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Abstract. The purpose of this paper is to prove some fixed point theorems in a tvs-cone metric space using
c-distances. The presented theorems extend, generalize and improve the corresponding results of Fadail et
al. [10], Dordevic et al. [8] and the results cited therein under the continuity condition for maps. In the last
section we give an examples in support of our theorems.

1. Introduction

It is well known that the classic contraction mapping principle of Banach is a fundamental result in fixed
point theory. Several authors have obtained various extensions and generalizations of Banach’s theorem
by considering contractive mappings on many different metric spaces. In 2007, Huang and Zhang [16]
first introduced the concept of cone metric spaces. Cone metric spaces is a generalized version of metric
spaces, where each pair of points is assigned to a member of a real Banach space over the cone. They
also established and proved the existence of fixed point theorems which is an extension of the Banach’s
contraction mapping principle in to cone metric spaces. Later, many authors have generalized and studied
fixed point theorems in cone metric spaces (see[1], [2], [4], [17]).

In 2010, Du [9] introduced the concept of tvs-cone metric spaces which is improved version of cone
metric spaces [16]. Afterward many authors (see [3, 8, 21, 25]) have generalized and proved the fixed point
results in tvs-cone metric spaces (in both the cases, that is either the underlying cone of an ordered tvs is
solid and normal or with the underlying cone which are not normal); see also [17] for a survey of fixed
point results in these spaces.

Recently, Wang and Guo [29] introduced the concept of c-distance in a cone metric spaces (also see
[6]) and proved some fixed point theorems in ordered cone metric spaces. This is cone metric version of
w-distance of Kada et al.[19]. Then several authors have proved fixed point theorems for c-distance in cone
metric spaces (see[10],[11],[12],[13],[14],[15],[26],[27]).

In [10], Fadail et al. proved the following theorems for c-distance in cone metric spaces-

Theorem 1. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X→ X be a mapping and
suppose that there exists mapping k : X→ [0, 1) such that the following hold:
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(a) k( f x) ≤ k(x) for all x ∈ X,

(b) q( f x, f y) � k(x)q(x, y) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence { f nx} converges to the fixed point. If v = f v,
then q(v, v) = θ. The fixed point is unique.

Theorem 2. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X → X be a continuous
mapping and suppose that there exists mapping k, l, r : X→ [0, 1) such that the following hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), r( f x) ≤ r(x) for all x ∈ X,

(b) (k + l + r)(x) < 1 for all x ∈ X,

(c) q( f x, f y) � k(x)q(x, y) + l(x)q(x, f x) + r(x)q(y, f y) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence { f nx} converges to the fixed point. If v = f v,
then q(v, v) = θ. The fixed point is unique.

Theorem 3. Let (X, d) be a complete cone metric space and q is a c-distance on X. Let f : X→ X be a mapping and
suppose that there exists mapping k, l, r : X→ [0, 1) such that the following hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), r( f x) ≤ r(x) for all x ∈ X,

(b) (2k + l + r)(x) < 1 for all x ∈ X,

(c) (1 − r(x))q( f x, f y) � k(x)q(x, f y) + l(x)q(x, f x) for all x, y ∈ X.

Then f has a fixed point x∗ ∈ X and for any x ∈ X, iterative sequence { f nx} converges to the fixed point. If v = f v,
then q(v, v) = θ. The fixed point is unique.

The purpose of this paper is to extend and generalize some fixed point results on c-distance in tvs-cone
metric spaces (with the underlying cone which is not normal).

2. Preliminaries

The following definitions and results will be needed in the sequel. Throughout this paper we assumeR
as a set of real numbers andN as a set of natural numbers.

Let E be a tvs with the zero vector θ. A nonempty and closed subset P of E is called a cone if P + P ⊆ P
and λP ⊆ P for λ ≥ 0. A cone P is said to be proper if P

⋂
(−P) = θ. For a given cone P ⊆ E, we define a

partial ordering � with respect to P by x � y if and only if y − x ∈ P; x ≺ y will stand for x ≺ y and x , y,
while x � y will stand for y − x ∈ intP , where intP denotes the interior of P. The cone P is said to be solid
if it has a nonempty interior. The pair (E,P) is an ordered topological vector space.

Ordered topological vector space (E,P) is order convex if it has a base of neighborhoods of θ consisting
of order-convex subsets. In this case, the cone P is said to be normal. If E is normed space, this condition
means that the unit ball is order-convex which is equivalent to the condition that there is a number K such
that x, y ∈ E and 0 � x � y implies that ||x|| ≤ K||y||.

Definition 1 ([5, 9, 20]). Let X be a nonempty set and (E,P) an ordered tvs. A vector-valued function d : X×X→ E
is said to be a tvs-cone metric, if the following conditions hold:

(C1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(C2) d(x, y) = d(y, x) for all x, y ∈ X;

(C3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Then the pair (X, d) is called a tvs-cone metric space.
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Definition 2 ([5, 9, 20]). Let (X, d) be a tvs-cone metric space, x ∈ X and let {xn} be a sequence in X. Then

(i) {xn} tvs-cone converges to x whenever for every c ∈ E with θ � c there is a natural number n0 such that
d(xn, x)� c, for all n ≥ n0. We denote this by limn→∞xn = x;

(ii) {xn} is a tvs-cone Cauchy sequence whenever for every c ∈ E with θ� c there is a natural number n0 such that
d(xn, xm)� c, for all n,m ≥ n0;

(iii) (X, d) is tvs-cone complete if every tvs-cone Cauchy sequence in X is tvs- cone convergent.

Let (X, d) be a tvs-cone metric space. The following properties are often used, particularly in the case when the
underlying cone is non-normal:

(P1) If u, v,w ∈ E, u � v and v� w then u� w.

(P2) If u ∈ E and θ � u� c for each c ∈ intP then u = θ.

(P3) If un, vn,u, v ∈ E, θ � un � vn for each n ∈N, and un → u, vn → v (n→∞), then θ � u � v.

(P4) If xn, x ∈ X, un ∈ E, d(xn, x) � un and un → θ (n→∞), then xn → x (n→∞).

(P5) If u � λu, where u ∈ P and 0 ≤ λ < 1, then u = θ.

(P6) If c� θ and un ∈ E, un → θ (n→∞), then there exists n0 ∈N such that un � c for all n ≥ n0.

Next, we give the notion of c-distance on a cone metric space (X, d) of Wang and Guo in [29] which is
a generalization of w-distance of Kada et al. [19] and some properties of Cho et al. [6] converted it to the
setting of cone metric spaces.

Definition 3 ([6]). Let (X, d) be a tvs-cone metric space. A function q : X × X→ E is called a c-distance in X if the
following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,

(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,

(q3) If a sequence {yn} ∈ X converges to a point y ∈ X, and for some x ∈ X and u = ux ∈ P, q(x, yn) � u holds for
each n ∈N, then q(x, y) � u,

(q4) for each c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e and q(z, y) � e implies
d(x, y)� c.

Example 1 ([8]). Let (X, d) be a tvs-cone metric space such that the metric d(., .) is a continuous function in second
variable. Then q(x, y) = d(x, y) is a c-distance. Indeed, only property (q3) is non-trivial and it follows from
q(x, yn) = d(x, yn) � u, passing to the limit when n→∞ and using continuity of d.

Example 2 ([8]). Let (X, d) be a tvs-cone metric space and let u ∈ X be fixed. Then, q(x, y) = d(u, y) defines a
c-distance on X. Indeed, (q1) and (q3) are clear, (q2) follows from q(x, z) = d(u, z) � d(u, y)+d(u, z) = q(x, y)+q(y, z).
Finally, (q4) is obtained by taking e = c

2 .

Definition 4 ([8]). A sequence {un} in P is a c-sequence if for each c � θ there exists n0 ∈ N such that un � c for
n ≥ n0. It is easy to show that if {un} and {vn} are c-sequences in E and α, β > 0, then {αun + βvn} is a c-sequence.

The following lemma is a tvs-cone metric version of lemmas from [6, 19].

Lemma 1 ([8]). Let (X, d) be a tvs-cone metric space and let q be a c-distance on X. Let {xn} and {yn} be a sequences
in X and x, y, z ∈ X. Suppose that {un} and {vn} are c-sequences in P. Then the following hold:
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(1) If q(xn, y) � un and q(xn, z) � vn for n ∈ N, then y = z. In particular, if q(x, y) = θ and q(x, z) = θ, then
y = z.

(2) If q(xn, yn) � un and q(xn, z) � vn for n ∈N, then {yn} converges to z.

(3) If q(xn, xm) � un for m > n > n0, then {xn} is a Cauchy sequence in X.

(4) If q(y, xn) � un for n ∈N, then {xn} is a Cauchy sequence in X.

Remark 1 ([29]). (1) If q(x, y) = q(y, x) does not necessarily for all x, y ∈ X;

(2) If q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Now we are ready to state and prove our main results.

3. Main Result

Theorem 4. Let (X, d) be a complete tvs-cone metric space, and q is a c-distance on X. Let f : X→ X be a continuous
mapping and suppose that there exists mapping k, l : X→ [0, 1) such that the following conditions hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), for all x ∈ X;

(b) (k + 2l)(x) < 1 for all x ∈ X;

(c) (i) q( f x, f y) � k(x)q(x, y) + l(x)[q( f x, y) + q(x, f y)],
(ii) q( f y, f x) � k(y)q(y, x) + l(y)[q(y, f x) + q( f y, x)] for all x, y ∈ X.

Then the map f has a unique fixed point x∗ ∈ X. If v = f v, then q(v, v) = θ.

Proof. Let x0 ∈ X be arbitrary and form the sequence with xn = f xn−1 = f nx0. In order to prove that it is a
Cauchy sequence, put x = xn and y = xn−1 in [(c)(i)] to get

q( f xn, f xn−1) = q(xn+1, xn)
� k(xn)q(xn, xn−1) + l(xn)[q( f xn, xn−1) + q(xn, f xn−1)]
= k( f xn−1)q(xn, xn−1) + l( f xn−1)[q(xn+1, xn−1)]
� k(xn−1)q(xn, xn−1) + l(xn−1)[q(xn+1, xn) + q(xn, xn−1)]

continuing in this manner, we can get,

q(xn+1, xn) � k(x0)q(xn, xn−1) + l(x0)[q(xn+1, xn) + q(xn, xn−1)], (1)

Similarly putting y = xn−1 and x = xn in [(c)(ii)] to get,

q( f xn−1, f xn) = q(xn, xn+1)
� k(xn−1)q(xn−1, xn) + l(xn−1)[q(xn−1, f xn) + q( f xn−1, xn)]
= k( f xn−2)q(xn−1, xn) + l( f xn−2)[q(xn−1, xn+1)]
� k(xn−2)q(xn−1, xn) + l(xn−2)[q(xn−1, xn) + q(xn, xn+1)]

continuing in this manner, we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + l(x0)[q(xn−1, xn) + q(xn, xn+1)], (2)

denote vn = q(xn+1, xn) + q(xn, xn+1). Adding equations (1) and (2), we get,

vn � (k(x0) + l(x0))vn−1 + l(x0)vn,

i.e.

vn � hvn−1 with 0 ≤ h =
k(x0) + l(x0)

1 − l(x0)
< 1,
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since (k + 2l)(x) < 1 for all x ∈ X. By induction

vn � hnv0 and q(xn, xn+1) � vn � hn(q(x1, x0) + q(x0, x1)).

Then it follows that

q(xn, xm) �
hn

1 − h
(q(x1, x0) + q(x0, x1)) = un,

for m > n, where {un} is a c-sequence. Thus, Lemma 1 (3) implies that {xn} is a Cauchy sequence in X and
since X is complete, xn → x∗ ∈ X (n→ ∞). Since f is continuous then xn+1 = f xn → f x∗, and since the limit
of a sequence in tvs-cone metric space is unique, we get that f x∗ = x∗, i.e. x∗ is a unique fixed point of f .
Suppose that f v = v. Then [(c)(i)] implies that,

q(v, v) = q( f v, f v)
� k(x0)q(v, v) + l(x0)[q( f v, v) + q( f v, v)]
= (k + 2l)(x0)q(v, v).

Since (k + 2l)(x0) < 1 and by property (P5) shows that q(v, v) = θ. Finally, suppose there is another fixed
point y∗ of f , then we have,

q(x∗, y∗) = q( f x∗, f y∗)
� k(x∗)q(x∗, y∗) + l(x∗)[q( f x∗, y∗) + q(x∗, f y∗)]
= k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, y∗) + q(x∗, y∗)]
= (k + 2l)(x∗)q(x∗, y∗).

Since (k + 2l)(x∗) < 1 and by property (P5) shows that q(x∗, y∗) = θ and also we have q(x∗, x∗) = θ, hence by
Lemma 1(1), x∗ = y∗. Therefore the fixed point is unique.

Corollary 1. Let (X, d) be a complete tvs-cone metric space and q is c-distance on X. Let f : X→ X be a continuous
mapping and suppose that there exists mapping k, l : X→ [0, 1) such that the following conditions hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), for all x ∈ X;

(b) (k + 2l)(x) < 1 for all x ∈ X;

(c) (i) q( f x, f y) � k(x)q(x, y) + l(x)[q(x, f x) + q(y, f y)]

(ii) q( f y, f x) � k(y)q(y, x) + l(y)[q( f x, x) + q( f y, y)] for all x, y ∈ X.

Then the map f has a unique fixed point x∗ in X. If v = f v, then q(v, v) = θ.

Theorem 5. Let (X, d) be a complete tvs-cone metric space and q is c-distance on X. Let f : X→ X be a continuous
mapping and suppose that there exists mapping k, l, r : X→ [0, 1) such that the following conditions hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), r( f x) ≤ r(x), for all x ∈ X;

(b) (k + 2l + 2r)(x) < 1 for all x ∈ X;

(c) (i) q( f x, f y) � k(x)q(x, y) + l(x)[q(x, f y) + q(y, f x)] + r(x)[q(x, f x) + q(y, f y)],

(ii) q( f y, f x) � k(y)q(y, x) + l(y)[q( f y, x) + q( f x, y)] + r(y)[q( f x, x) + q( f y, y)] for all x, y ∈ X.

Then the map f has a unique fixed point x∗ in X. If v = f v, then q(v, v) = θ.
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Proof. Let x0 ∈ X be arbitrary and form the sequence with xn = f xn−1 = f nx0. In order to prove that it is a
Cauchy sequence, put x = xn and y = xn−1 in [(c)(i)] to get

q( f xn, f xn−1) = q(xn+1, xn)
� k(xn)q(xn, xn−1) + l(xn)[q(xn, f xn−1) + q(xn−1, f xn)] + r(xn)[q(xn, f xn) + q(xn−1, f xn−1)]
= k( f xn−1)q(xn, xn−1) + l( f xn−1)[q(xn, xn) + q(xn−1, xn+1)] + r( f xn−1)[q(xn, xn+1) + q(xn−1, xn)]
� k(xn−1)q(xn, xn−1) + l(xn−1)[q(xn−1, xn) + q(xn, xn+1)] + r(xn−1)[q(xn, xn+1) + q(xn−1, xn)],

continuing in this manner we can get,

q(xn+1, xn) � k(x0)q(xn, xn−1) + l(x0)[q(xn−1, xn) + q(xn, xn+1)] + r(x0)[q(xn, xn+1) + q(xn−1, xn)]. (3)

Similarly, putting y = xn−1 and x = xn in [(c)(ii)] to get,

q( f xn−1, f xn) = q(xn, xn+1)
� k(xn−1)q(xn−1, xn) + l(xn−1)[q( f xn−1, xn) + q( f xn, xn−1)] + r(xn−1)[q( f xn, xn) + q( f xn−1, xn−1)]
= k( f xn−2)q(xn−1, xn) + l( f xn−2)[q(xn, xn) + q(xn+1, xn−1)] + r( f xn−2)[q(xn+1, xn) + q(xn, xn−1)]
� k(xn−2)q(xn−1, xn) + l(xn−2)[q(xn+1, xn) + q(xn, xn−1)] + r(xn−2)[q(xn+1, xn) + q(xn, xn−1)],

continuing in this manner we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + l(x0)[q(xn+1, xn) + q(xn, xn−1)] + r(x0)[q(xn+1, xn) + q(xn, xn−1)], (4)

denote vn = q(xn+1, xn) + q(xn, xn+1). Adding equations (3) and (4), we get,

vn � (k(x0) + l(x0) + r(x0))vn−1 + (l(x0) + r(x0))vn,

i.e. vn � hvn−1 with

0 ≤ h =
k(x0) + l(x0) + r(x0)

1 − l(x0) − r(x0)
< 1,

since (k + 2l + 2r)(x) < 1 for all x ∈ X. By induction vn � hnv0 and

q(xn, xn+1) � vn � hn(q(x1, x0) + q(x0, x1)).

Then it follows that,

q(xn, xm) �
hn

1 − h
(q(x1, x0) + q(x0, x1)) = un,

for m > n, where {un} is a c-sequence. Thus, Lemma 1(3) implies that {xn} is Cauchy sequence in X and
since X is complete, xn → x∗ ∈ X (n→∞). Since f is continuous, then xn+1 = f xn → f x∗, and since the limit
of a sequence in tvs-cone metric space is unique, we get that f x∗ = x∗, i.e. x∗ is a unique fixed point of f .
Suppose that f v = v. Then by [(c)(i)] we have,

q(v, v) = q( f v, f v)
� k(x0)q(v, v) + l(x0)[q(v, f v) + q(v, f v)] + r(x0)[q(v, f v) + q(v, f v)]
= (k + 2l + 2r)(x0)q(v, v),

since (k + 2l + 2r)(x0) < 1 and by property (P5) implies that q(v, v) = θ. Finally, for the uniqueness of the
fixed point, suppose there is another fixed point y∗ of f , then we have,

q(x∗, y∗) = q( f x∗, f y∗)
� k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, f y∗) + q(y∗, f x∗)] + r(x∗)[q(x∗, f x∗) + q(y∗, f y∗)]
= k(x∗)q(x∗, y∗) + l(x∗)[q(x∗, y∗) + q(y∗, x∗)] + r(x∗)[q(x∗, x∗) + q(y∗, y∗)]
= (k + 2l)(x∗)q(x∗, y∗),
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since (k + 2l + 2r)(x∗) < 1 and by property (P5) shows that q(x∗, y∗) = θ and also we have q(x∗, x∗) = θ hence
by Lemma 1(1), x∗ = y∗. Therefore the fixed point is unique.

Corollary 2. Let (X, d) be a complete tvs-cone metric space and q is c-distance on X. Let f : X→ X be a continuous
mapping and suppose that there exists mapping k, l, r : X→ [0, 1) such that the following conditions hold:

(a) k( f x) ≤ k(x), l( f x) ≤ l(x), r( f x) ≤ r(x) for all x ∈ X;

(b) (k + 2l + 2r)(x) < 1 for all x ∈ X;

(c) (i) q( f x, f y) � k(x)q(x, y) + l(x)[q(x, f x) + q(x, f y)] + r(x)[q(y, f x) + q(y, f y)]

(ii) q( f y, f x) � k(y)q(y, x) + l(y)[q( f x, x) + q( f y, x)] + r(y)[q( f x, y) + q( f y, y)] for all x, y ∈ X.

Then the map f has a unique fixed point x∗ in X. If v = f v, then q(v, v) = θ.

Theorem 6. Let (X, d) be a complete tvs-cone metric space and q is c-distance on X. Let f : X→ X be a continuous
mapping and suppose that there exists mapping k, r, l, t : X→ [0, 1) such that the following conditions hold:

(a) k( f x) ≤ k(x), r( f x) ≤ r(x), l( f x) ≤ l(x) and t( f x) ≤ t(x) for all x ∈ X;

(b) (k + l + r + 2t)(x) < 1for all x ∈ X;

(c) (i) q( f x, f y) � k(x)q(x, y) + r(x)q( f x, x) + l(x)q( f y, y) + t(x)[q( f x, y) + q( f y, x)]

(ii) q( f y, f x) � k(y)q(y, x) + r(y)q(x, f x) + l(y)q(y, f y) + t(y)[q(y, f x) + q(x, f y)] for all x, y ∈ X.

Then the map f has a unique fixed point x∗ in X. If v = f v, then q(v, v) = θ.

Proof. Let x0 ∈ X be arbitrary and form the sequence with xn = f xn−1 = f nx0. In order to prove that it is a
Cauchy sequence, put x = xn and y = xn−1 in [(c)(i)] to get,

q( f xn, f xn−1) = q(xn+1, xn)
� k(xn)q(xn, xn−1) + r(xn)q( f xn, xn) + l(xn)q( f xn−1, xn−1) + t(xn)[q( f xn, xn−1) + q( f xn−1, xn)]
= k( f xn−1)q(xn, xn−1) + r( f xn−1)q(xn+1, xn) + l( f xn−1)q(xn, xn−1)

+t( f xn−1)[q(xn+1, xn−1) + q(xn, xn)]
� k(xn−1)q(xn, xn−1) + r(xn−1)q(xn+1, xn) + l(xn−1)q(xn, xn−1) + t(xn−1)[q(xn+1, xn) + q(xn, xn−1)];

continuing in this manner we can get,

q(xn+1, xn) � k(x0)q(xn, xn−1) + r(x0)q(xn+1, xn) + l(x0)q(xn, xn−1) + t(x0)[q(xn+1, xn) + q(xn, xn−1)]. (5)

Similarly, putting y = xn−1 and x = xn in [(c)(ii)], to get

q( f xn−1, f xn) = q(xn, xn+1)
� k(xn−1)q(xn−1, xn) + r(xn−1)q(xn, f xn) + l(xn−1)q(xn−1, f xn−1)

+t(xn−1)[q(xn−1, f xn) + q(xn, f xn−1)]
= k( f xn−2)q(xn−1, xn) + r( f xn−2)q(xn, xn+1) + l( f xn−2)q(xn−1, xn)

+t( f xn−2)[q(xn−1, xn+1) + q(xn, xn)]
� k(xn−2)q(xn−1, xn) + r(xn−2)q(xn, xn+1) + l(xn−2)q(xn−1, xn) + t(xn−2)[q(xn−1, xn) + q(xn, xn+1)],

continuing in this manner we can get,

q(xn, xn+1) � k(x0)q(xn−1, xn) + r(x0)q(xn, xn+1) + l(x0)q(xn−1, xn) + t(x0)[q(xn−1, xn) + q(xn, xn+1)], (6)

denote vn = q(xn+1, xn) + q(xn, xn+1). Adding equations (5) and (6), we get,

vn � (k(x0) + l(x0) + t(x0))vn−1 + (r(x0) + t(x0))vn,
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i.e.

vn � hvn−1 with 0 ≤ h =
k(x0) + l(x0) + t(x0)

1 − r(x0) − t(x0)
< 1,

since (k + r + l + 2t)(x) < 1 for all x ∈ X. By induction vn � hnv0 and

q(xn, xn+1) � vn � hn(q(x1, x0) + q(x0, x1)).

Then it follows that,

q(xn, xm) �
hn

1 − h
(q(x1, x0) + q(x0, x1)) = un,

for m > n, where {un} is a c-sequence. Thus Lemma 1(3) implies that {xn} is Cauchy sequence in X and since
X is complete, xn → x∗ ∈ X (n→ ∞). Since f is continuous, then xn+1 = f xn → f x∗, and since the limit of a
sequence in tvs-cone metric space is unique, we get that f x∗ = x∗, i.e. x∗ is a unique fixed point of f .
Suppose that f v = v. Then by [(c)(i)] we have,

q(v, v) = q( f v, f v)
� k(x0)q(v, v) + r(x0)q( f v, v) + l(x0)q( f v, v) + t(x0)[q( f v, v) + q( f v, v)]
= (k + r + l + 2t)(x0)q(v, v),

since (k + r + l + 2t)(x0) < 1 and by property (P5) implies that q(v, v) = θ.
Proof of the uniqueness of the fixed point is similar as shown in the previous theorems.

Example 3. Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0, 1] and define a mapping d : X × X → E by
d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a complete cone metric space. Define a mapping q : X × X → E by
q(x, y) = 2d(x, y) for all x, y ∈ X. Then q is c-distance on X (cone metric version).
Let f : X→ X defined by f (x) = x2

16 for all x ∈ X. Take mappings k, r, l, t : X→ [0, 1) by

k(x) =
x + 1

16
, r(x) =

2x + 3
16

, l(x) =
3x + 2

16
, t(x) =

x
16

for all x ∈ X. Observe that

(a) k( f x) =
( x2

16 +1)
16 = 1

16 ( x2

16 + 1) ≤ 1
16 (x + 1) = k(x) for all x ∈ X.

(b) r( f x) =
(2( x2

16 )+3)
16 = 1

16 ( 2x2

16 + 3) ≤ 1
16 (2x + 3) = r(x) for all x ∈ X.

(c) l( f x) =
(3( x2

16 )+2)
16 = 1

16 ( 3x2

16 + 2) ≤ 1
16 (3x + 2) = l(x) for all x ∈ X.

(d) t( f x) =
( x2

16 )
16 = 1

16 ( x2

16 ) ≤ 1
16 (x) = t(x) for all x ∈ X.

(e) (k + r + l + 2t)(x) = ( x+1
16 ) + ( 2x+3

16 ) + ( 3x+2
16 ) + 2( x

16 ) = ( 8x+6
16 ) < 1 for all x ∈ X.

( f ) for all x, y ∈ X, we have

q( f x, f y) = 2
∣∣∣ x2

16
−

y2

16

∣∣∣
=

2|x + y||x − y|
16

=
(x + y

16

)
2|x − y|

�

(x + 1
16

)
2|x − y|

= k(x)q(x, y)
� k(x)q(x, y) + r(x)q( f x, x) + l(x)q( f y, y) + t(x)[q( f x, y) + q( f y, x)].
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In the similar manner

q( f y, f x) = 2
∣∣∣ y2

16
−

x2

16

∣∣∣
=

2|y + x||y − x|
16

=
( y + x

16

)
2|y − x|

�

( y + 1
16

)
2|y − x|

= k(y)q(y, x)
� k(y)q(y, x) + r(y)q(x, f x) + l(y)q(y, f y) + t(y)[q(y, f x) + q(x, f y)].

Therefore, all the conditions of Theorem 6 are satisfied, which is real metric version with c-distance.

In above example, we take X = [0,+∞), defined d : X×X→ (E, τ) [τ is locally convex tvs ] and d(x, y)(t) = 2|x−y|φ(t)
for φ ∈ P. Then, (X, d) is a tvs-cone metric space. Now we take two c-distance in this space; q1(x, y)(t) = 2xψ(t) and
q2(x, y)(t) = 2yψ(t). Then q1 and q2 are c-distances on tvs-cone metric spaces.

4. Conclusion

In this attempt, we prove some fixed point results in tvs-cone metric spaces. These results generalizes
and improves the recent results of Fadail et al. [10] and Dordevic et al. [8] in the sense that in our results we
employing c-distances and in contractive conditions, replacing the constants with functions, which extends
the further scope of our results. For the usability of our results we present one interesting example in the
last section of this paper.
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