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Abstract. Broverman has shown that if X and Y are Tychonoff spaces and t : Z(Y) → Z(X) is a lattice
homomorphism between the lattices of their zero-sets, then there is a continuous map τ : βX→ βY induced
by t. In this note we expound this idea and supplement Broverman’s results by first showing that this
phenomenon holds in the category of completely regular frames. Among results we obtain, which were not
considered by Broverman, are necessary and sufficient conditions (in terms of properties of the map t) for
the induced map τ to be (i) the inclusion of a subspace, (ii) surjective, and (iii) irreducible. We show that if X
and Y are pseudocompact then t pulls back z-ultrafilters to z-ultrafilters if and only if clβX t(Z) = τ←[clβY Z]
for every Z ∈ Z(Y) if and only if t is σ-homomorphism.

1. Introduction

Let X and Y be Tychonoff spaces and Z(X) and Z(Y) be the lattices of their zero-sets. In [7], Broverman
shows that any lattice homomorphism (throughout understood to preserve the bottom and the top elements)
t : Z(Y)→ Z(X) induces a continuous map τ : βX → βY. This is how he does it. Recall that, in the notation
of Gillman and Jerison [9], for any p ∈ βX, Ap is the z-ultrafilter on X given by

Z ∈ Ap
⇐⇒ p ∈ clβX Z.

Now t←[Ap] is a prime z-filter in Y, and is therefore contained in some unique z-ultrafilter Aq on Y.
Broverman shows that the function τ : βX→ βY defined by τ(p) = q is a continuous map.

Our approach in obtaining such an induced map between Stone-Čech compactifications of frames will be
different. We will take the following categorical path. Let DLat denote the category of bounded distributive
lattices and their homomorphisms. Recall that the ideal-lattice functor J : DLat→ Frm sends A ∈ DLat to
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the frame JA of ideals of A, and sends a lattice homomorphism φ : A → B to the frame homomorphism
Jφ : JA→ JB given by

Jφ(I) = {b ∈ B | b ≤ φ(a) for some a ∈ I}.

Now let L and M be completely regular frames and φ : Coz L → Coz M be a lattice homomorphism.
Then φ preserves the completely below relation, ≺≺, and hence Jφ(I) ∈ βM whenever I ∈ βL. Since βL and
βM are subframes of J(Coz L) and J(Coz M) respectively, it follows that the restriction of Jφ to βL is a frame
homomorphism into βM. We denote it by φ̄. The aim of this note is to explore some properties of the frame
homomorphism φ̄ with the view to obtaining new results concerning the map τ : βX → βY induced by a
lattice homomorphism t : Z(Y)→ Z(X).

Here is a brief summary of the main results. We borrow the adjectives “dense” and “codense” from
frames and use them to describe lattice homomorphisms in the same way as they describe frame homo-
morphisms. We show in Proposition 3.1 that φ̄ is one-one if and only if φ is dense. The topological upshot
is that τ : βX → βY is surjective if and only if t is codense (Corollary 3.3). Dualising the term “uplifting”
as used in [1], we say t : Z(Y) → Z(X) is “deflating” if disjoint zero-sets in X are separated by images of
disjoint zero-sets in Y. After proving that φ̄ is surjective precisely when φ is uplifting (Proposition 3.5), we
deduce that τ : βX→ βY is the inclusion of a subspace if and only if t is deflating (Corollary 3.6).

We close the first part of the paper by showing that φ̄ is ∗-dense (we will recall the definition at the
appropriate time) exactly when φ is “inverse-dense”, in the sense that the only ideal J for which φ←[J] = {0}
is the zero ideal (Proposition 3.8). The resulting topological deduction is that when τ : βX→ βY is surjective,
then it is irreducible if and only if for every z-filter F in X which is not a singleton, there is a zero-set Z , Y
of Y such that t(Z) ∈ F (Corollary 3.9).

The second part of the paper has a more pronounced categorical flavour. A number of naturally
occurring diagrams are shown to be commutative, culminating in the result that t pulls back z-ultrafilters
to z-ultrafilters if and only if clβX t(Z) = τ←[clβY Z] for every Z ∈ Z(Y) (Corollary 4.10). In particular, if X
and Y are pseudocompact, then the result just stated holds when and only when t is a σ-homomorphism in
the sense of Broverman [7] (Corollary 4.15).

2. Frame-Theoretic Resources

We collect a few facts we shall need regarding frames and σ-frames, and refer to [11] and [13] for the
general theory of frames, and [6] for some information about σ-frames. We denote the top element and the
bottom element of a lattice L by 1L and 0L respectively, dropping the subscripts if L is clear from the context.
Our notation is fairly standard. We write OX for the frame of open sets of a topological space X. All our
spaces are Tychonoff, and our reference for notions such as zero-set, and so on, is [9]. Also, all our frames
are completely regular.

An element p of a frame is called a point if p , 1 and a ∧ b ≤ p implies a ≤ p or b ≤ p. We write Pt(L)
for the set of all points of L. The points of a regular frame are precisely those elements which are maximal
strictly below the top. Any compact regular frame has enough points, in the sense that every element is the
meet of the points above it.

An element a of a frame L is a cozero element if there is a sequence (an) in L such that an ≺≺ an+1 for every
n, and a =

∨
an. The set of all cozero elements of L is called the cozero part of L and is denoted by Coz L. It is

a σ-frame which generates L if and only if L is completely regular. If a ≺≺ b in L, then there is an s ∈ Coz L
such that a ∧ s = 0 and s ∨ b = 1. For further properties of the cozero part of a frame we urge the reader to
consult [4]. Coz: CRFrm → RegσFrm is a functor with a left adjoint, H : RegσFrm → CRFrm. See [5] for
details concerning these functors.

A frame homomorphism is dense if it maps only the bottom element to the bottom element. We write h∗
for the right adjoint of a frame homomorphism h. We view βL, the Stone-Čech compactification of L, as the
frame of regular ideals of Coz L. The right adjoint of the join map jL : βL→ L is denoted by rL. By the way
we have realised βL, rL(a) = {c ∈ Coz L | c ≺≺ a}, for any a ∈ L. Every frame homomorphism h : L → M has
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the Stone extension, βh : βL→ βM, which is the unique frame homomorphism making the following square
commute.

βL
βh

- βM

L

jL

? h - M

jM

?

We shall use the following notation. If 1 : L→M is a frame homomorphism, we write 1′ for the σ-frame
homomorphism 1′ : Coz L → Coz M which maps as 1. This accords with Broverman’s usage of the prime
on a continuous map.

3. Some Properties of the Map φ̄

Throughout this section L and M are completely regular frames, φ : Coz L → Coz M is a lattice homo-
morphism, and φ̄ : βL→ βM is the frame homomorphism defined above. We give necessary and sufficient
conditions, in terms of properties of φ, for the map φ̄ to be (i) one-one, (ii) onto, and (iii) ∗-dense. Let us
recall what this last term means. In their study of patch-generated frames, Hager and Martı́nez [10] call a
frame homomorphism h : L→M ∗-dense if, for any b ∈M,

h∗(b) = 0 =⇒ b = 0.

Continuous maps f : X → Y for which O f : OY → OX is ∗-dense occur quite naturally. Indeed, recall that
a surjective continuous map is called irreducible if it sends no proper closed subset of its domain onto its
codomain. Since, for any continuous map f : X→ Y and any U ∈ OX,

(O f )∗(U) = Y r f [X rU],

it follows that

a closed continuous surjection f : X→ Y is irreducible iff the frame map O f : OY→ OX is ∗-dense.

We extend the meaning of the term “dense” by defining a lattice homomorphism to be dense if the zero
of its domain is the only element mapped to zero. We remind the reader that a frame homomorphism
between compact regular frames is dense precisely when it is one-one.

Proposition 3.1. The homomorphism φ̄ : βL→ βM is one-one iff φ is dense.

Proof. We start by calculating the right adjoint of φ̄. We claim that, for any J ∈ βM,

φ̄∗(J) =
∨
{rL(c) | c ∈ Coz L and φ(c) ∈ J}

=
⋃
{rL(c) | c ∈ Coz L and φ(c) ∈ J}.

Observe that the join is a union because the collection whose join is displayed is directed as φ is a lattice
homomorphism. Denote the displayed join by T. Let c ∈ Coz L be such that φ(c) ∈ J. Consider any
z ∈ φ̄(rL(c)). There is a d ≺≺ c such that z ≤ φ(d). Thus, z ≤ φ(c) ∈ J, which implies z ∈ J. Therefore φ̄(T) ≤ J.
Now let I be any element of βL with φ̄(I) ≤ J. Let a ∈ I, and pick b ∈ I with a ≺≺ b. Then a ∈ rL(b), and since
φ(a) ≤ φ(b) ∈ J, it follows that I ≤ T. In all then this proves that T = φ̄∗(J). Thus, in particular,

φ̄∗(0βM) =
∨
{rL(c) | φ(c) = 0},

so that

φ̄∗(0βM) = 0βL ⇐⇒ φ(c) = 0 implies c = 0.

Therefore φ̄ is dense if and only if φ is dense. This proves the result.
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The description of the right adjoint of φ̄ in the foregoing proof enables us to show that, for a lattice
homomorphism t : Z(Y)→ Z(X), the map τ : βX → βY is obtainable from some φ̄ via the spectrum functor
Σ : Frm→ Top. To do this we shall view βX (and also βY) as the space Σβ(OX), where the spectrum is taken
as the set of prime elements of β(OX), that is, the maximal regular ideals of Coz(OX).

A lattice homomorphism t : Z(Y)→ Z(X) induces a lattice homomorphism

t̂ : Coz(OY)→ Coz(OX) by U 7→ X r t(Y rU);

and a lattice homomorphism s : Coz(OY)→ Coz(OX) induces a lattice homomorphism

s̃ : Z(Y)→ Z(X) by F 7→ X r s(Y r F).

The correspondences t 7→ t̂ and s 7→ s̃ are one-one onto, and are inverses to each other.

Proposition 3.2. Let t : Z(Y) → Z(X) be a lattice homomorphism. Write h for the map ¯̂t : β(OY) → β(OX). Then
τ = Σh.

Proof. Let p ∈ βX and pick the unique q ∈ βY with t←[Ap] ⊆ Aq. Note that, for any Z ∈ Z(X),

Z ∈ Ap
⇐⇒ rOX(X r Z) ≤ p.

Now

h∗(p) =
∨
{rOY(V) | V ∈ Coz(OY) and t̂(V) ∈ p}.

Consider any V ∈ Coz(OY) with t̂(V) ∈ p. Then rOX

(
t̂(V)

)
≤ p; that is,

rOX

(
X r t(Y r V)

)
≤ p,

and hence t(Y r V) ∈ Ap. Consequently,

Y r V ∈ t←[Ap] ⊆ Aq.

Thus, rOY(V) ≤ q, whence h∗(p) ≤ q, and therefore h∗(p) = q because h∗(p) is a maximal element in β(OY).

We say a lattice homomorphism t : Z(Y) → Z(X) is codense if, for any K ∈ Z(Y), t(K) = X implies K = Y.
Clearly, t is codense if and only if the associated t̂ : Coz(OY)→ Coz(OX) is dense.

Corollary 3.3. Let t : Z(Y) → Z(X) be a lattice homomorphism. The induced map τ : βX → βY is onto iff t is
codense.

In [8] we showed that, for any surjective frame homomorphism h : L→M, the Stone extension βh : βL→
βM is surjective precisely when h is a C∗-quotient map, as defined in [2]. A closer look at the proof of the
implication (1)⇒ (2) in [8, Proposition 2.1] reveals that the property of the map h used in the proof is that,
in the language of Ball, Hager and Walters-Wayland [1], h′ : Coz L → Coz M is uplifting. Using the same
term (we will define it formally shortly) for a lattice homomorphism φ : Coz L → Coz M, it is reasonable
to expect that the surjectivity of the map φ̄ : βL → βM should have something to do with the uplifting
property. We show that indeed it does.

Definition 3.4. A lattice homomorphism φ : Coz L → Coz M is uplifting if whenever u ∨ v = 1 in Coz M, there
exist a, b ∈ Coz L such that a ∨ b = 1, φ(a) ≤ u and φ(b) ≤ v. We say a lattice homomorphism t : Z(Y) → Z(X) is
deflating if, for any disjoint zero-sets E and F of X, there are disjoint zero-sets G and H of Y such that E ⊆ t(G) and
F ⊆ t(H).
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It should be clear that t is deflating if and only if the associated map t̂ : Coz(OY)→ Coz(OX) is uplifting.
In the proof that follows we shall use the fact that if c ∨ b = 1 in Coz L, then a ∨ c = 1 for some a ∈ Coz L
with a ≺≺ b.

Proposition 3.5. The following conditions are equivalent for a lattice homomorphism φ : Coz L→ Coz M.

1. φ̄ : βL→ βM is onto.
2. φ is uplifting.
3. Whenever u ≺≺ v in Coz M, there are elements a ≺≺ b in Coz L such that u ≤ φ(a) and φ(b) ≤ v.

Proof. (2) ⇔ (3): Suppose φ is uplifting, and let u ≺≺ v in Coz M. Pick s ∈ Coz M such that u ∧ s = 0 and
s ∨ v = 1. By the uplifting property, there exist c, b ∈ Coz L such that c ∨ b = 1, φ(c) ≤ s and φ(b) ≤ v. Find
a ≺≺ b in Coz L such that c ∨ a = 1. Now, u ∧ φ(c) = 0 since φ(c) ≤ s. Since φ(c) ∨ φ(a) = 1, this implies
u ≤ φ(a). Therefore a and b are elements of Coz L with the required property.

Conversely, suppose the stated condition holds, and let u ∨ v = 1 in Coz M. Take w ∈ Coz M such that
w ≺≺ u and w ∨ v = 1. By the current hypothesis, there are elements a ≺≺ b in Coz L such that w ≤ φ(a) and
φ(b) ≤ u. Pick s ∈ Coz L such that a ∧ s = 0 and s ∨ b = 1. Then φ(s) ∧ φ(a) = 0, which implies φ(s) ∧ w = 0,
and hence φ(s) ≤ v. So the cover {b, s}witnesses the uplifting of {u, v}.

(1) ⇔ (2): Assume φ is uplifting, and let J ∈ βM. We show that J ≤ φ̄φ̄∗(J), which will imply equality,
and hence that φ̄ is onto. Let u ∈ J, and pick v ∈ J such that u ≺≺ v. Since φ is uplifting, there are elements
a ≺≺ b in Coz L such that u ≤ φ(a) and φ(b) ≤ v. Now recall what φ̄∗(J) looks like. Since a ∈ rL(b) and φ(b) ∈ J,
as φ(b) ≤ v ∈ J, it follows that a ∈ φ̄∗(J), and hence u ∈ φ̄φ̄∗(J). Therefore J ≤ φ̄φ̄∗(J), and hence equality.

Conversely, assume φ̄ is onto, and let u ≺≺ v in Coz M. Since φ̄ is onto, φ̄φ̄∗(rM(v)) = rM(v). Since
u ∈ rM(v), there is a t ∈ φ̄∗(rM(v)) such that u ≤ φ(t). Now, since

φ̄∗(rM(v)) =
⋃
{rL(c) | c ∈ Coz L and φ(c) ∈ rM(v)}

=
⋃
{rL(c) | c ∈ Coz L and φ(c) ≺≺ v},

it follows that t ≺≺ c for some c with φ(c) ≺≺ v. Consequently, t and c are elements of Coz L such that t ≺≺ c,
u ≤ φ(t) and φ(c) ≤ v. Therefore φ is uplifting.

Recall from [11, Lemma II 2.1] that if f : X → Y is a continuous map between Tychonoff spaces, then
O f : OY→ OX is onto if and only if f is the inclusion of a subspace.

Corollary 3.6. Let t : Z(Y)→ Z(X) be a lattice homomorphism. The induced map τ : βX→ βY is the inclusion of a
subspace iff t is deflating.

Remark 3.7. Conspicuous by its absence in Proposition 3.5 is an assertion that an equivalent condition is that
φ be onto. That would of course be false because if S ⊆ X is a z-embedded subspace which is not C∗-embedded,
and h : OX → OS is the frame homomorphism U 7→ U ∩ S, then the lattice homomorphism (actually, σ-frame
homomorphism) h′ : Coz(OX) → Coz(OS) is surjective but not uplifting, in view of this proposition and [8,
Proposition 2.1]. In fact, Ball, Hager and Walters-Wayland show in [1, Proposition 1.1] that any uplifting σ-frame
homomorphism into a regular σ-frame is surjective, and give an example ([1, Example 1.2]) to show that the converse
fails.

We now turn to ∗-density of the map φ̄. Let us call a lattice homomorphism ψ : A → B inverse-dense if,
for any ideal J of B, ψ←[J] = {0} implies J = {0}.

Proposition 3.8. The map φ̄ : βL→ βM is ∗-dense iff φ is inverse-dense.

Proof. Suppose φ̄ is ∗-dense. Let J be an ideal in Coz M such that φ←[J] = {0}. The set

J̃ = {z ∈ Coz M | z ≺≺ u for some u ∈ J}
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is easily checked to be an element of βM with φ̄∗( J̃) = 0βL. Therefore, by ∗-density, J̃ = 0βL, which, by
complete regularity, implies J = {0}. Therefore φ is inverse-dense.

Conversely, let I ∈ βM be such that φ̄∗(I) = 0βL; that is,∨
{rL(c) | c ∈ Coz L and c ∈ φ←[J]} = 0βL.

This implies φ←[J] = {0}, whence J = {0} by inverse-density. Therefore φ̄ is ∗-dense.

By a nontrivial z-filter we mean one which is not a singleton. Observe that a lattice homomorphism
s : Coz(OY)→ Coz(OX) is inverse-dense if and only if the corresponding s̃ : Z(Y)→ Z(X) has the property
that, for every nontrivial z-filter F in X, there is a Z ∈ Z(Y) with Z , Y such that s̃(Z) ∈ F . The following
result then follows by all that has come before it.

Corollary 3.9. Let t : Z(Y)→ Z(X) be a codense lattice homomorphism. The induced map τ : βX→ βY is irreducible
iff for every nontrivial z-filter F in X, there is a zero-set Z , Y of Y such that t(Z) ∈ F .

4. Other Properties

Broverman observes in [7] that distinct homomorphisms from Z(Y) to Z(X) may induce the same
continuous map βX → βY. We will see, however, that distinct σ-homomorphisms cannot induce the same
map. Among other results we prove in this section is the following. Let t : Z(Y) → Z(X) be a lattice
homomorphism, and suppose that the induced map τ : βX → βY is such that τ[X] ⊆ Y, so that we have a
continuous map τ|X : X → Y (the restriction of τ to X), and the lattice homomorphism Z(Y)→ Z(X), given
by Z 7→ (τ|X)←[Z], it induces. Then t = (τ|X)← if and only if t is a σ-homomorphism.

Because we want this result to be a corollary of a more general result in CRFrm, we start by observing
the following categorical way of saying the restriction to X of a continuous map βX→ βY maps into Y.

Lemma 4.1. Let f : βX → βY be a continuous map. Then f [X] ⊆ Y iff there is a continuous map 1 : X → Y such
that the square below commutes.

βX
f

- βY

X

iX

6

1
- Y

iY

6

Proof. If such a map 1 exists, then, for any x ∈ X, f (x) = 1(x) ∈ Y, so that f [X] ⊆ Y. Conversely, take
1 = f |X.

Recall our notation that if h : L→M is a frame homomorphism, then h′ : Coz L→ Coz M is the restriction
of h to Coz L as mapping into Coz M.

Proposition 4.2. Let φ : Coz L→ Coz M be a lattice homomorphism. Suppose that there is a frame homomorphism
h : L→M which makes the diagram

βL
φ̄

- βM

L

jL

? h - M

jM

?

commute. Then h′ = φ iff φ is a σ-frame homomorphism.
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Proof. The left-to-right implication is trivial. Conversely, assume φ is a σ-frame homomorphism. Since the
Stone extension of h, βh, is uniquely determined by h, it follows from the commutativity of the diagram
that βh = φ̄. Let a ∈ Coz L. Then (βh)(rL(a)) = φ̄(rL(a)). Take a sequence of cozero elements (an) such that
an ≺≺ an+1 for every n and a =

∨
an. Since for any n we have φ(an) ≤ φ(an+1) and an+1 ∈ rL(a), it follows that

φ(a) =
∨
φ(an) ≤

∨
{c ∈ Coz M | c ≤ φ(t) for some t ∈ rL(a)}

=
∨
φ̄(rL(a))

=
∨

(βh)(rL(a))

= h(a).

Therefore φ = h′.

Corollary 4.3. Let t : Z(Y)→ Z(X) be a lattice homomorphism such that the induced map τ : βX→ βY maps X into
Y. Then t = (τ|X)← iff t is a σ-homomorphism.

Remark 4.4. The calculation in the proof of Proposition 4.2 enables us to show that distinct σ-homomorphisms
mapping Z(Y) to Z(X) cannot induce the same continuous map βX → βY. Indeed, suppose φ̄ = ψ̄ for two σ-frame
homomorphisms φ : Coz L→ Coz M and ψ : Coz L→ Coz M. Then, for any a ∈ Coz L,

φ(a) =
∨
φ̄(rL(a)) =

∨
ψ̄(rL(a)) = ψ(a),

so that φ = ψ.

Remark 4.5. Observe that if a is a complemented element in L, and φ : Coz L→ Coz M is a lattice homomorphism,
then

∨
φ̄(rL(a)) = φ(a). Consequently, if Y is a P-space then distinct lattice homomorphisms mapping Z(Y) to Z(X)

induce distinct continuous maps βX→ βY, for any Tychonoff space X.

We now consider another result concerning commuting squares which holds exactly when the lattice
homomorphismφ : Coz L→ Coz M is aσ-frame homomorphism. Let h : L→M be a frame homomorphism.
Applying the functor Coz: CRFrm→ RegσFrm to the commutative square

βL
βh

- βM

L

jL

? h - M

jM

?

we obtain the following commutative square in RegσFrm.

Coz βL
(βh)′

- Coz βM

Coz L

j′L
? h′- Coz M

j′M
?

Now let φ : Coz L→ Coz M be a lattice homomorphism, and consider the square

Coz βL
φ̄′
- Coz βM

Coz L

j′L
? φ

- Coz M

j′M
?
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There is no reason why this square should always commute. Indeed, the following proposition shows that
it commutes exactly when φ is a σ-frame homomorphism.

Proposition 4.6. Let φ : Coz L→ Coz M be a lattice homomorphism. The square immediately above commutes iff
φ is a σ-frame homomorphism.

Proof. Suppose the diagram commutes, and let (sn) be an increasing sequence in Coz L. Define the set

J = {c ∈ Coz L | c ≺≺ sn for some n}.

It is routine to check that J ∈ βL, and that, as an ideal of Coz L, J is countably generated. Therefore, by [3,
Lemma 1], J ∈ Coz βL. Now, the commutativity of the square implies∨

φ̄
(
J
)

= φ
(∨

J
)
.

Clearly,
∨

J =
∨

sn; and hence, since

φ̄
(
J
)

= {d ∈ Coz M | d ≤ φ(z) for some z ∈ J},

it is easy to see that
∨
φ̄(J) =

∨
φ(sn). Thereforeφ preserves directed countable joins, and hence all countable

joins because it preserves finite ones. Thus, φ is a σ-frame homomorphism.
Conversely, suppose φ is a σ-frame homomorphism. Using [3, Lemma 1] again, a straightforward

diagram chase, taking into cognisance how φ̄ maps, shows that the diagram commutes.

Remark 4.7. An alternative (albeit rather long-winded) way of seeing that if φ is a σ-frame homomorphism then
the diagram commutes is categorical, and goes as follows. Apply the functor H : RegσFrm→ CRFrm to obtain the
frame homomorphism Hφ : H(Coz L) → H(Coz M), then lift this map to the Stone-Čech compactifications to obtain
the following commutative square.

β(H(Coz L)) - β(H(Coz M))

H(Coz L)
?

- H(Coz M)
?

Since β(H(Coz L)) � βL, applying the functor Coz to this square yields the result.

We now turn to the following question. If t : Z(Y)→ Z(X) is a lattice homomorphism, when do we have
that

t←[Ap] = Aτ(p) for every p ∈ βX?

This is not addressed in [7]. As has been the practice throughout, the answer to this question will be a
corollary to a result in frames. We start by recalling from [12] the description of maximal ideals of Coz L in
terms of points of βL. For each I ∈ βL define the subset LI of Coz L by

LI = {c ∈ Coz L | rL(c) ≤ I}.

We then have the following result from [12].

Lemma 4.8. An ideal of Coz L is maximal iff it is of the form LI, for some I ∈ Pt(βL).
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Observe that if φ : Coz L→ Coz M is a lattice homomorphism, then

φ̄(rL(c)) ⊆ rM(φ(c)) for every c ∈ Coz L.

Indeed, for any u ∈ φ̄(rL(c)), u ≺≺ φ(d) for some d ∈ rL(c). Thus u ≺≺ φ(c), and so u ∈ rM(φ(c)). Given a
lattice homomorphism ψ : A → B and an ideal I in B, we adopt ring-theoretic nomenclature and say the
ideal ψ←[I] is the contraction of I by ψ.

Proposition 4.9. A lattice homomorphism φ : Coz L → Coz M contracts maximal ideals to maximal ideals iff
φ̄rL = rMφ on Coz L.

Proof. Let us first show that, for any J ∈ Pt(βM), if φ←[MJ] is a maximal ideal in Coz L, then φ←[MJ] = Lφ̄∗(J).
Let a ∈ φ←[MJ]. Then rM(φ(a)) ≤ J, and hence φ̄(rL(a)) ≤ J by what we observed above. Thus rL(a) ≤ φ̄∗(J),
so that a ∈ Lφ̄∗(J), and consequently φ←[MJ] ⊆ Lφ̄∗(J). Since Lφ̄∗(J) is a proper ideal, it follows by maximality
that φ←[MJ] = Lφ̄∗(J).

Now suppose φ̄rL = rMφ on Coz L, and let I ∈ Pt(βM). We must show that φ←[MI] = Lφ̄∗(I). As already
seen, the inclusion φ←[MI] ⊆ Lφ̄∗(I) always holds. For the reverse inclusion, let v ∈ Lφ̄∗(I). Then rL(v) ≤ φ̄∗(I).
Thus,

φ̄(rL(v)) ≤ φ̄(φ̄∗(I)) ≤ I,

which, by hypothesis, implies rM(φ(v)) ≤ I, so that φ(v) ∈ MI, and hence v ∈ φ←[MI]. This establishes the
other inclusion. Therefore φ contracts maximal ideals to maximal ideals.

Conversely, suppose φ contracts maximal ideals to maximal ideals, and let c ∈ Coz L. It suffices to show
that rM(φ(c)) ≤ φ̄(rL(c)). If φ̄(rL(c)) = 1βL, there is nothing to prove. So suppose φ̄(rL(c)) , 1βL, and consider
any point I of βM such that φ̄(rL(c)) ≤ I. Then rL(c) ≤ φ̄∗(I), and hence c ∈ Lφ̄∗(I) = φ←[MI]. Thus, φ(c) ∈ MI,
and so rM(φ(c)) ≤ I. In view of the fact that

φ̄(rL(c)) =
∧
{J | J is a point of βM with φ̄(rL(c)) ≤ J},

it follows that rM(φ(c)) ≤ φ̄(rL(c)), and hence equality.

Let t : Z(Y) → Z(X) be a lattice homomorphism and p ∈ βX. If t←[Ap] is a z-ultrafilter, then it is Aτ(p).
Therefore we have the following corollary.

Corollary 4.10. Let t : Z(Y) → Z(X) be a lattice homomorphism. Then t←[Ap] = Aτ(p) for every p ∈ βX iff
clβX t(Z) = τ←[clβY Z] for every Z ∈ Z(Y).

Remark 4.11. If in the latter part of [7, Proposition 3.2] one takes Z = Y and assumes τ is surjective, then one
obtains the result in the foregoing corollary. It will be noted that in this corollary we did not impose a condition on t
that would ensure τ is surjective, so the corollary sharpens the case Z = Y in [7, Proposition 3.2].

In certain instances the lattice homomorphisms Coz L → Coz M which contract maximal ideals to
maximal ideals are precisely the σ-frame homomorphisms. To present such an instance we recall that a
frame is pseudocompact precisely when every countable cover by cozero elements has a finite subcover. We
need two lemmas.

Lemma 4.12. Let L be a pseudocompact frame and φ : Coz L → Coz M be a lattice homomorphism. If φ contracts
maximal ideals to maximal ideals, then φ is a σ-frame homomorphism.

Proof. Let (an) be a sequence in Coz L, and put a =
∨

an. We shall be done if we can show that φ(a) ≤
∨
φ(an).

Since φ contracts maximal ideals to maximal ideals, we have rM(φ(a)) = φ̄(rL(a)), by Proposition 4.9, so that,
on taking joins in M, we get

φ(a) =
∨
φ̄(rL(a)) =

∨{
c ∈ Coz M | c ≤ φ(u) for some u ≺≺

∨
an

}
.
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Consider any c ∈ Coz M with c ≤ φ(u) for some u ≺≺
∨

an. Pick s ∈ Coz L such that u∧ s = 0 and s∨
∨

an = 1.
Since L is pseudocompact, there are finitely many indices n1, . . . ,nk such that

s ∨ an1 ∨ · · · ∨ ank = 1.

Then u ≤ an1 ∨ · · · ∨ ank , and hence c ≤ φ(an1 ) ∨ · · · ∨ φ(ank ). This shows that φ(a) ≤
∨
φ(an), and hence φ is a

σ-frame homomorphism.

Lemma 4.13. Let M be a pseudocompact frame. Ifφ : Coz L→ Coz M is a σ-frame homomorphism, thenφ contracts
maximal ideals to maximal ideals.

Proof. We show that φ̄rL = rMφ on Coz L. Let a ∈ Coz L, and take cozero elements an such that an ≺≺ an+1
and a =

∨
an. Let u ∈ rM(φ(a)). Then u ≺≺

∨
φ(an). Pick s ∈ Coz M such that u ∧ s = 0 and s ∨

∨
φ(an). The

pseudocompactness of M yields an index n such that s ∨ φ(an) = 1. Thus,

u ≤ φ(an) ≤ φ(an+1) and an+1 ∈ rL(a),

which then shows that u ∈ φ̄(rL(a)). Therefore φ̄(rL(a)) = rM(φ(a)), and hence φ contracts maximal ideals to
maximal ideals by Proposition 4.9.

Proposition 4.14. A lattice homomorphism between cozero parts of pseudocompact frames contracts maximal ideals
to maximal ideals iff it is a σ-frame homomorphism.

Pseudocompactness is a “conservative” notion. That is, a Tychonoff space is pseudocompact if and only
if the frame of its open sets is pseudocompact. Therefore we have the following corollary.

Corollary 4.15. Let X and Y be pseudocompact Tychonoff spaces. The following conditions are equivalent for a lattice
homomorphism t : Z(Y)→ Z(X).

1. t←[Ap] = Aτ(p) for every p ∈ βX.
2. clβX t(Z) = τ←[clβY Z] for every Z ∈ Z(Y).
3. t is a σ-homomorphism.
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