

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Integral type Fixed point Theorems for α -admissible Mappings Satisfying α - ψ - ϕ -Contractive Inequality

Ziad Badehian^a, Mohammad Sadegh Asgari^a

^aDepartment of Mathematics, IslamicAzad University, Central Tehran Branch, Iran

Abstract. In this paper, we establishe some new fixed point theorems by α -admissible mappings satisfying α - ψ - ϕ -contractive inequality of integral in complete metric spaces. Presented results can be considered as an extension of the theorems of Banach-Cacciopoli and Branciari.

1. Introduction and Preliminaries

The first well known result on fixed points for contractive mapping was Banach-Cacciopoli theorem(1922)[1], as follow:

Theorem 1.1. Let (X, d) be a complete metric space, $c \in (0, 1)$, and let $f : X \to X$ be a mapping such that for each $x, y \in X$,

$$d(fx, fy) \le cd(x, y) \tag{1}$$

Then, f has a unique fixed point $a \in X$ such that for each $x \in X$, $\lim_{n \to \infty} f^n x = a$.

Branciari(2002)[2], proved the following theorem:

Theorem 1.2. Let (X, d) be a complete metric space, $c \in (0, 1)$, and let $f : X \to X$ be a mapping such that for each $x, y \in X$,

$$\int_{0}^{d(fx,fy)} \phi(t)dt \le c \int_{0}^{d(x,y)} \phi(t)dt \tag{2}$$

where $\phi:[0,\infty)\to[0,\infty)$ is a Lebesgue-integrable map which is summable, (i.e., with finite integral) on each compact subset of $[0,\infty)$, nonnegative, and such that for each $\epsilon>0$, $\int_0^\epsilon \phi(t)dt>0$; then f has a unique fixed point $a\in X$ such that for each $x\in X$, $\lim_{n\to\infty} f^n x=a$.

Samet et al. (2012)[7] have introduced α - ψ -contractive type mappings and also α -admissible functions in complete metric spaces. In this paper, we introduce α -admissible mappings satisfying α - ψ - ϕ -contractive integral type inequality and we establish some fixed point theorems in complete metric spaces. Our results can be considered as an extension of Banach-Cacciopoli and Branciari theorems.

Keywords. Fixed point theorem, α -admissible mapping, α - ψ - ϕ -contractive mapping of integral type, complete metric space.

Received: 17 June 2014; Accepted: 20 April 2015

Communicated by Dragan S. Djordjević

Email addresses: Ziadbadehian@gmail.com (Ziad Badehian), moh.asgari@iauctb.ac.ir (Mohammad Sadegh Asgari)

²⁰¹⁰ Mathematics Subject Classification. Primary 47H10; Secondary 26D15

Definition 1.3. [7] Let $\alpha: X \times X \to [0, \infty)$ be a function, we say $f: X \to X$, is α -admissible if for all $x, y \in X$,

$$\alpha(x, y) \ge 1 \Longrightarrow \alpha(f(x), f(y)) \ge 1$$
 (3)

Definition 1.4. [7] Let Ψ be a family of nondecreasing functions $\psi : [0, \infty) \to [0, \infty)$ such that for each $\psi \in \Psi$ and t > 0, $\sum_{n=1}^{\infty} \psi^n(t) < +\infty$. where ψ^n is the n-th iterate of ψ .

Lemma 1.5. ([7]) If $\psi : [0, \infty) \to [0, \infty)$ is nondecreasing function and for each t > 0, $\lim_{n \to \infty} \psi^n(t) = 0$ then $\psi(t) < t$.

Definition 1.6. Let Φ be a collection of mappings $\phi:[0,\infty)\to[0,\infty)$ which are Lebesgue-integrable, summable on each compact subset of $[0,\infty)$ and satisfying following condition:

$$\int_{0}^{\epsilon} \phi(t)dt > 0, \text{ for each } \epsilon > 0.$$

Lemma 1.7. ([3]) Let $\phi \in \Phi$ and $\{r_n\}_{n \in \mathbb{N}}$ be a nonnegative sequence with $\lim_{n \to \infty} r_n = a$, then

$$\lim_{n\to\infty}\int_0^{r_n}\phi(t)dt=\int_0^a\phi(t)dt.$$

Lemma 1.8. ([3]) Let $\phi \in \Phi$ and $\{r_n\}_{n \in \mathbb{N}}$ be a nonnegative sequence. Then

$$\lim_{n\to\infty} \int_0^{r_n} \phi(t)dt = 0 \Longleftrightarrow \lim_{n\to\infty} r_n = 0.$$

2. Fixed Point Theorems

Definition 2.1. Let (X,d) be a metric space and $f:X\to X$ be a given mapping. We say that f is an α - ψ - ϕ -contractive integral type mapping if there exist three functions $\alpha:X\times X\to [0,+\infty),\ \phi\in\Phi$ and $\psi\in\Psi$ such that

$$\int_{0}^{\alpha(x,y)d(fx,fy)} \phi(t)dt \le \psi\left(\int_{0}^{d(x,y)} \phi(t)dt\right),\tag{4}$$

for all $x, y \in X$ and all $t \in [0, +\infty)$.

Theorem 2.2. Let (X, d) be a complete metric space and $f: X \to X$ be a mapping satisfying following conditions:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$;
- (iii) f is an α - ψ - ϕ -contractive integral type mapping,

then f has a unique fixed point $a \in X$ such that for $x_0 \in X$, $\lim_{n \to \infty} f^n x_0 = a$.

Proof. First, we show that

$$\int_{0}^{d(f^{n}x_{0},f^{n+1}x_{0})} \phi(t)dt \le \psi^{n} \left(\int_{0}^{d(x_{0},fx_{0})} \phi(t)dt \right). \tag{5}$$

Since f is α -admissible, from (ii) we get

$$\alpha(x_0, fx_0) \ge 1 \to \alpha(fx_0, f^2x_0) \ge 1 \to \dots \to \alpha(f^nx_0, f^{n+1}x_0) \ge 1$$

then for all $n \in \mathbb{N}$,

$$\alpha(f^n x_0, f^{n+1} x_0) \ge 1. \tag{6}$$

To prove (5), by induction and (i), we have for n = 1

$$\int_{0}^{d(fx_{0},f^{2}x_{0})} \phi(t)dt \leq \int_{0}^{\alpha(x_{0},fx_{0})d(fx_{0},f^{2}x_{0})} \phi(t)dt$$
$$\leq \psi\left(\int_{0}^{d(x_{0},fx_{0})} \phi(t)dt\right).$$

Now, assuming that (5) holds for an $n \in \mathbb{N}$, then from (6) we get

$$\begin{split} \int_{0}^{d(f^{n+1}x_{0},f^{n+2}x_{0})} \phi(t)dt &\leq \int_{0}^{\alpha(f^{n}x_{0},f^{n+1}x_{0})d(f^{n+1}x_{0},f^{n+2}x_{0})} \phi(t)dt \\ &\leq \psi \left(\int_{0}^{d(f^{n}x_{0},f^{n+1}x_{0})} \phi(t)dt \right) \\ &\leq \psi \left(\psi^{n} \left(\int_{0}^{d(x_{0},fx_{0})} \phi(t)dt \right) \right) \\ &= \psi^{n+1} \left(\int_{0}^{d(x_{0},fx_{0})} \phi(t)dt \right), \end{split}$$

therefore (5) holds for all $n \in \mathbb{N}$. Now, if $n \to +\infty$ we obtain

$$\int_0^{d(f^n x_0, f^{n+1} x_0)} \phi(t) dt \longrightarrow 0,$$

then, from Lemma 1.8 we have

$$d(f^n x_0, f^{n+1} x_0) \longrightarrow 0.$$

In the following, we show that $\{f^nx_0\}_{n=1}^{\infty}$ is a Cauchy sequence. Suppose that there exists an $\epsilon > 0$ such that for each $k \in \mathbb{N}$ there are $m_k, n_k \in \mathbb{N}$ with $m_k > n_k > k$, such that

$$d(f^{m_k}x_0, f^{n_k}x_0) \ge \epsilon, \quad d(f^{m_k-1}x_0, f^{n_k}x_0) < \epsilon. \tag{7}$$

Hence

$$\epsilon \le d(f^{m_k}x_0, f^{n_k}x_0) \le d(f^{m_k}x_0, f^{m_k-1}x_0) + d(f^{m_k-1}x_0, f^{n_k}x_0)$$

$$< d(f^{m_k}x_0, f^{m_k-1}x_0) + \epsilon.$$

Letting $k \to +\infty$ then we have

$$d(f^{m_k}x_0, f^{n_k}x_0) \longrightarrow \epsilon^+, \tag{8}$$

this implies that there exists $l \in \mathbb{N}$, such that

$$k > l \Longrightarrow d(f^{m_l+1}x_0, f^{n_l+1}x_0) < \epsilon. \tag{9}$$

Actually, if there exists a subsequence $\{k_l\} \subset \mathbb{N}$, $k_l > l$,

$$d(f^{m_{k_l+1}}x_0, f^{n_{k_l+1}}x_0) \ge \epsilon$$
,

if $l \to +\infty$ we get

$$\epsilon \leq d(f^{m_{k_l+1}}x_0, f^{n_{k_l+1}}x_0)
\leq d(f^{m_{k_l+1}}x_0, f^{m_{k_l}}x_0) + d(f^{m_{k_l}}x_0, f^{n_{k_l}}x_0) + d(f^{n_{k_l}}x_0, f^{n_{k_l+1}}x_0)
< \epsilon$$

therefore, from (4) and lemma 1.5 we have

$$\int_{0}^{d(f^{m_{k_{l}+1}}x_{0},f^{n_{k_{l}+1}}x_{0})} \phi(t)dt \leq \psi \left(\int_{0}^{d(f^{m_{k_{l}}}x_{0},f^{n_{k_{l}}}x_{0})} \phi(t)dt \right)$$

$$< \int_{0}^{d(f^{m_{k_{l}+1}}x_{0},f^{n_{k_{l}}}x_{0})} \phi(t)dt,$$

letting $l \to +\infty$, then we obtain

$$\int_0^\epsilon \phi(t)dt < \int_0^\epsilon \phi(t)dt,$$

which is a contradiction. Then, (9) holds. Now, we prove that there exists $\sigma_{\epsilon} \in (0, \epsilon)$, $k_{\epsilon} \in \mathbb{N}$ such that

$$k > k_{\epsilon} \Longrightarrow d(f^{m_k+1}x_0, f^{n_k+1}x_0) < \epsilon - \sigma_{\epsilon}.$$
 (10)

Assume that (10) is not true, from (9) there exists a subsequence $\{k_l\} \subset \mathbb{N}$,

$$d(f^{m_{k_l+1}}x_0, f^{n_{k_l+1}}x_0) \rightarrow \epsilon^-$$
, as $l \rightarrow +\infty$.

Then from (4) and lemma 1.5, we get

$$\int_0^{d(f^{m_{k_l+1}}x_0,f^{n_{k_l+1}}x_0)} \phi(t)dt \le \psi\left(\int_0^{d(f^{m_{k_l}}x_0,f^{n_{k_l}}x_0)} \phi(t)dt\right) < \int_0^{d(f^{m_{k_l}}x_0,f^{n_{k_l}}x_0)} \phi(t)dt.$$

Suppose that $l \to +\infty$ then we obtain

$$\int_0^\epsilon \phi(t)dt < \int_0^\epsilon \phi(t)dt,$$

which is a contradiction. So, (10) holds. Therefore, $\{f^n x_0\}_{n=1}^{\infty}$ is a Cauchy sequence. In fact, for each $k > k_{\epsilon}$ we have

$$\begin{split} \epsilon & \leq d(f^{m_k}x_0, f^{n_k}x_0) \leq d(f^{m_k}x_0, f^{m_k+1}x_0) + d(f^{m_k+1}x_0, f^{n_k+1}x_0) + d(f^{n_k+1}x_0, f^{n_k}x_0) \\ & < d(f^{m_k}x_0, f^{m_k+1}x_0) + (\epsilon - \sigma_\epsilon) + d(f^{n_k+1}x_0, f^{n_k}x_0) \to \epsilon - \sigma_\epsilon \ as \ k \to +\infty. \end{split}$$

which is a contradiction. Since (X, d) is a complete metric space, then there exists $a \in X$ such that $\lim_{n\to\infty} f^n x_0 = a$. Now, we show that a is a fixed point of f. We claim that

$$d(fa,a) \leq d(fa,f(f^nx_0)) + d(f^{n+1}x_0,a) \longrightarrow 0$$

to prove our claim it is sufficient to show that, $d(fa, f(f^nx_0)) \longrightarrow 0$. We have

$$0 < \int_{0}^{d(fa, f(f^{n}x_{0}))} \phi(t)dt \le \int_{0}^{\alpha(a, f^{n}x_{0})d(fa, f(f^{n}x_{0}))} \phi(t)dt$$

$$\le \psi \left(\int_{0}^{d(a, f^{n}x_{0})} \phi(t)dt \right)$$

$$< \int_{0}^{d(a, f^{n}x_{0})} \phi(t)dt,$$

if $n \longrightarrow +\infty$ then

$$\int_0^{d(fa,f(f^nx_0))} \phi(t)dt \longrightarrow 0,$$

consequently, from lemma 1.8 we obtain

$$d(fa, f(f^n x_0)) \longrightarrow 0.$$

Therefore, d(fa, a) = 0 and so fa = a, which means a is a fixed point of f. a is a unique fixed point. Let banother fixed point of f, then we have

$$\int_{0}^{d(a,b)} \phi(t)dt = \int_{0}^{d(fa,fb)} \phi(t)dt$$

$$\leq \int_{0}^{\alpha(a,b)d(fa,fb)} \phi(t)dt$$

$$\leq \psi\left(\int_{0}^{d(a,b)} \phi(t)dt\right)$$

$$< \int_{0}^{d(a,b)} \phi(t)dt$$

which is impassible. Then, d(a, b) = 0 and so a = b. \square

In the following, we define subclass of integrals and we prove the existence of fixed point by applying these integrals.

Definition 2.3. Let Γ be a collection of mappings $\gamma:[0,\infty)\to[0,\infty)$ which are Lebesgue-integrable, summable on each compact subset of $[0, \infty)$ and satisfying following conditions:

(1)
$$\int_0^{\epsilon} \gamma(t)dt > 0$$
, for each $\epsilon > 0$

(1)
$$\int_0^{\epsilon} \gamma(t)dt > 0$$
, for each $\epsilon > 0$
(2) $\int_0^{a+b} \gamma(t)dt \le \int_0^a \gamma(t)dt + \int_0^b \gamma(t)dt$, for each $a, b \ge 0$

Definition 2.4. Let (X, d) be a metric space and $f: X \to X$ be a given mapping. We say that f is an α - ψ - γ -contractive integral type mapping if there exist three functions $\alpha: X \times X \to [0, +\infty), \gamma \in \Gamma$ and $\psi \in \Psi$ such that

$$\int_{0}^{\alpha(x,y)d(fx,fy)} \gamma(t)dt \le \psi\left(\int_{0}^{d(x,y)} \gamma(t)dt\right),\tag{11}$$

for all $x, y \in X$ and all $t \in [0, +\infty)$.

Theorem 2.5. Let (X, d) be a complete metric space and $f: X \to X$ be a mapping satisfying following conditions:

- (i) f is α -admissible;
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, fx_0) \ge 1$;
- (iii) f is an α - ψ - γ -contractive integral type mapping,

then f has a unique fixed point $a \in X$ such that for $x_0 \in X$, $\lim_{n\to\infty} f^n x_0 = a$.

Proof. First, we show that

$$\int_{0}^{d(f^{n}x_{0}, f^{n+1}x_{0})} \gamma(t)dt \le \psi^{n} \left(\int_{0}^{d(x_{0}, fx_{0})} \gamma(t)dt \right). \tag{12}$$

Since f is α -admissible then from (ii) we get

$$\alpha(x_0, fx_0) \ge 1 \to \alpha(fx_0, f^2x_0) \ge 1 \to \dots \to \alpha(f^nx_0, f^{n+1}x_0) \ge 1.$$

then for all $n \in \mathbb{N}$,

$$\alpha(f^n x_0, f^{n+1} x_0) \ge 1. \tag{13}$$

To prove (12),by induction and (i), we have for n = 1

$$\int_0^{d(fx_0, f^2x_0)} \gamma(t)dt \le \int_0^{\alpha(x_0, fx_0)d(fx_0, f^2x_0)} \gamma(t)dt$$
$$\le \psi\left(\int_0^{d(x_0, fx_0)} \gamma(t)dt\right).$$

Now, assuming that (12) holds for an $n \in \mathbb{N}$, then from (13) we get

$$\begin{split} \int_{0}^{d(f^{n+1}x_{0},f^{n+2}x_{0})} \gamma(t)dt &\leq \psi \left(\int_{0}^{\alpha(f^{n}x_{0},f^{n+1}x_{0})d(f^{n+1}x_{0},f^{n+2}x_{0})} \gamma(t)dt \right) \\ &\leq \psi \left(\int_{0}^{d(f^{n}x_{0},f^{n+1}x_{0})} \gamma(t)dt \right) \\ &\leq \psi \left(\psi^{n} \left(\int_{0}^{d(x_{0},fx_{0})} \gamma(t)dt \right) \right) \\ &= \psi^{n+1} \left(\int_{0}^{d(x_{0},fx_{0})} \gamma(t)dt \right), \end{split}$$

therefore (12) holds for all $n \in \mathbb{N}$. In the following, we show that $\{f^n x_0\}_{n=1}^{\infty}$ is a Cauchy sequence. Fix $\epsilon > 0$ and let $n(\epsilon) \in \mathbb{N}$ such that

$$\sum_{n>n(\epsilon)} \psi^n \left(\int_0^{d(x_0, fx_0)} \gamma(t) dt \right) < \epsilon.$$

Let $m, n \in \mathbb{N}$ with $m > n > n(\epsilon)$, we get

$$\int_{0}^{d(f^{n}x_{0}, f^{m}x_{0})} \gamma(t)dt \leq \int_{0}^{d(f^{n}x_{0}, f^{n+1}x_{0}) + \dots + d(f^{m-1}x_{0}, f^{m}x_{0})} \gamma(t)dt \\
\leq \int_{0}^{d(f^{n}x_{0}, f^{n+1}x_{0})} \gamma(t)dt + \dots + \int_{0}^{d(f^{m-1}x_{0}, f^{m}x_{0})} \gamma(t)dt \\
\leq \psi^{n} \left(\int_{0}^{d(x_{0}, fx_{0})} \gamma(t)dt \right) + \dots + \psi^{m-1} \left(\int_{0}^{d(x_{0}, fx_{0})} \gamma(t)dt \right) \\
= \sum_{k=n}^{m-1} \psi^{k} \left(\int_{0}^{d(x_{0}, fx_{0})} \gamma(t)dt \right) \\
\leq \sum_{n>n(\epsilon)} \psi^{n} \left(\int_{0}^{d(x_{0}, fx_{0})} \gamma(t)dt \right) < \epsilon,$$

which means

$$\int_0^{d(f^n x_0, f^m x_0)} \gamma(t) dt \longrightarrow 0,$$

therefore, by lemma 1.8 we have

$$d(f^n x_0, f^m x_0) \longrightarrow 0.$$

Then $\{f^nx_0\}_{n=1}^{\infty}$ is a Cauchy sequence. Since (X,d) is a complete metric space, then there exists $a \in X$ such that, $\lim_{n\to\infty} f^nx_0 = a$. Now, we show that a is a fixed point of f. We claim that

$$d(fa,a) \le d(fa,f(f^nx_0)) + d(f^{n+1}x_0,a) \longrightarrow 0.$$

To prove our claim, it is sufficient to show that $d(fa, f(f^nx_0)) \longrightarrow 0$. We have

$$0 < \int_0^{d(fa, f(f^n x_0))} \gamma(t) dt \le \int_0^{\alpha(a, f^n x_0) d(fa, f(f^n x_0))} \gamma(t) dt$$
$$\le \psi \left(\int_0^{d(a, f^n x_0)} \gamma(t) dt \right)$$
$$\le \int_0^{d(a, f^n x_0)} \gamma(t) dt,$$

if $n \longrightarrow +\infty$ then

$$\int_0^{d(fa,f(f^nx_0))} \gamma(t)dt \longrightarrow 0,$$

consequently, from lemma 1.8 we obtain

$$d(fa, f(f^n x_0)) \longrightarrow 0.$$

Therefore, d(fa, a) = 0 and so fa = a, which means a is a fixed point of f. The proof of the uniqueness of fixed point is similar to theorem 2.2. \Box

3. Examples and Remarks

Example 3.1. Let $X = \mathbb{R}$ and d(x, y) = |x - y| for all $x, y \in \mathbb{R}$, then (X, d) is a complete metric space. Define $f : \mathbb{R} \to \mathbb{R}$ by $fx = \frac{x}{2}$ and $\alpha : \mathbb{R} \times \mathbb{R} \to [0, +\infty)$ by

$$\alpha(x,y) = \begin{cases} \frac{4}{3} & if \ x,y \in [0,1]; \\ 0 & o.w. \end{cases}$$

f is α -admissible, since $\alpha(x, y) \ge 1$ implies that

$$\alpha(fx, fy) = \alpha\left(\frac{x}{2}, \frac{y}{2}\right) \ge 1.$$

Define $\phi:[0,\infty)\to[0,\infty)$ by $\phi(t)=t$ then $\phi\in\Phi$. There exists $x_0\in\mathbb{R}$ such that $\alpha(x_0,fx_0)=\alpha(x_0,\frac{x_0}{2})\geq 1$. Let $\psi(t)=\frac{t}{2}$ where $\psi:[0,\infty)\to[0,\infty)$ then, for all $x,y\in\mathbb{R}$ we have

$$\int_0^{\alpha(x,y)d(fx,fy)} \phi(t)dt = \int_0^{\frac{4}{3}d(\frac{x}{2},\frac{y}{2})} tdt$$

$$\leq \frac{\int_0^{d(x,y)} tdt}{2}$$

$$= \psi\left(\int_0^{d(x,y)} \phi(t)dt\right).$$

Then all the hypotheses of Theorem 2.2 are satisfied, consequently f has a unique fixed point. Here, 0 is a fixed point of f(x).

Example 3.2. Let $X = \mathbb{R}^+$ and d(x,y) = |x-y| for all $x,y \in \mathbb{R}^+$, then (X,d) is a complete metric space. Define $f: \mathbb{R}^+ \to \mathbb{R}^+$ by $fx = \frac{x}{3} + 1$ and $\alpha: \mathbb{R}^+ \times \mathbb{R}^+ \to [0, +\infty)$ by

$$\alpha(x,y) = \begin{cases} \frac{5}{4} & \text{if } x,y \in [0,2]; \\ 0 & \text{o.w} \end{cases}$$

f is α -admissible, since $\alpha(x, y) \ge 1$ implies that

$$\alpha(fx, fy) = \alpha\left(\frac{x}{3} + 1, \frac{y}{3} + 1\right) \ge 1.$$

Define $\gamma:[0,\infty)\to [0,\infty)$ by $\gamma(t)=2$ then $\gamma\in\Gamma$. There exists $x_0\in X$ such that $\alpha(x_0,fx_0)=\alpha(x_0,\frac{x_0}{3}+1)\geq 1$, for instance let $x_0=0$. Let $\gamma(t)=\frac{t}{2}$ where $\gamma:[0,\infty)\to [0,\infty)$ then for all $x,y\in X$ we have

$$\int_{0}^{\alpha(x,y)d(fx,fy)} \gamma(t)dt = \int_{0}^{\frac{5}{4}d(\frac{x}{3}+1,\frac{y}{3}+1)} 2dt$$

$$= \frac{5}{6}d(x,y)$$

$$\leq \frac{\int_{0}^{d(x,y)} 2dt}{2}$$

$$= d(x,y)$$

$$= \psi\left(\int_{0}^{d(x,y)} \gamma(t)dt\right).$$

Then all the hypotheses of Theorem 2.8 are satisfied, consequently f has a unique fixed point. Here, $\frac{3}{2}$ is a fixed point of f(x).

Remark 3.3. In theorem 2.2, if we consider $f: X \to X$ which is α -admissible where $\alpha(x, y) = 1$ for all $x, y \in X$ and $\psi(t) = ct$ for all t > 0 and some $c \in (0, 1)$ then we get Branciari theorem.

Remark 3.4. Moreover, by above conditions if $\phi(t) = 1$ or $\gamma(t) = 1$ in theorem 2.5 then we conclude Banach-Caccioppoli principle. In fact, we have

$$\int_0^{d(fx,fy)} 1 dt = d(fx,fy) \le c d(x,y) = c \int_0^{d(a,b)} 1 dt.$$

Acknowledgments

We are grateful to the referees for their valuable comments that improved the quality of the paper.

References

- [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math 3 (1922) 133–181.
- [2] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci 29 (2002) 531–536.
- [3] Z. Liu, X. Li, S. M. Kang, S. Y. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory Appl No. 64 (2011) 18 pages doi: 10.1186/1687-1812-2011-64.
- [4] Mocanu, M, Popa, V: Some fixed point theorems for mappings satisfying implicit relations in symmetric spaces, Libertas Math 28 (2008) 1–13.
- [5] V. L. Rosa, P. Vetro, Common fixed points for α - ψ - ϕ -contractions in generalized metric spaces, Nonlinear Analysis: Modelling and Control 19 No. 1 (2014) 43–54.
- [6] B. Samet, A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. J. Math. Anal 3 (2009) 1265–1271.
- [7] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal 75 (2012) 4341–4349.
- [8] M. Samreen, T. Kamran, Fixed point theorems for integral G-contractions, Fixed Point Theory and Applications (2013) 149.