x2n(k), x2m(k)+1)
d(x2m(k)+1, x2n(k)+1)d(x2n(k), x2m(k)+2)

1 + d(x2n(k), x2m(k)+1)
+ d(x2m(k)+2, x2m(k)+1),

implies that,

|d(x2n(k), x2m(k)+1)| ≤ |d(x2n(k), x2n(k)+1)| + α(x2n(k), x2m(k)+1)|d(x2n(k), x2m(k)+1)|

+ β(x2n(k), x2m(k)+1)

∣∣∣∣∣∣d(x2n(k), x2n(k)+1)d(x2m(k)+1, x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣
+ γ(x2n(k), x2m(k)+1)

∣∣∣∣∣∣d(x2m(k)+1, x2n(k)+1)d(x2n(k), x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣ + |d(x2m(k)+2, x2m(k)+1)|
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≤ |d(x2n(k), x2n(k)+1)| + α(x2n(k), x2m(k)+1)|d(x2n(k), x2m(k)+1)|

+

∣∣∣∣∣∣d(x2n(k), x2n(k)+1)d(x2m(k)+1, x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣d(x2m(k)+1, x2n(k)+1)d(x2n(k), x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣ + |d(x2m(k)+2, x2m(k)+1)|

≤ |d(x2n(k), x2n(k)+1)| +
α(x2n(k), x2m(k)+1)

1 − β(x2n(k), x2m(k)+1)
|d(x2n(k), x2m(k)+1)|

+

∣∣∣∣∣∣d(x2n(k), x2n(k)+1)d(x2m(k)+1, x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣d(x2m(k)+1, x2n(k)+1)d(x2n(k), x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣ + |d(x2m(k)+2, x2m(k)+1)|

≤ |d(x2n(k), x2n(k)+1)| + δ(x2n(k), x2m(k)+1)|d(x2n(k), x2m(k)+1)|

+

∣∣∣∣∣∣d(x2n(k), x2n(k)+1)d(x2m(k)+1, x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣d(x2m(k)+1, x2n(k)+1)d(x2n(k), x2m(k)+2)
1 + d(x2n(k), x2m(k)+1)

∣∣∣∣∣∣ + |d(x2m(k)+2, x2m(k)+1)|.

Letting limit as k→∞, we get

|c| ≤ lim
k→∞

δ(x2n(k), x2m(k)+1)|c| ≤ |c|,

which implies that, lim
k→∞

δ(x2n(k), x2m(k)+1) = 1.

Since δ ∈ Γ, we get, (x2n(k), x2m(k))→ 0, that is, |d(x2n(k), x2m(k)+1)| → 0, which contradicts 0 ≺ c. Therefore,
we can conclude that {x2n} is a C-Cauchy sequence and hence {xn} is a C-Cauchy sequence in X and X is
complete, so there exists a point z in X such that xn → z as n→∞.

Next, we claim that Sz = z. If Sz , z, then d(Sz, z) > 0.
Now,

d(z,Sz) - d(z, x2n+2) + d(x2n+2,Sz)
= d(z, x2n+2) + d(Tx2n+1,Sz)
= d(z, x2n+2) + d(Sz,Tx2n+1)

- d(x2n+2, z) + α(z, x2n+1)d(z, x2n+1) + β(z, x2n+1)
d(z,Sz)d(x2n+1,Tx2n+1)

1 + d(z, x2n+1)

+ γ(z, x2n+1)
d(x2n+1,Sz)d(z,Tx2n+1)

1 + d(z, x2n+1)

= d(x2n+2, z) + α(z, x2n+1)d(z, x2n+1) + β(z, x2n+1)
d(z,Sz)d(x2n+1, x2n+2)

1 + d(z, x2n+1)

+ γ(z, x2n+1)
d(x2n+1,Sz)d(z, x2n+2)

1 + d(z, x2n+1)
.

Letting n→∞, we get

d(z,Sz) - d(z, z) + α(z, z)d(z, z) + β(z, z)
d(z,Sz)d(z, z)

1 + d(z, z)
+ γ(z, z)

d(z,Sz)d(z, z)
1 + d(z, z)

= 0,

that is, |d(z,Sz)| = 0, which is a contradiction. Thus, we get Sz = z.
Similarly, we have Tz = z. Therefore, z = Sz = Tz, that is, z is a common fixed point of S and T.
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Finally, we show that z is the unique common fixed point of S and T. Assume that there exists another
point w such that w = Sw = Tw.

From (2.3), we have

d(z,w) = d(Sz,Tw)

- α(z,w)d(z,w) + β(z,w)
d(z,Sz)d(w,Tw)

1 + d(z,w)
+ γ(z,w)

d(w,Sz)d(z,Tw)
1 + d(z,w)

= α(z,w)d(z,w) + γ(z,w)
d(w,Sz)d(z,Tw)

1 + d(z,w)
- [α(z,w) + γ(z,w)]d(z,w),

that is,

|d(z,w)| ≤ [α(z,w) + γ(z,w)]|d(z,w)|,

which implies that, α(z,w) + γ(z,w) ≥ 1, which is a contradiction and hence z = w.
Therefore, z is a unique common fixed point of S and T.

Corollary 2.2. Let S and T be self mappings of a C-complete complex valued metric space (X, d) satisfying the
following:

d(Sx,Ty) - λd(x, y) + µ
d(x,Sx)d(y,Ty)

1 + d(x, y)
+ ν

d(y,Sx)d(x,Ty)
1 + d(x, y)

, for all x, y in X, (2.14)

where λ, µ, ν are non-negative reals with λ + µ + ν < 1.
Then S and T have a unique common fixed point.

Proof. By putting α(x, y) = λ, β(x, y) = µ, γ(x, y) = ν in Theorem 2.1, we get the required result.

Corollary 2.3. Let T be a self map of a C-complete complex valued metric space (X, d). If there exists mappings
α, β, γ : C+ × C+ → [0, 1) satisfying (2.1), (2.2) and the following:

d(Tx,Ty) - α(x, y)d(x, y) + β(x, y)
d(x,Tx)d(y,Ty)

1 + d(x, y)
+ γ(x, y)

d(y,Tx)d(x,Ty)
1 + d(x, y)

, for all x, y in X. (2.15)

Then T has a unique fixed point in X.

Proof. By putting S = T in Theorem 2.1, we get the required result.

Corollary 2.4. Let T be self mapping of a C-complete complex valued metric space (X, d) satisfying the following:

d(Tx,Ty) - λd(x, y) + µ
d(x,Tx)d(y,Ty)

1 + d(x, y)
+ ν

d(y,Tx)d(x,Ty)
1 + d(x, y)

, for all x, y in X, (2.16)

where λ, µ, ν are non-negative reals with λ + µ + ν < 1.
Then T has a unique fixed point in X.

Proof. By putting α(x, y) = λ, β(x, y) = µ, γ(x, y) = ν in Corollary 2.3, we get the required result.

Theorem 2.5. Let T be a self map of a C-complete complex valued metric space (X, d). If there exists mappings
α, β, γ : C+ × C+ → [0, 1) satisfying (2.1), (2.2) and the following:

d(Tnx,Tny) - α(x, y)d(x, y) + β(x, y)
d(x,Tnx)d(y,Tny)

1 + d(x, y)
+ γ(x, y)

d(y,Tnx)d(x,Tny)
1 + d(x, y)

, (2.17)

for all x, y in X and some n ∈N.
Then T has a unique fixed point in X.
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Proof. From Corollary 2.3, Tn has a fixed point z. But Tn has a fixed point Tz, since Tn(Tz) = T(Tnz) = Tz.
Therefore, Tz = z by the uniqueness of a fixed point Tn. Therefore, z is also a fixed point of T. Since the
fixed point of T is also a fixed point of Tn, the fixed point of T is also unique.

Corollary 2.6. Let T be a self mapping of a C-complete complex valued metric space (X, d) satisfying the following:

d(Tnx,Tny) - λd(x, y) + µ
d(x,Tnx)d(y,Tny)

1 + d(x, y)
+ ν

d(y,Tnx)d(x,Tny)
1 + d(x, y)

, for all x, y in X and some n ∈N,

(2.18)

where λ, µ, ν are non-negative reals with λ + µ + ν < 1.
Then T has a unique fixed point in X.

Proof. By putting α(x, y) = λ, β(x, y) = µ, γ(x, y) = ν in Theorem 2.5, we get the required result.

3. Weakly Compatible Maps

Theorem 3.1. Let S and T be self mappings of a complex value metric space (X, d) such that T(X) ⊆ S(X) and S(X)
is C-complete. If there exists mappings α, β, γ : C+ × C+ → [0, 1) satisfying (2.1), (2.2) and the following:

d(Tx,Ty) - α(Sx,Sy)d(Sx,Sy) + β(Sx,Sy)
d(Sx,Tx)d(Sy,Ty)

1 + d(Sx,Sy)
+ γ(Sx,Sy)

d(Sx,Ty)d(Sy,Tx)
1 + d(Sx,Sy)

, (3.1)

for all x, y in X. Then S and T have a unique point of coincidence in X.
Moreover, if S and T are weakly compatible, then S and T have a unique common fixed point.

Proof. Consider the mapping S : X → X. By Lemma 1.12, there exists E ⊆ X such that S(E) = S(X) and
S : E→ X is one-to-one.

Next, we define a mapping Θ : S(E)→ S(E) by Θ(Sx) = Tx for all Sx ∈ S(E). Therefore, Θ is well defined,
since S is one-to-one on E. Since Θ ◦ S = T, using (3.1), we get

d(Θ(Sx),Θ(Sy)) - α(Sx,Sy)d(Sx,Sy) + β(Sx,Sy)
d(Sx,Θ(Sx))d(Sy,Θ(Sy))

1 + d(Sx,Sy)
(3.2)

+ γ(Sx,Sy)
d(Sx,Θ(Sy))d(Sy,Θ(Sx))

1 + d(Sx,Sy)
,

for all Sx, Sy in S(E). Since S(E) = S(X) is C-complete and 3.2 holds, we can apply Corollary 2.3 with a
mapping Θ. Therefore, there exists a unique fixed point z in S(X) such that Θz = z. Now, since z ∈ S(X),
there exists a point v in X such that z = Sv. So, Θ(Sv) = Sv, that is, Tv = Sv. Therefore, T and S have a
unique point of coincidence.

Next, we show that S and T have a common fixed point. Now, we have z = Tv = Sv. Since S and T are
weakly compatible, we get Sz = STv = TSv = Tz. This implies that z is a point of coincidence of S and T.

Finally, we prove the uniqueness of a common fixed point of S and T. Assume that w is another common
fixed point of S and T. So, w = Sw = Tw and then w is also a point of coincidence of S and T. However,
we know that z is a unique point of coincidence of S and T. Therefore, we get w = z, that is, z is a unique
common fixed point of S and T.

4. Weakly Compatible and (CLR) Property

Theorem 4.1. Let S and T be self mappings of a complex valued metric space (X, d) such that

S and T are weakly compatible, (4.1)
S and T satisfy (CLRS) property, (4.2)

d(Tx,Ty) - α(Sx,Sy)d(Sx,Sy) + β(Sx,Sy)
d(Sx,Tx)d(Sy,Ty)

1 + d(Sx,Sy)
+ γ(Sx,Sy)

d(Sx,Ty)d(Sy,Tx)
1 + d(Sx,Sy)

, (4.3)
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where α, β, γ : C+ × C+ → [0, 1) be the mappings satisfying (2.1).
Then S and T have a unique common fixed point.

Proof. Since S and T satisfy the (CLRS) property, there exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = Sx, for some x in X.

We claim that Sx = Tx.
From (4.3), we have

d(Txn,Tx) - α(Sxn,Sx)d(Sxn,Sx) + β(Sxn,Sx)
d(Sxn,Txn)d(Sx,Tx)

1 + d(Sxn,Sx)
+ γ(Sxn,Sx)

d(Sxn,Tx)d(Sx,Txn)
1 + d(Sxn,Sx)

.

Letting n→∞, we get

d(Sx,Tx) - 0, which implies that, |d(Sx,Tx)| ≤ 0, that is, Sx = Tx.

Let z = Sx = Tx. Since S and T are weakly compatible mappings, therefore, STx = TSx, implies that,
Sz = STx = TSx = Tz.

Now, we claim that, Tz = z. Let, if possible, Tz , z.
From (4.3), we have

d(Tz, z) = d(Tz,Tx)

- α(Sz,Sx)d(Sz,Sx) + β(Sz,Sx)
d(Sz,Tz)d(Sx,Tx)

1 + d(Sz,Sx)
+ γ(Sz,Sx)

d(Sz,Tx)d(Sx,Tz)
1 + d(Sz,Sx)

= α(Tz, z)d(Tz, z) + 0 + γ(Tz, z)
d(Tz, z)d(z,Tz)

1 + d(Tz, z)
- α(Tz, z)d(Tz, z) + γ(Tz, z)d(Tz, z),

which implies that, |d(Tz, z)| ≤ [α(Tz, z) + γ(Tz, z)]|d(Tz, z)|, a contradiction.
Therefore, Tz = z = Sz. So, z is the common fixed point of S and T.
For the uniqueness, let w be another common fixed point of S and T such that w , z.
From (4.3), we have

d(z,w) = d(Tz,Tw)

- α(Sz,Sw)d(Sz,Sw) + β(Sz,Sw)
d(Sz,Tz)d(Sw,Tw)

1 + d(Sz,Sw)
+ γ(Sz,Sw)

d(Sz,Tw)d(Sw,Tz)
1 + d(Sz,Sw)

= α(z,w)d(z,w) + 0 + γ(z,w)
d(z,w)d(w, z)

1 + d(z,w)
- α(z,w)d(z,w) + γ(z,w)d(z,w),

which implies that,

|d(z,w)| ≤ [α(z,w) + γ(z,w)]|d(z,w)|, a contradiction.

Hence w = z.
Therefore, S and T have a unique common fixed point.

5. Weakly Compatible and E.A. Property

Theorem 5.1. Let S and T be self mappings of a complex valued metric space (X, d) satisfying (4.1), (4.3) and the
following:

S and T satisfy the E.A. property, (5.1)
T(X) ⊆ S(X). (5.2)

If the range of S or T is a C-complete subspace of X, then S and T have a unique common fixed point in X.
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Proof. Since S and T satisfy the E.A. property, there exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z, for some z in X. (5.3)

Since T(X) ⊆ S(X), there exists a sequence {yn} in X such that Txn = Syn. Hence lim
n→∞

Syn = z.

Now, we shall show that lim
n→∞

Tyn = z. Let lim
n→∞

Tyn = t.

From (4.3), we have

d(Txn,Tyn) - α(Sxn,Syn)d(Sxn,Syn) + β(Sxn,Syn)
d(Sxn,Txn)d(Syn,Tyn)

1 + d(Sxn,Syn)

+ γ(Sxn,Syn)
d(Sxn,Tyn)d(Syn,Txn)

1 + d(Sxn,Syn)
.

Letting n→∞, we get

d(z, t) - α(z, z)d(z, z) + β(z, z)
d(z, z)d(z, t)
1 + d(z, z)

+ γ(z, z)
d(z, t)d(z, z)
1 + d(z, z)

= 0,

that is,

|d(z, t)| ≤ 0, which implies that, t = z.

Hence lim
n→∞

Tyn = z.

Now, suppose that S(X) is C-complete subspace of X. Then, there exists, u in X such that z = Su.
Subsequently, we have

lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

Syn = lim
n→∞

Tyn = z = Su.

Now, we show that Su = Tu.
From (4.3), we have

d(Txn,Tu) - α(Sxn,Su)d(Sxn,Su) + β(Sxn,Su)
d(Sxn,Txn)d(Su,Tu)

1 + d(Sxn,Su)
+ γ(Sxn,Su)

d(Sxn,Tu)d(Su,Txn)
1 + d(Sxn,Su)

.

Letting n→∞, we get

d(Su,Tu) - α(Su,Su)d(Su,Su) + β(Su,Su)
d(Su,Tu)d(Su,Tu)

1 + d(Su,Su)
+ γ(Su,Su)

d(Su,Tu)d(Su,Su)
1 + d(Su,Su)

= 0,

that is, |d(Su,Tu)| ≤ 0, which implies that, Su = Tu = z.
Since S and T are weakly compatible, therefore, STu = TSu, implies that, STu = SSu = TTu = TSu.
Now, we claim that Tu is the common fixed point of S and T. Let, if possible, Tu , TTu.
From (4.3), we have

d(Tu,TTu) - α(Su,STu)d(Su,STu) + β(Su,STu)
d(Su,Tu)d(STu,TTu)

1 + d(Su,STu)

+ γ(Su,STu)
d(Su,TTu)d(STu,Tu)

1 + d(Su,STu)

= α(Tu,TTu)d(Tu,TTu) + 0 + γ(Tu,TTu)
d(Tu,TTu)d(TTu,Tu)

1 + d(Tu,TTu)
- [α(Tu,TTu) + γ(Tu,TTu)]d(Su,STu),
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that is,

|d(Tu,TTu)| ≤ [α(Tu,TTu) + γ(Tu,TTu)]|d(Tu,TTu)|, a contradiction.

Hence Tu = TTu = STu. Therefore, Tu is the common fixed point of S and T.
For the uniqueness, let w and z be two common fixed points of S and T such that w , z.
From (4.3), we have

d(z,w) = d(Tz,Tw)

- α(Sz,Sw)d(Sz,Sw) + β(Sz,Sw)
d(Sz,Tz)d(Sw,Tw)

1 + d(Sz,Sw)
+ γ(Sz,Sw)

d(Sz,Tw)d(Sw,Tz)
1 + d(Sz,Sw)

= α(z,w)d(z,w) + 0 + γ(z,w)
d(z,w)d(w, z)

1 + d(z,w)
- α(z,w)d(z,w) + γ(z,w)d(z,w),

which implies that,

|d(z,w)| ≤ [α(z,w) + γ(z,w)]|d(z,w)|, a contradiction.

Hence w = z.
Therefore, S and T have a unique common fixed point.

6. Urysohn Integral Equation

As an application, we apply Theorem 2.1 for the existence of a common solution of the system of the
Urysohn integral equations.

Theorem 6.1. Let X = C([a, b],Rn), a > 0 and d : X × X→ C be defined by

d(x, y) = max
t∈[a,b]

‖x(t) − y(t)‖∞
√

1 + a2e(i tan−1 a.

Consider the Urysohn integral equations:

x(t) =

∫ b

a
K1(t, s, x(s))ds + 1(t), (6.1)

x(t) =

∫ b

a
K2(t, s, x(s))ds + h(t), (6.2)

where t ∈ [a, b] ⊆ R, x, 1, h ∈ X and K1,K2 : [a, b] × [a, b] ×Rn
→ Rn.

Suppose that K1, K2 are such that Fx,Gx ∈ X for all x ∈ X, where

Fx(t) =

∫ b

a
K1(t, s, x(s))ds,

Gx(t) =

∫ b

a
K2(t, s, x(s))ds, for all t ∈ [a, b].

If there exists mappings α, β, γ : C+ × C+ → [0, 1) be the mappings satisfying (2.1), (2.2) and the following:

‖Fx(t) − Gy(t) + 1(t) − h(t)‖∞
√

1 + a2e(i tan−1 a (6.3)
- α(max

t∈[a,b]
A(x, y)(t), y)A(x, y)(t) + β(x,max

t∈[a,b]
A(x, y)(t))B(x, y)(t) + γ(max

t∈[a,b]
A(x, y)(t), y)C(x, y)(t),
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where

A(x, y)(t) = ‖x(t) − y(t)‖∞
√

1 + a2ei tan−1 a

B(x, y)(t) =
‖Fx(t) + 1(t) − x(t)‖∞‖Gy(t) + h(t) − y(t)‖∞

1 + d(x, y)

√

1 + a2ei tan−1 a,

C(x, y)(t) =
‖Fx(t) + 1(t) − y(t)‖∞‖Gy(t) + h(t) − x(t)‖∞

1 + d(x, y)

√

1 + a2ei tan−1 a,

then the system of integral equations (6.1) and (6.2) has a unique solution.

Proof. Define two mappings S,T : X→ X by Sx = Fx + 1 and Tx = Gx + h.
Then, we have

d(Sx,Ty) = max
t∈[a,b]

‖Fx(t) − Gy(t) + 1(t) − h(t)‖∞
√

1 + a2ei tan−1 a,

d(x,Sx) = max
t∈[a,b]

‖Fx(t) + 1(t) − x(t)‖∞
√

1 + a2ei tan−1 a,

d(y,Ty) = max
t∈[a,b]

‖Gy(t) + h(t) − y(t)‖∞
√

1 + a2ei tan−1 a,

d(x,Ty) = max
t∈[a,b]

‖Gy(t) + h(t) − x(t)‖∞
√

1 + a2ei tan−1 a, and

d(y,Sx) = max
t∈[a,b]

‖Fx(t) + 1(t) − y(t)‖∞
√

1 + a2ei tan−1 a.

Now, we can easily show that for all x, y ∈ X

d(Sx,Ty) - α(x, y)d(x, y) + β(x, y)
d(x,Sx)d(y,Ty)

1 + d(x, y)
+ γ(x, y)

d(y,Sx)d(x,Ty)
1 + d(x, y)

.

Now, we can apply Theorem 2.1. Therefore, we get that Urysohn integral equations (6.1) and (6.2) have a
unique solution.

7. Deduced Results

7.1. Sintunavarat, Cho and Kumam’s results
Now, we deduce the main results of [15] as follows.

Theorem 7.1 ([15, Theorem 3.2]). Let S and T be self mappings of a C-complete complex value metric space (X, d).
If there exists mappings α, β : C+ → [0, 1) such that for all x, y in X:

α(x) + β(x) < 1, (7.1)

the mapping γ : C+ → [0, 1) defined by γ(x) =
α(x)

1 − β(x)
belongs to Γ, (7.2)

d(Sx,Ty) - α(d(x, y))d(x, y) + β(d(x, y))
d(x,Sx)d(y,Ty)

1 + d(x, y)
. (7.3)

Then S and T have a unique common fixed point in X.

Proof. Define α, β, γ : C+ × C+ → [0, 1) by

α(x, y) = α(d(x, y)), β(x, y) = β(d(x, y)), γ(x, y) = 0, for all x, y in X.

Now, using Theorem 2.1, we get the required result.
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Corollary 7.2 ([15, Corollary 3.3]). Let S and T be self mappings of a C-complete complex valued metric space
(X, d) satisfying the following:

d(Sx,Ty) - λd(x, y) + µ
d(x,Sx)d(y,Ty)

1 + d(x, y)
, (7.4)

for all x, y in X, where λ, µ are non-negative reals with λ + µ < 1.
Then S and T have a unique common fixed point.

Proof. By putting α(x) = λ, β(x) = µ in Theorem 7.1, we get the required result.

Corollary 7.3 ([15, Corollary 3.4]). Let T be a self map of a C-complete complex valued metric space (X, d). If there
exists mappings α, β : C+ → [0, 1) satisfying (7.5), (7.5) and the following:

d(Tx,Ty) - α(d(x, y))d(x, y) + β(d(x, y))
d(x,Tx)d(y,Ty)

1 + d(x, y)
, for allx, y in X. (7.5)

Then T has a unique fixed point in X.

Proof. By putting S = T in Theorem 7.1, we get the required result.

Corollary 7.4 ([15, Corollary 3.5]). Let T be self mapping of a C-complete complex valued metric space (X, d)
satisfying the following:

d(Tx,Ty) - λd(x, y) + µ
d(x,Tx)d(y,Ty)

1 + d(x, y)
, (7.6)

for all x, y in X, where λ, µ are non-negative reals with λ + µ < 1.
Then T has a unique fixed point in X.

Proof. By putting α(x) = λ, β(x) = µ in Corollary 7.3, we get the required result.

Theorem 7.5 ([15, Theorem 3.6]). Let T be a self map of a C-complete complex valued metric space (X, d). If there
exists mappings α, β : C+ → [0, 1) satisfying , and the following:

d(Tnx,Tny) - α(d(x, y))d(x, y) + β(d(x, y))
d(x,Tnx)d(y,Tny)

1 + d(x, y)
, (7.7)

for all x, y in X and some n ∈N.
Then T has a unique fixed point in X.

Proof. From Corollary 7.3, Tn has a fixed point z. Since Tn(Tz) = T(Tnz) = Tz, we get Tz is a fixed point of
Tn. Therefore, Tz = z by the uniqueness of a fixed point Tn. Therefore, z is also a fixed point of T. Since the
fixed point of T is also a fixed point of Tn, we get that fixed point of T is also unique.

Corollary 7.6 ([15, Corollary 3.7]). Let T be a self mapping of a C-complete complex valued metric space (X, d)
satisfying the following:

d(Tnx,Tny) - λd(x, y) + µ
d(x,Tnx)d(y,Tny)

1 + d(x, y)
, for all x, y in X and some n ∈N, (7.8)

where λ, µ are non-negative reals with λ + µ < 1.
Then T has a unique fixed point in X.

Proof. By putting α(x) = λ, β(x) = µ, in Theorem 7.5, we get the required result.
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Theorem 7.7 ([15, Theorem 4.2]). Let S and T be self mappings of a complex value metric space (X, d) such that
T(X) ⊆ S(X) and S(X) is C-complete. If there exists mappings α, β : C+ → [0, 1) satisfying (7.5), (7.5) and the
following:

d(Tx,Ty) - α(d(Sx,Sy))d(Sx,Sy) + β(d(Sx,Sy))
d(Sx,Tx)d(Sy,Ty)

1 + d(Sx,Sy)
, for all x, y in X. (7.9)

Then S and T have a unique point of coincidence in X.
Moreover, if S and T are weakly compatible, then S and T have a unique common fixed point.

Proof. By putting α(Sx,Sy) = α(d(Sx,Sy)), β(Sx,Sy) = β(d(Sx,Sy)) and γ(Sx,Sy) = 0 in Theorem 3.1, we get
the required result.
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