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Abstract. The connection between classical notions of abstract density topologies, semi-open sets and the
relation of semi-correspondence, introduced by Levine, Crossley and Hildebrand, is demonstrated.

This work refers to well known concept of abstract density topologies, semi-open sets and some relation
connected with these notions. Abstract density topologies were introduced by O. Haupt and Ch. Pauc in
1952 ([8]). They defined such topologies via so called lower density operators and the properties of these
topologies were extensively examined by many mathematicians. Some necessary and sufficient conditions
for the topology to be an abstract density topology were formulated by J. Hejduk in [10]. He also considered
the problem of regularity of such topological spaces (see [11]).

The notion of semi-open sets appeared in 1963 in the article of by N. Levine ([12]). He also defined the
relation of semi-correspondence between topologies. Both definitions were used in the studies of semi-
topological properties (that means properties which are preserved under semi-homeomorphism, such as
for instance separability, being T2, connectedness, see [4] for details), of semi-continuity ([14]) and quasi-
continuity ([3]). A generalization of semi-open sets was discussed also by E. Ekici in [5]. He defined
δ-semi-open, a-open, e∗-open sets (and some other) and examined the mutual relations between them. In
[6] there was introduced the notion of semi-open sets with respect to some ideal I (so called semi-I-open)
and studied the properties of these sets. The research was continued in [15].

In the mentioned articles one can observe, that studies of the new concepts were conducted in the
direction of improving knowledge and describing properties of these new objects. In the following paper
we will present another attitude to the notion of abstract density topologies, semi-open sets and semi-
correspondence. We will show that there is a very close and strict connection between all those classical
concepts and abstract density topologies play a crucial role in the family of all topologies.

1. Two Equivalence Relations in the Class of All Topologies on the Given Space X.

For an arbitrary topological space (X.T ) let us denote:

• NI(X,T ) - the family of sets with nonempty interior,

• ND(X,T ) - the family of nowhere dense sets,
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• NB(X,T ) - the family of sets of nowhere dense boundary

in a space (X,T ).
Let A ⊂ X. For the convenience, by Intα(A) and Clα(A) we denote the interior and the closure of A with

respect to the topology Tα for certain α and omit the subscript if it does not lead to misunderstanding.
The subset A of the topological space (X,T ) is semi-open if A ⊂ Cl(Int(A)). Let us denote by SO(X,T )

the family of all semi-open sets with respect to the topology T .
Consider non-empty space X with two topologies T1 and T2.

Definition 1.1. We say that

• T1 and T2 are similar (T2 's T1) iffNI(X,T1) = NI(X,T2).

• T1 and T2 are semi-correspondent (T2 'sc T1) iff SO(X,T1) = SO(X,T2).

Obviously, 's and 'sc are the equivalence relations. It is evident that if T is a topology on X then
T ⊂ SO(X,T ). IfA is a subfamily of SO(X,T ), then

⋃
A ∈ SO(X,T ). It is easy to observe that

Proposition 1.2. Let T1 and T2 be topologies on X. Then

T2 'sc T1 =⇒ T2 's T1.

Indeed. Let G ∈ T1, G , ∅. Hence G ∈ SO(T1) = SO(T2). As a nonempty semi open set, G has a nonempty
interior in T2.

The relation of similarity was investigated among others in [2] and [14] (under the name of π-relation).
The relation of semi-correspondence introduced by N. Levine, was investigated also by S. G. Crossley and
S. K. Hildebrand in [4] and T. R. Hamlett in [7]. Another approach to this theory with different terminology
was given by O. Njåstad in [13]. Below we present some facts from their notes using the notation given
above. First recall that a subset M of a partially ordered set L is called a join-semilattice if it has a least
upper bound for any nonempty finite subset and is called convex if the condition (x ≤ z ≤ y and x, y ∈ M)
implies z ∈M for any x, y, z ∈ L.

Proposition 1.3.

1. Equivalence classes of the relation'sc are convex join-semilattices of the lattice of all topologies ([13], Proposition
10).

2. Every equivalence class of the relation 'sc has it’s greatest element (named F (T ) in [4] or α-topology in [13]).
It need not have the minimal element ([4], Example 2.1).

3. If a topology T is regular, then it is the minimal element of its equivalence class ([13], Proposition 11).
4. If (Y,TY) is a regular space, and T1 'sc T2 then

C((X,T1), (Y,TY)) = C((X,T2), (Y,TY))

where C(X,Y) stands for the family of continuous functions from X to Y ([13], Proposition 8).

Notice, that if we exchange the relation 'sc into 's then the condition (4) does not hold (see [2]).

2. Relations Between Abstract Density Topologies

LetA be an algebra of sets in 2X and I be a proper ideal of sets contained inA. Our considerations in
this section are focused on the space (X,A,I) and abstract density topologies given on X. We remind some
basic information connected with this notion (compare with [10] and [11]). If A4B ∈ I then we will write
A ∼ B.

Definition 2.1. We will say that an operator Φ : A → 2X is a lower density operator, if for any A,B ∈ A it
fulfills the following conditions:
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(a) Φ(∅) = ∅, Φ(X) = X;

(b) Φ(A ∩ B) = Φ(A) ∩Φ(B);

(c) A ∼ B⇒ Φ(A) = Φ(B);

(d) A ∼ Φ(A) (the analogue of the Lebesgue Density Theorem).

We say that the pair (A,I) satisfies the hull property if whenever A ⊆ X, there is a B ∈ A such that A ⊆ B
and if C ∈ A and A ⊆ C, then B \ C ∈ I. If B is a measurable hull of the set X \A, then the set X \ B is called
a measurable kernel of A. Of course the hull and the kernel can be determined accurate to the set from I.

Theorem 2.2 ([10], see also [11]). If Φ : A → 2X is a lower density operator on (X,A,I) and the pair (A,I)
satisfies the hull property, then the family

TΦ = {A ∈ A : A ⊂ Φ(A)}

is a topology on X.

This topology will be called the abstract density topology (shortly - ADT) or topology generated by the
operator Φ.

In the further investigation some properties of abstract density topologies will be needed (compare [10],
[2]):

Proposition 2.3. Let Φ be the lower density operator in the space (X,A,I), and let TΦ be the topology generated by
Φ.

1. If A ⊂ X then the interior of A in the topology TΦ is of the form IntTΦ
(A) = A∩Φ(B), where B is a measurable

kernel of A. In particular, if A ∈ A then IntTΦ
(A) = A ∩Φ(A).

2. If a measurable kernel B of A ⊂ X does not belong to the ideal I, then A ∈ NI(X,TΦ).
3. A = NB(X,TΦ) and I = ND(X,TΦ).

Let the triple (X,A,I) satisfy the hull property. Let Φ1,Φ2 - lower density operators with respect to
(X,A,I). From [2], Theorem 4 it follows that:

Proposition 2.4. T1 's T2 if and only ifND(X,T1) = ND(X,T2) andNB(X,T1) = NB(X,T2).

Moreover,

Proposition 2.5. If topologiesTΦ1 andTΦ2 are generated by lower density operators Φ1 and Φ2 on the space (X,A,I),
then

TΦ1 's TΦ2 .

In general, the semi-correspondent topologies may differ a lot. In [4], Example 1.5, the authors presented
two semi-correspondent topologies T1 and T2 on X such that (X,T1) is completely normal, paracompact,
Lindelöf and metrizable, and (X,T2) satisfies none of these properties. The situation changes when we
consider abstract density topologies.

Theorem 2.6. Let Φ be a lower density operator in the space (X,A,I). Then

A ∈ SO(X,TΦ) ⇐⇒ A ∈ A ∧ A ∩Φ(A′) = ∅.

Proof. Let A ∈ SO(X,TΦ). Then there exists a set G ∈ TΦ such that G ⊂ A ⊂ ClΦ(G). Since Φ is the lower
density operator, we have ClΦ(G) \G ∈ I ⊂ A. Hence A ∈ A. Suppose, that there exists a point x0 ∈ X such
that x0 ∈ A ∩ Φ(A′). Then x0 ∈ Φ(G′) and x0 < Φ(G). From the assumption G ⊂ Φ(G) it follows that x0 < G.
So x0 ∈ G′ ∩Φ(G′) = IntΦ(G′). Hence x0 < ClΦ(G) which is a contradiction with x0 ∈ A.

Assume now, that A ∈ A, A ∩ Φ(A′) = ∅. Suppose, that A < SO(X,TΦ). Then there exists x0 ∈ A such
that x0 < ClΦ(IntΦ(A)). Hence x0 ∈ IntΦ

(
(IntΦ(A))′

)
. In particular x0 ∈ Φ((IntΦ(A))′

)
. But (IntΦ(A))′ ∼ A′, so

x0 ∈ Φ(A′). Therefore A ∩Φ(A′) , ∅ contrary to the assumption.
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Proposition 2.7. If topologies TΦ1 and TΦ2 on (X,A,I) are generated by lower density operators Φ1 and Φ2, then

TΦ1 'sc TΦ2 ⇐⇒ TΦ1 = TΦ2 ⇐⇒ Φ1 = Φ2.

Proof. We will prove the first equivalence. Assume TΦ1 'sc TΦ2 . Suppose, that A ∈ TΦ1 \ TΦ2 . Then there
exists a point x0 ∈ A such that x0 < Φ2(A). There are two possibilities.

• If x0 ∈ Φ2(A′), then x0 ∈ A ∩ Φ2(A′) and from Theorem 2.6 we obtain A < SO(X,TΦ2 ). Therefore,
TΦ2 6'sc TΦ1 .

• If x0 < Φ2(A′), then x0 < Φ2(A) ∪ Φ2(A′). Therefore x0 ∈
(
(A \ Φ2(A)) ∪ (A′ \ Φ2(A′))

)
∈ I. Hence

{x0} ∈ I. Take B = IntΦ2 (A′) ∪ {x0}. It is evident that B ∈ A. Moreover, B ∈ SO(X,TΦ2 ) \ SO(X,TΦ1 ).
Indeed, B ∩ Φ2(B′) = ∅, hence B ∈ SO(X,TΦ2 ). Simultaneously, since {x0} ∈ I, we have B′ ∼ A. Hence
x0 ∈ Φ1(B′). Therefore, B∩Φ1(B′) ⊃ {x0} and B < SO(X,TΦ1 ). Since that TΦ2 6'sc TΦ1 , which finishes the
proof of the first equivalence.

The proof of the second equivalence one can find in [9].

3. Operation T̂ .

In this section we will show that ADTs play a very important role in the equivalent classes of the relation
'sc. Take an arbitrary topological space (X,T ). Then NB(X,T ) is an algebra, ND(X,T ) ⊂ NB is an ideal,
the pair (NB,ND) satisfies the hull property and the operator

Ψ(A) = IntT (ClT (A))

is the lower density operator (compare [2], Theorem 11). Let us denote the topology TΨ by T̂ .

Proposition 3.1. Let T be a topology. Then
T ⊂ T̂ .

Indeed, if A ∈ T then A = IntT (A) ⊂ IntT (ClT (A)) = Ψ(A) hence we have A ∈ T̂ .

Theorem 3.2. For any topology T
T 'sc T̂ .

Proof. Let A ∈ NB. By virtue of the Theorem 2.6

A ∈ SO(X, T̂ ) ⇐⇒ A ∩Ψ(A′) = ∅ ⇐⇒ A ⊂
(
Ψ(A′)

)′
⇐⇒ A ⊂

(
IntT (ClT (A′)

)′
⇐⇒ A ⊂ ClT (IntT (A)) ⇐⇒ A ∈ SO(X,T ).

Corollary 3.3. Let T1,T2 be arbitrary topologies on X. Then

T1 'sc T2 ⇐⇒ T̂1 = T̂2.

Proof. Sufficiency. Let T1 'sc T2. Hence T1 's T2. Then the families NB and ND with respect to both
topologies are equal respectively (Proposition 2.4). Since that T̂1 and T̂2 are two abstract density topologies
on the same space (X,NB,ND) and T̂1 'sc T̂2. Hence T̂1 = T̂2 by virtue of Proposition 2.7.

Necessity. Since T1 'sc T̂1 = T̂2 'sc T2 we have T1 'sc T2.

Corollary 3.4. In every equivalence class of the relation 'sc there is exactly one ADT. It is also the greatest (with
respect to inclusion) element of this equivalence class.
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Using the notation from [4] we have F (T ) = T̂ . In [13] it was stated that this greatest element is an α-
topology (α-topology is the family of all sets such that A ⊂ Int (Cl(Int(A))) with respect to a given topology
T ). None of the authors uses the notion of abstract density topology and saw no connection with it.
Moreover, Njåstad gave the characterization of α-topology which coincides with the results obtained by
Hejduk in [9] which can be formulated as follows:

Corollary 3.5. The topology T is an abstract density topology iff all it’s nowhere dense sets are closed (hence it is
nodec, in the sense of van Douwen).

Recall that a topological space X is called submaximal if every dense subset of X is open. Different equivalent
conditions for a space to be submaximal and to be nodec are given in [1], Theorem 1.2 and [13], Corollary
to Proposition 4, respectively. In particular, they imply that every submaximal space is nodec. From this it
follows that abstract density topologies may be a useful tool in the studies of submaximal spaces.

Summarizing, the space of all topologies on X is divided into the equivalence classes of the relation
's . Each of those classes is divided more narrowly into the equivalence classes of the relation 'sc . The
equivalence class of 's is determined by (and - it determines) the pair (A,I). The equivalence class of 'sc is
determined by (and - it determines) the lower density operator. From Proposition 1.3 it follows that if the
space (X,T ) (where T is an abstract density topology) is regular, then the equivalent class of the relation
'sc consists of one element only:

[T ]'sc = {T }.

4. Examples

Example 4.1. The natural topologyTnat onR is regular. HenceTnat is the coarsest element of it’s class of equivalence
of 'sc . But Tnat is not abstract density topology, because there exists non-closed nowhere dense sets. The finest
element of [Tnat]'sc is the topology of the form

T̂nat = {G \ P : G ∈ Tnat,P ∈ ND(Tnat)}.

Observe, that the equivalence class [Tnat]'sc contains more than two elements. LetN be the σ−ideal of Lebesgue null
sets. Since Tnat is Lindelöf, the family

S = {G \ P : G ∈ Tnat,P ∈ ND(Tnat) ∩N}

is the topology, strictly finer than Tnat. At the same time S is coarser than T̂ . Since [Tnat]'sc is convex sublattice,
S ∈ [Tnat]'sc .

Example 4.2. The ordinary density topology Td on R is an abstract density topology, hence it is the finest element
of it’s equivalence class of the relation 'sc . At the same time Td is regular, even completely regular. Since that Td is
also the coarsest element of it’s class. As a result

[Td]'sc = {Td}.

Example 4.3. Take X = [0, 1]. Let x = (xn) be a strictly decreasing sequence of points from (0, 1), tending to 0. The
family

Tx = {∅,X} ∪ {[0, xn) : n ∈N}

forms a topology. It is easy to observe that

1. a set A ⊂ X has a nonempty interior (A ∈ NI(X,Tx)) iff there exists ε > 0 such that [0, ε) ⊂ A;
2. every nonempty open set is dense;
3. SO(X,Tx) = NI(X,Tx) ∪ {∅};
4. if y = (yn) is a strictly decreasing and tending to 0 sequence such that yn ∈ (0, 1) for n ∈N then Tx 'sc Ty;
5. if range(x) ∩ range(y) = ∅, then Tx ∩ Ty = {∅,X} < [Tx]'sc ;
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6. the class [Tx]'sc hasn’t got the coarsest element;
7. a set A is nowhere dense iff [0, ε) ⊂ A′ for some positive ε;
8. a set A has a nowhere dense boundary iff [0, ε) ⊂ A′ or [0, ε) ⊂ A for some positive ε;

9. Ψ(A) =

{
X if inf A = 0,
∅ if inf A > 0;

10. T̂x = SO(X,Tx);
11. T̂x and Tx are not homeomorphic, since T̂x is of the cardinality 2c whence the cardinality of Tx is ℵ0;
12. C((X,Tx), (R,Tnat)) consists of constant functions only.
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