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Integral type Fixed point Theorems for a-admissible Mappings
Satisfying a-1)-¢-Contractive Inequality

Ziad Badehian?, Mohammad Sadegh Asgari?

*Department of Mathematics, IslamicAzad University, Central Tehran Branch, Iran

Abstract. In this paper, we establishe some new fixed point theorems by a-admissible mappings satisfying
a--¢p-contractive inequality of integral in complete metric spaces. Presented results can be considered as
an extension of the theorems of Banach-Cacciopoli and Branciari.

1. Introduction and Preliminaries

The first well known result on fixed points for contractive mapping was Banach-Cacciopoli theorem(1922)[1],
as follow:

Theorem 1.1. Let (X, d) be a complete metric space, ¢ € (0,1), and let f : X — X be a mapping such that for each
xyeX,

d(fx, fy) < cd(x, y) 1)
Then, f has a unique fixed point a € X such that for each x € X , limyo f"x = a.
Branciari(2002)[2], proved the following theorem:

Theorem 1.2. Let (X, d) be a complete metric space, ¢ € (0,1), and let f : X — X be a mapping such that for each
x,yeX,

d(fx,fy) d(x,y)
f P(hdt < c f o(t)dt (2)
0 0

where ¢ : [0, 00) — [0, o0) is a Lebesgue-integrable map which is summable, (i.e., with finite integral) on each compact

subset of [0, o0), nonnegative, and such that for each € > 0, f ¢(t)dt > 0; then f has a unique fixed point a € X such
that for each x € X, limyo0 f"x = a.

Samet et al. (2012)[7] have introduced a-1-contractive type mappings and also a-admissible functions
in complete metric spaces. In this paper, we introduce a-admissible mappings satisfying a-i)-¢-contractive
integral type inequality and we establish some fixed point theorems in complete metric spaces. Our results
can be considered as an extension of Banach-Cacciopoli and Branciari theorems.
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Definition 1.3. [7] Let a : X X X — [0, 00) be a function, we say f : X — X, is a-admissible if for all x, y € X,

alx,y) 21 = a(f(x), f(y) 21 3)

Definition 1.4. [7] Let VW be a family of nondecreasing functions 1 : [0, 00) — [0, co) such that for each € WV and
t>0, Yoo Y'(t) < +o00. where " is the n-th iterate of .

Lemma 1.5. ([7]) If ¢ : [0,00) — [0, oo) is nondecreasing function and for each t > 0, lim,_,. Y"(f) = 0 then
P(t) <t

Definition 1.6. Let ® be a collection of mappings ¢ : [0, c0) — [0, 0o) which are Lebesgue-integrable, summable on
each compact subset of [0, c0) and satisfying following condition:

f ¢(t)dt >0, foreache > 0.
0

Lemma 1.7. ([3]) Let ¢ € ® and {r,},en be a nonnegative sequence with lim,_,. t, = a, then

lim fo " (bt = fO" o(H)dt.

Lemma 1.8. ([3]) Let ¢ € ® and {r,},en be a nonnegative sequence. Then

lim f ¢(t)dt =0 limr, = 0.
0 n—-oo

n—oo

2. Fixed Point Theorems

Definition 2.1. Let (X,d) be a metric space and f : X — X be a given mapping. We say that f is an a-i-¢-
contractive integral type mapping if there exist three functions @ : X x X — [0,+00), ¢ € ® and p € WV such

that
a(x,y)d(fx, fy) d(x,y)
| OByt < w( [ qf><t>dt), @
0 0

forall x,y € Xandall t € [0, +00).

Theorem 2.2. Let (X, d) be a complete metric space and f : X — X be a mapping satisfying following conditions:

(i) fis a-admissible;
(ii) there exists xo € X such that a(xo, fxo) = 1;
(iii) f is an a--¢-contractive integral type mapping,

then f has a unique fixed point a € X such that for xo € X , lim, e f"xo = a.

Proof. First, we show that

d(f"x0, 1 x0) d(xo,fx0)
[ o(Bydt < " ( [ qb(t)dt). 6)
0 0

Since f is a-admissible, from (ii) we get
OZ(XO, fXO) >1—- a(fXQ,f2X0) >1—>...—> a(f”xo,f”“xo) >1,
then for all n € IN,

a(f"xo, ' x0) > 1. (6)
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To prove (5), by induction and (i), we have forn =1

d(fxo0,f>x0) a(xo, fxo0)d(fxo,f>x0)
f ¢(Hdt < f o(t)dt
0 0

(x0,fx0)
<y (j: (P(t)dt).

Now, assuming that (5) holds for an n € IN, then from (6) we get

d(fn+1xo’fn+2xo) a(fnxolfnﬂxo)d(fnﬂ xo,frwzxo)
f D)t < f P(t)dt
0 0

(f"xﬂ,fnﬂxo)
sw( fd d)(t)dt]
0
(x0,fx0)
sofe( [ o)
d(xo, fX0)
— qn+l d
e ([ o),

therefore (5) holds for all n € IN. Now, if 1 — +00 we obtain

d(fYIXOIf’1+lx0)
f ¢(Hdt — 0,
0

then, from Lemma 1.8 we have
d(f"xo, f*1x5) — 0.

In the following, we show that {f"xo} " , is a Cauchy sequence. Suppose that there exists an € > 0 such that
for each k € IN there are my, n, € IN with my > n; > k, such that

d(f™xo, f¥x0) 2 €, d(f™ xo, fx0) < €. )

Hence

€ < d(f™xo, f™xo) < d(f™x0, f™ xo) + d(f™ 'x0, f*x0)
< d(f"’kxo,f’”k’lxo) + €.

Letting k — +oo then we have

d(f™xo, f"x0) — €7, ()
this implies that there exists | € IN, such that

k>1= d(f"*'x, f"x) < e. 9)
Actually, if there exists a subsequence {k;} C IN, k; > [,

d(f™ i xo, f™*1x0) 2 €,
if | = +o0o we get

e< d(fmkl+1xol fnk1+1x0)

<d(f™atxg, fMaxg) +d(f™xg, fMx0) + d(fMxo, 0 x0)
<e
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therefore, from (4) and lemma 1.5 we have

A(f "+ g, £ 41 xg) ("™ 20,1 ™ x0)
[ Pt < f ol
0

0
(" x0,f 1 x)
< fd P(t)dt,
0

letting I — +o0, then we obtain

fqb(t)dt<f¢(t)dt,
0 0

which is a contradiction. Then, (9) holds. Now, we prove that there exists o¢ € (0, €), ke € N such that
k> ke = d(f™*xg, fxp) < € — 0. (10)
Assume that (10) is not true, from (9) there exists a subsequence {k;} C IN,
d(fMxg, fiixg) — €7, as 1 — +oo.
Then from (4) and lemma 1.5, we get
d(f" x0, £ 417 xo) (F" 20, %1 x0) d(f" x0,f ¥ x0)
fo P(Hdt < ¢ [f q)(t)dt] < fov o(t)dt.

Suppose that I — +co then we obtain

f; ot < fO( ot

which is a contradiction. So, (10) holds. Therefore, {f"xo};" , is a Cauchy sequence. In fact, for each k > ke
we have

€ < d(f™xo, f™xp) < d(f"’kxo,f’”k”xo) + d(f'”k”xo,f”k”xo) + d(f”k”xo,f”kxo)

<d(f™xo, f"Hxp) + (€ — o) + d(f" xy, fHxp) — € — 0c as k — +oo.

which is a contradiction. Since (X,d) is a complete metric space, then there exists 2 € X such that
lim, e f"x9 = a. Now, we show that a is a fixed point of f. We claim that

d(fa,a) < d(fa, f(f"x0)) +d(f"*'x0,a) — 0

to prove our claim it is sufficient to show that, d(fa, f(f"xy)) — 0. We have

(fa,f(f"x0)) aa, f"x0)d(fa, f(f"x0))
0< P(t)dt < f D()dt
0

0

d(a,f"xo)
< ¢( fo ¢>(t)dt)

(a,f"x0)
< fd o(t)dt,
0
if n — +o0 then

d(fa.f(f"x0)
f Pp(Hdt — 0,
0
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consequently, from lemma 1.8 we obtain

d(fa, f(f"x0)) — 0.

Therefore, d(fa,a) = 0 and so fa = a, which means 4 is a fixed point of f. a is a unique fixed point. Let b
another fixed point of f, then we have

d(a,b) (fa,fb)
¢mm=jﬁ o)t
0
a(a,b)d(fa,fb)
< f o)t
0

A(a,b)
s¢(
0

(a,b)

< o(t)dt
0

0
q)(t)dt)

which is impassible. Then, d(a,b) = 0and soa=b. [

In the following, we define subclass of integrals and we prove the existence of fixed point by applying these
integrals.

Definition 2.3. Let I' be a collection of mappings y : [0, 00) — [0, co) which are Lebesgue-integrable, summable on
each compact subset of [0, o0) and satisfying following conditions:

(1) [ y(Hdt >0, foreache>0
@) [ ywdt < [yt + [ y®dt, foreacha,b>0

Definition 2.4. Let (X, d) be a metric spaceand f : X — X be a given mapping. We say that f is an a-p-y-contractive
integral type mapping if there exist three functions a : X X X — [0, 4+00), y € I'and ¢ € WV such that

a(x,y)A(fx, fy) (xy)
f y(tdt < (f y(t)dt), (11)
0 0

forall x,y € Xandall t € [0, +00).

Theorem 2.5. Let (X, d) be a complete metric space and f : X — X be a mapping satisfying following conditions:

(i) fis a-admissible;
(ii) there exists xo € X such that a(xo, fxo) = 1;
(iii) f is an a--y-contractive integral type mapping,

then f has a unique fixed point a € X such that for xy € X, lity e f"x0 = a.

Proof. First, we show that

d(f"xo,f"x0) (xo,fx0)
f y@)dt < P (fd )/(t)dt). (12)
0 0

Since f is a-admissible then from (ii) we get
a(xo, fxo) 21— a(fxo, f2x0) 21— ... — a(f"xo, f"x0) = 1.
then for all n € IN,

a(f"xo, fx0) > 1. (13)
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To prove (12),by induction and (i), we have for n = 1

d(fxo0,f>x0) a(xo, fx0)d(fxo,f2x0)
f y(t)dt < f y(t)dt
0 0

d(xo,fXo)
<y (j(; y(t)dt).

Now, assuming that (12) holds for an # € IN, then from (13) we get

d(f”+1x0/fn+2x0) a(f”XO/fn+1x0)d(fn+1x0rf”+2x0)
[ Yot < g ( | y(t)dt]
0

0

d(f”xofanXO)
< lp[ fo y(t)dt]
d(xo0, fX0)
e[ o)
(xo.fx0)
=y ( fod V(t)dt),

therefore (12) holds for all 7 € IN. In the following, we show that {f"xo}, is a Cauchy sequence. Fix € > 0
and let n(e) € N such that

Y g ( fo o) y(t)dt) <e.

n>n(e)

Let m,n € N with m > n > n(e), we get

d(f"xo,f"x0) d(f"xo, [ x0)+-+d(f" " xo, f"x0)
f y(o)dt < f o~
0 0

d(f"xo, £ x0) (f™tx0, /™ x0)
< f y®dt + -+ fd y(t)dt
0 0

(0, fx0) d(xo,fx0)
Y (fd V(f)df) +o (f V(f)df)
0 0
m—1 (x0,fx0)
Yo fod o)

k=n
(x0,fx0)
Y (fd y(t)dt) <g,
0

IA

IA

nn

=~

€)

which means

d(f"xo,f"x0)
f y(t)dt — 0,
0

therefore, by lemma 1.8 we have
d(f"xo, f"x0) — 0.

Then {f"xo} , is a Cauchy sequence. Since (X,d) is a complete metric space, then there exists a € X such
that, lim,_, f"x9 = 4. Now, we show that a is a fixed point of f. We claim that

d(fa,a) < d(fa, f(f"x0)) +d(f"*'x0,a) — 0.
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To prove our claim, it is sufficient to show that d(fa, f(f"xy)) — 0. We have

(fa,f(f"x0)) a(a, f"xo)d(fa,f(f"xo))
0< fd y(b)dt < f y(b)dt
0 0

(a,f"x0)
<y (fd y(t)dt)
0
d(a,f"xo)
< f y(b)dt,
0

if 1 — +oo then

(o, f(Fx0)
f y(t)dt — 0,
0

consequently, from lemma 1.8 we obtain
d(fa, f(f"x0)) — 0.
Therefore, d(fa,a) = 0 and so fa = a, which means a is a fixed point of f. The proof of the uniqueness of
fixed point is similar to theorem 2.2. [
3. Examples and Remarks

Example 3.1. Let X = R and d(x,y) = |x — y| for all x,y € R, then (X,d) is a complete metric space. Define
f R—>Rby fx=3Fand a : RXR — [0, +0c0) by

4 .
o(x,y) = {3 vy el

0 ow.

f is a-admissible, since a(x,y) > 1 implies that

a(fx, fy) = a(g, g) >1.

Define ¢ : [0,00) — [0,00) by ¢(t) = t then ¢ € ®. There exists xo € R such that a(xo, fxo) = a(xo, 3) > 1. Let
P(t) = & where 1 : [0, 00) — [0, 00) then, for all x,y € R we have

a(x,y)d(fx, fy) %d(%,%)
| st = [ ui
0 0

d(x,y)
=y ( j{; qb(t)dt).

Then all the hypotheses of Theorem 2.2 are satisfied, consequently f has a unique fixed point. Here, 0 is a fixed point
of f(x).

Example 3.2. Let X = R* and d(x,y) = |x — y| for all x,y € R", then (X,d) is a complete metric space. Define
fiRY >R by fx=5+1anda: R* xR — [0, +0) by

ax, y) = {% ifx,y €l0,2];

0 ow
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f is a-admissible, since a(x, y) > 1 implies that

a(fx, fy) = a(’f 1,74 1) > 1,
3 3
Define y : [0,00) — [0, 00) by y(t) = 2 then y € I. There exists xo € X such that a(xo, fxo) = a(xo, x—3° +1) > 1, for
instance let xo = 0. Let y(t) = § where y : [0, 00) — [0, c0) then for all x,y € X we have

a(xy)d(fx, fy) FAG+L3+D)
f y(t)dt = f 2dt
0 0

Then all the hypotheses of Theorem 2.8 are satisfied, consequently f has a unique fixed point. Here, 3 is a fixed point
of f(x).

Remark 3.3. In theorem 2.2, if we consider f : X — X which is a-admissible where a(x,y) = 1 for all x,y € X and
Y(t) = ct for all t > 0 and some ¢ € (0, 1) then we get Branciari theorem.

Remark 3.4. Moreover, by above conditions if ¢(t) = 1 or y(t) = 1 in theorem 2.5 then we conclude Banach-
Caccioppoli principle. In fact, we have

d(fx.fy) (ab)
f 1dt = d(fx, fy) < cd(x,y) =c fd 1dt.
0 0
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