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On Some Mean Value Results for the Zeta-Function
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Aleksandar Ivića
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Abstract. Let ∆(x) denote the error term in the classical Dirichlet divisor problem, and let the modified
error term in the divisor problem be ∆∗(x) = −∆(x) + 2∆(2x) − 1

2 ∆(4x). We show that∫ T+H

T
∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt � HT1/6 log7/2 T (T2/3+ε 6 H = H(T) 6 T),

∫ T

0
∆(t)|ζ( 1

2 + it)|2 dt � T9/8(log T)5/2,

and obtain asymptotic formulae for∫ T

0

(
∆∗

( t
2π

))2

|ζ( 1
2 + it)|2 dt,

∫ T

0

(
∆∗

( t
2π

))3

|ζ( 1
2 + it)|2 dt.

The importance of the ∆∗-function comes from the fact that it is the analogue of E(T), the error term in the
mean square formula for |ζ( 1

2 + it)|2. We also show, if E∗(T) = E(T) − 2π∆∗(T/(2π)),∫ T

0
E∗(t)E j(t)|ζ( 1

2 + it)|2 dt � j,ε T7/6+ j/4+ε ( j = 1, 2, 3).

1. Introduction

As usual, let
∆(x) :=

∑
n6x

d(n) − x(log x + 2γ − 1) (x > 2) (1.1)

denote the error term in the classical Dirichlet divisor problem. Also let

E(T) :=
∫ T

0
|ζ( 1

2 + it)|2 dt − T
(
log

(
T

2π

)
+ 2γ − 1

)
(T > 2) (1.2)
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A. Ivić / Filomat 30:8 (2016), 2315–2327 2316

denote the error term in the mean square formula for |ζ( 1
2 + it)|. Here d(n) is the number of all positive

divisors of n, ζ(s) is the Riemann zeta-function, and γ = −Γ′(1) = 0.577215 . . . is Euler’s constant. Long
ago F.V. Atkinson [1] established a fundamental explicit formula for E(T) (see also [5, Chapter 15] and [7,
Chapter 2]), which indicated a certain analogy between ∆(x) and E(T). However, in this context it seems
that instead of the error-term function ∆(x) it is more exact to work with the modified function ∆∗(x) (see
M. Jutila [12], [13] and T. Meurman [14]), where

∆∗(x) := −∆(x) + 2∆(2x) − 1
2 ∆(4x) = 1

2

∑
n64x

(−1)nd(n) − x(log x + 2γ − 1), (1.3)

since it turns out that ∆∗(x) is a better analogue of E(T) than ∆(x). Namely, M. Jutila (op. cit.) investigated
both the local and global behaviour of the difference

E∗(t) := E(t) − 2π∆∗
( t
2π

)
, (1.4)

and in particular in [13] he proved that∫ T+H

T
(E∗(t))2 dt �ε HT1/3 log3 T + T1+ε (1 6 H 6 T). (1.5)

Here and later ε denotes positive constants which are arbitrarily small, but are not necessarily the same
ones at each occurrence, while a(x) �ε b(x) (same as a(x) = Oε(b(x))) means that the |a(x)| 6 Cb(x) for some
C = C(ε) > 0, x > x0. The significance of (1.5) is that, in view of (see e.g., [5, Chapter 15])∫ T

0
(∆∗(t))2 dt ∼ AT3/2,

∫ T

0
E2(t) dt ∼ BT3/2 (A,B > 0, T→∞), (1.6)

it transpires that E∗(t) is in the mean square sense of a lower order of magnitude than either ∆∗(t) or E(t).
We also refer the reader to the review paper [18] of K.-M. Tsang on this subject.

2. Statement of Results

Mean values (or moments) of |ζ( 1
2 + it)| represent one of the central themes in the theory of ζ(s), and

they have been studied extensively. There are two monographs dedicated solely to them: the author’s [7],
and that of K. Ramachandra [17]. We are interested in obtaining mean value results for ∆∗(t) and |ζ( 1

2 + it)|2,
namely how the quantities in question relate to one another. Our results are as follows.

Theorem 1. For T2/3+ε 6 H = H(T) 6 T we have∫ T+H

T
∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt � HT1/6 log7/2 T. (2.1)

Remark 1. If one uses the first formula in (1.6), the classical bound (see e.g., [5, Chapter 4])∫ T

0
|ζ( 1

2 + it)|4 dt � T log4 T (2.2)

and the Cauchy-Schwarz inequality for integrals, one obtains∫ T

0
∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt � T5/4 log2 T,

which is considerably poorer than (2.1) for H = T, thus showing that this bound of Theorem 1 is non-trivial.
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Theorem 2. If γ is Euler’s constant and

C :=
2ζ4(3/2)

3
√

2πζ(3)
=

2

3
√

2π

∞∑
n=1

d2(n)n−3/2 = 10.3047 . . . , (2.3)

then ∫ T

0

(
∆∗

( t
2π

))2
|ζ( 1

2 + it)|2 dt =
C

4π2 T3/2
(
log

T
2π

+ 2γ −
2
3

)
+ Oε(T17/12+ε). (2.4)

Remark 2. Note that (2.4) is a true asymptotic formula (17/12 = 3/2 - 1/12). It would be interesting
to analyze the error term in (2.4) and see how small it can be, i.e., to obtain an omega-result (recall that
f (x) = Ω(1(x)) means that f (x) = o(1(x)) does not hold as x→∞).

Theorem 3. For some explicit constant D > 0 we have∫ T

0

(
∆∗

( t
2π

))3
|ζ( 1

2 + it)|2 dt = DT7/4
(
log

T
2π

+ 2γ −
4
7

)
+ Oε(T27/16+ε). (2.5)

Remark 3. Like (2.4), the formula in (2.5) is also a true asymptotic formula (27/16 = 7/4 - 1/16). Moreover,
the main term is positive, which shows that, in the mean, ∆∗

(
t

2π

)
is more biased towards positive values.

In the most interesting case when H = T, Theorem 1 can be improved. Indeed, we have

Theorem 4. We have ∫ T

0
∆(t)|ζ( 1

2 + it)|2 dt � T9/8(log T)5/2, (2.6)

and (2.6) remains true if ∆(t) is replaced by ∆∗(t),∆(t/(2π)) or ∆∗(t/(2π)).

Remark 3. The presence of ∆∗
(

t
2π

)
instead of the more natural ∆∗(t) in (2.1), (2.4) and (2.5) comes from

the defining relation (1.4). It would be interesting to see what could be proved if in the integrals in (2.4)
and (2.5) one had ∆∗(t) (or ∆(t)) instead of of ∆∗

(
t

2π

)
.

Remark 4. In the case of (2.1) (when H = T), Theorem 4 answers this question. However, obtaining
a short interval result for ∆(t)|ζ( 1

2 + it)|2 is not easy. The method of proof of Theorem 4 cannot be easily
adapted to yield the analogues of (2.4) and (2.5) for ∆(t) in place of ∆∗(t/(2π)).

There are some other integrals which may be bounded by the method used to prove previous theorems.
For example, one such result is

Theorem 5. For j = 1, 2, 3 we have∫ T

0
E∗(t)E j(t)|ζ( 1

2 + it)|2 dt � j,ε T7/6+ j/4+ε. (2.7)

3. The Necessary Lemmas

In this section we shall state some lemmas needed for the proof of our theorems. The proofs of the
theorems themselves will be given in Section 4.

The first lemma embodies some bounds for the higher moments of E∗(T).

Lemma 1. We have ∫ T

0
|E∗(t)|3 dt �ε T3/2+ε, (3.1)
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0
|E∗(t)|5 dt �ε T2+ε, (3.2)

and also ∫ T

0
(E∗(t))4 dt �ε T7/4+ε. (3.3)

The author proved (3.1) in [8, Part IV], and (3.2) in [8, Part II]. The bound (3.3) follows from (3.1) and
(3.2) by the Cauchy-Schwarz inequality for integrals.

For the mean square of E(t) we need a more precise formula than (1.6). This is

Lemma 2. With C given by (2.3) we have∫ T

0
E2(t) dt = CT3/2 + R(T), R(T) = O(T log4 T). (3.4)

The first result on R(T) is due to D.R. Heath-Brown [2], who obtained R(T) = O(T5/4 log2 T). The sharpest
known result at present is R(T) = O(T log4 T), due independently to E. Preissmann [16] and the author [7,
Chapter 2].

For the mean square of E∗(t) we have a result which is different from (3.4). This is

Lemma 3. We have ∫ T

0
(E∗(t))2 dt = T4/3P3(log T) + Oε(T7/6+ε), (3.5)

where P3(y) is a polynomial of degree three in y with positive leading coefficient, and all its coefficients may be
evaluated explicitly.

This formula was proved by the author in [9]. It sharpens (1.4) when H = T. It seems likely that the
error term in (3.5) is Oε(T1+ε), but this seems difficult to prove.

Lemma 4. We have ∫ T

0
|ζ( 1

2 + it)|4 dt = TQ4(log T) + O(T2/3 log8 T), (3.6)

where Q4(x) is an explicit polynomial of degree four in x with leading coefficient 1/(2π2).

This result was proved first (with error term O(T2/3 logC T)) by Y. Motohashi and the author [10]. The
value C = 8 was given by Y. Motohashi in his monograph [15].

Lemma 5. For 1 6 N � x we have

∆∗(x) =
1

π
√

2
x

1
4

∑
n6N

(−1)nd(n)n−
3
4 cos(4π

√
nx − 1

4π) + Oε(x
1
2 +εN−

1
2 ). (3.7)

The expression for ∆∗(x) (see [5, Chapter 15]) is the analogue of the classical truncated Voronoı̈ formula for

∆(x) (ibid. Chapter 3), which is the expression in (3.7) without (−1)n.

Lemma 6. We have ∫ T

0
E(t)|ζ( 1

2 + it)|2 dt = πT
(
log T

2π + 2γ − 1
)

+ U(T), (3.8)

where
U(T) = O(T3/4 log T), U(T) = Ω±(T3/4 log T).
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The asymptotic formula (3.8) is due to the author [6]. Here the symbol f (x) = Ω±(1(x)) has its standard
meaning, namely that both lim supx→∞ f (x)/1(x) > 0 and lim infx→∞ f (x)/1(x) < 0 holds.

Lemma 7. We have ∫ T

1
E3(t) dt = C1T7/4 + Oε(T5/3+ε), (3.9)

∫ T

1
E4(t) dt = C2T2 + Oε(T23/12+ε), (3.10)

where C1,C2 are certain explicit, positive constants.

These asymptotic formulae are due to P. Sargos and the author [11].

Lemma 8. We have ∑
n6x

d2(n) =
1
π2 x log3 x + O(x log2 x). (3.11)

This is a well-known elementary formula; see e.g., page 141 of [5].

Lemma 9. For real k ∈ [0, 9] the limits

Ek := lim
T→∞

T−1−k/4
∫ T

0
|E(t)|k dt

exist.

This is a result of D.R. Heath-Brown [4]. The limits of moments without absolute values also exist when
k = 1, 3, 5, 7 or 9.

Lemma 10. For 4 6 A 6 12 we have∫ T

0
|ζ( 1

2 + it)|A dt �A T1+ 1
8 (A−4) logC(A) T (3.12)

with some positive constant C(A).

These are at present the strongest upper bounds for moments of |ζ( 1
2 + it)| for the range in question.

They follow by convexity from the fourth moment bound (2.2) and the twelfth moment∫ T

0
|ζ( 1

2 + it)|12 dt � T2 log17 T

of D.R. Heath-Brown [3] (see e.g., [5, Chapter 8] for more details).

4. Proofs of the Theorems

We begin with the proof of (2.1). We start from

∫ T+H

T
E∗(t)|ζ( 1

2 + it)|2 dt�
{∫ T+H

T
(E∗(t))2 dt

∫ T+H

T
|ζ( 1

2 + it)|4 dt
}1/2

�

(
HT1/3 log3 T ·H log4 T

)1/2
= HT1/6 log7/2 T.

(4.1)
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Here we assumed that T2/3+ε 6 H = H(T) 6 T and used (3.6) of Lemma 4, (1.5) and the Cauchy-Schwarz
inequality for integrals. On the other hand, by the defining relation (1.4) we have∫ T+H

T
E∗(t)|ζ( 1

2 + it)|2 dt =

∫ T+H

T
E(t)|ζ( 1

2 + it)|2 dt

− 2π
∫ T+H

T
∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt.

(4.2)

Using (3.8) of Lemma 6 and (4.1), we obtain then from (4.2)

2π
∫ T+H

T
∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt

=

∫ T+H

T
E∗(t)|ζ( 1

2 + it)|2 dt −
∫ T+H

T
E(t)|ζ( 1

2 + it)|2 dt

= O(HT1/6 log7/2 T) + πt
(
log

t
2π

+ 2γ − 1
)∣∣∣∣T+H

T
+ O(T3/4 log T)

= O(HT1/6 log7/2 T) + O(H log T) + O(T3/4 log T)

� HT1/6 log7/2 T,

since T2/3+ε 6 H = H(T) 6 T. This completes the proof of Theorem 1.

The proof of Theorem 2 is somewhat more involved. It suffices to consider the integral from T to 2T,
and then at the end of the proof to replace T by T2− j and sum the resulting expressions when j = 1, 2, . . . .
First, by squaring (1.4), we have∫ 2T

T
(E∗(t))2

|ζ( 1
2 + it)|2 dt =

∫ 2T

T
(E(t))2

|ζ( 1
2 + it)|2 dt

− 2
∫ 2T

T
E(t)2π∆∗

( t
2π

)
|ζ( 1

2 + it)|2 dt + 4π2
∫ 2T

T

(
∆∗

( t
2π

))2
|ζ( 1

2 + it)|2 dt.

(4.3)

The expression in the middle of the right-hand side of (4.3) equals, on differentiating (1.2),

− 2
∫ 2T

T
E(t)2π∆∗

( t
2π

)(
log

t
2π

+ 2γ + E′(t)
)

dt

= −2
∫ 2T

T
E(t)2π∆∗

( t
2π

)(
log

t
2π

+ 2γ
)

dt + J(T),

(4.4)

say, where

J(T) := −2
∫ 2T

T
E(t)2π∆∗

( t
2π

)
E′(t) dt. (4.5)

To bound J(T) we use Lemma 5 with N = N(T), 1 � N � T, where N will be determined a little later. The
error term in (3.7) trivially makes a contribution which is

�ε

∫ 2T

T
|E(t)|

(
|ζ( 1

2 + it)|2 + log T
)
T1/2+εN−1/2

�ε T7/4+εN−1/2 (4.6)

on using the second formula in (1.6), (2.2) and the Cauchy-Schwarz inequality for integrals. There remains
the contribution of a multiple of∫ 2T

T

(
E2(t)

)′
t1/4

∑
n6N

(−1)nd(n)n−3/4 cos(
√

8πnt − π/4) dt.
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This is integrated by parts. The integrated terms are � T11/12N1/3 log T, by using the standard estimate
E(T) � T1/3 (see e.g., [5, Chapter 15]) and trivial estimation. The main contribution comes from the
differentiation of the sum over n. Its contribution will be, with n ∼ K meaning that K < n 6 K′ 6 2K,

� T−1/4
∫ 2T

T
E2(t)

∣∣∣∣∑
n6N

(−1)nd(n)n−1/4 exp(i
√

8πnt)
∣∣∣∣ dt

6 T−1/4


∫ 2T

T
E4(t) dt

∫ 2T

T

∣∣∣∣∑
n6N

(−1)nd(n)n−1/4 exp(i
√

8πnt)
∣∣∣∣2 dt


1/2

� T3/4

∫ 2T

T

∑
n6N

d2(n)n−1/2 dt + log2 T max
K�N

∑
m,n∼K

Kε−1/2

√
T

|
√

m −
√

n|


1/2

� T3/4(TN1/2 log3 T + T1/2+εN)1/2
� T5/4N1/4 log3/2 T

(4.7)

for Tε 6 N = N(T) 6 T1−ε. Here we used the standard first derivative test (see e.g., Lemma 2.1 of [6]) for
exponential integrals, Lemma 7, (3.10) and∑

m,n∼K

1
|
√

m −
√

n|
�

∑
n∼K

∑
m∼K,m,n

√
K

|m − n|
� K3/2 log K.

From (4.6) and (4.7) we see that the right choice for N should be if we have

T7/4N−1/2 = T5/4N1/4, N = T2/3,

and with this choice of N we obtain T11/12N1/3 = T41/36 (41/36 < 17/12), and

J(T) �ε T17/12+ε. (4.8)

In view of (1.4), the formula (4.3) and the bound (4.8) give

4π2
∫ 2T

T

(
∆∗

( t
2π

))2
|ζ( 1

2 + it)|2 dt = Oε(T17/12+ε)

+ 2
∫ 2T

T
E(t)2π∆∗

( t
2π

)(
log

t
2π

+ 2γ
)

dt −
∫ 2T

T
E2(t)|ζ( 1

2 + it)|2 dt

+

∫ 2T

T
(E∗(t))2

|ζ( 1
2 + it)|2 dt = Oε(T17/12+ε) + 2I1 − I2 + I3,

(4.9)

say. On using (3.3) of Lemma 1, (2.2) and the Cauchy-Schwarz inequality we obtain

I3 �

{∫ 2T

T
(E∗(t))4 dt

∫ 2T

T
|ζ( 1

2 + it)|4 dt
}1/2

�ε T11/8+ε.

Further we have

2I1 − I2 = 2
∫ 2T

T
E(t)

(
E(t) − E∗(t)

)(
log

t
2π

+ 2γ
)

dt − I2

=

∫ 2T

T
E2(t)

{
2
(
log

t
2π

+ 2γ
)
− |ζ( 1

2 + it)|2
}

dt

− 2
∫ 2T

T
E(t)E∗(t)

(
log

t
2π

+ 2γ
)

dt

=

∫ 2T

T
E2(t)

(
log

t
2π

+ 2γ − E′(t)
)

dt − 2
∫ 2T

T
E(t)E∗(t)

(
log

t
2π

+ 2γ
)

dt.
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The last integral is, by Lemma 2, Lemma 3 and the Cauchy-Schwarz inequality for integrals,

� log T
{∫ 2T

T
E2(t) dt

∫ 2T

T
(E∗(t))2 dt

}1/2

� T17/12 log5/2 T.

On the other hand,∫ 2T

T
E2(t)

(
log

t
2π

+ 2γ − E′(t)
)

dt

=

∫ 2T

T
E2(t)

(
log

t
2π

+ 2γ
)

dt − 1
3 E3(t)

∣∣∣∣2T

T

=

∫ 2T

T
E2(t)

(
log

t
2π

+ 2γ
)

dt + O(T).

(4.10)

To evaluate the last integral in (4.10) we use Lemma 6 and integration by parts. This shows that the integral
in question is

(
Ct3/2 + R(t)

)(
log

t
2π

+ 2γ
)∣∣∣∣2T

T
−

∫ 2T

T

(
Ct1/2 +

R(t)
t

)
dt

= Ct3/2
(
log

t
2π

+ 2γ
)∣∣∣∣2T

T
+O(T log5 T) − 2

3 Ct3/2
∣∣∣∣2T

T

= Ct3/2
(
log

t
2π

+ 2γ −
2
3

)∣∣∣∣2T

T
+ O(T log5 T).

It transpires from (4.9) and (4.10) that

4π2
∫ 2T

T

(
∆∗

( t
2π

))2
|ζ( 1

2 + it)|2 dt = Ct3/2
(
log t

2π + 2γ − 2
3

)∣∣∣∣2T

T
+Oε(T17/12+ε),

which gives at once (2.4) of Theorem 2.

We turn now to the proof of Theorem 3. The basic idea is analogous to the one used in the proof of
Theorem 2, so that we shall be relatively brief. The integral in (2.5) equals 1/(8π3) times∫ T

0

{
E3(t) − 3E∗(t)E2(t) + 3(E∗(t))2E(t) − (E∗(t))3

}
|ζ( 1

2 + it)|2 dt. (4.11)

The main term in (2.5) comes from∫ T

0
E3(t)|ζ( 1

2 + it)|2 dt =

∫ T

0
E3(t)

(
log

t
2π

+ 2γ − E′(t)
)

dt

= C1T7/4
(
log

T
2π

+ 2γ
)
−

∫ T

1
C1t3/4 dt + Oε(T5/3+ε)

= C1T7/4
(
log

T
2π

+ 2γ −
4
7

)
+ Oε(T5/3+ε),

where (3.9) of Lemma 7 was used. By Hölder’s inequality for integrals, (3.3) of Lemma 1 and (3.12) of
Lemma 10 (with A = 5) we obtain∫ T

0
(E∗(t))3

|ζ( 1
2 + it)|2 dt�

(∫ T

0
|E∗(t)|5 dt

)3/5 (∫ T

0
|ζ( 1

2 + it)|5 dt
)2/5

�ε T6/5+9/20+ε = T33/20+ε.
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Similarly we obtain∫ T

0
(E∗(t))2E(t)|ζ( 1

2 + it)|2 dt

�

(∫ T

0
|E∗(t)|16/3 dt

)3/8 (∫ T

0
E8(t) dt

)1/8 (∫ T

0
|ζ( 1

2 + it)|4 dt
)1/2

�ε T
3
8 (2+ 1

9 )+ 3
8 + 1

2 +ε = T
5
3 +ε,

where we used (3.2) and the fact that E∗(T)� T1/3, which follows from the definition of E∗ and the classical
estimates ∆(x)� x1/3,E(T)� T1/3. Finally, by using (3.3), Lemma 9 with k = 8 and (2.2), we obtain∫ T

0
E∗(t)E2(t)|ζ( 1

2 + it)|2 dt

�

(∫ T

0
|E∗(t)|4 dt

)1/4 (∫ T

0
E8(t) dt

)1/4 (∫ T

0
|ζ( 1

2 + it)|4 dt
)1/2

�ε T7/16+3/4+1/2+ε = T27/16+ε.

Since 27/16 = 1.6875 > 5/3 > 33/20 = 1.65, we obtain easily the assertion of Theorem 3.

We shall prove now (2.6) of Theorem 4. We suppose T 6 t 6 2T and take N = T in (3.7) of Lemma 5. This
holds both for ∆∗(x) and ∆(x), and one can see easily that the proof remains valid if we have an additional
factor of 1/(2π) in the argument of ∆∗ or ∆ (or any constant c > 0, for that matter). Thus we start from

∆(t) =
t1/4

π
√

2

∑
n6T

d(n)n−3/4 cos(4π
√

nt − π/4) + Oε(Tε)

=
t1/4

π
√

2

∑
n6G

· · · +
∑

G<n6T

· · ·

 + Oε(Tε),

(4.12)

say, where Tε 6 G = G(T) 6 T1−ε, and G will be determined a little later. The error term in (4.12) makes a
contribution of Oε(T1+ε) to (2.6). We have∫ 2T

T
t1/4

∑
n6G

d(n)n−3/4 cos(4π
√

nt − π/4)|ζ( 1
2 + it)|2 dt

=

∫ 2T

T
t1/4

(
log

t
2π

+ 2γ + E′(t)
)∑

n6G

d(n)n−3/4 cos(4π
√

nt − π/4) dt

= I1 + I2,

(4.13)

say. By the first derivative test

I1 :=
∫ 2T

T
t1/4

(
log

t
2π

+ 2γ
)∑

n6G

d(n)n−3/4 cos(4π
√

nt − π/4) dt

� T1/4 log T ·
∑
n6G

d(n)n−3/4T1/2n−1/2
� T3/4 log T,

since
∑

n>1 d(n)n−α converges for α > 1. The integral I2, namely

I2 :=
∫ 2T

T
t1/4E′(t)

∑
n6G

d(n)n−3/4 cos(4π
√

nt − π/4) dt
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is integrated by parts. The integrated terms are trivially O(T), and there remains

−

∫ 2T

T

1
4

t−3/4E(t)
∑
n6G

d(n)n−3/4 cos(4π
√

nt − π/4) dt

+ 2π
∫ 2T

T
t−1/4E(t)

∑
n6G

d(n)n−1/4 sin(4π
√

nt − π/4) dt.

(4.14)

Both integrals in (4.14) are estimated analogously, and clearly it is the latter which is larger. By the Cauchy-
Schwarz inequality for integrals it is

� T−1/4(J1 J2)1/2,

where

J1 :=
∫ 2T

T

∣∣∣∣∑
n6G

d(n)n−1/4e4πi
√

nt
∣∣∣∣2 dt

J2 :=
∫ 2T

T
E2(t) dt � T3/2,

on using Lemma 2 in bounding J2. Using the first derivative test and (3.11) of Lemma 8, we find that

J1 = T
∑
n6G

d2(n)n−1/2 +
∑

m,n6G

d(m)d(n)
(mn)1/4

∫ 2T

T
e4πi(

√
m−
√

n)
√

t dt

� TG1/2 log3 T + T1/2
∑

m,n6G

d(m)d(n)
(mn)1/4|

√
m −

√
n|
.

When n/2 < m 6 2n the contribution of the last double sum is

�ε T1/2
∑
n6G

nε−1/2n1/2
∑

n/2<m62n,m,n

1
|m − n|

�ε T1/2+εG.

If m 6 n/2 then |
√

m −
√

n|−1
� n−1/2, and when m > 2n it is � m−1/2. Thus the total contribution of the

double sum above is certainly

�ε T1/2+εG� TG1/2 log3 T (Tε 6 G = G(T) 6 T1−ε).

We infer that
T−1/4(J1 J2)1/2

� T−1/4(TG1/2 log3 T · T3/2)1/2 = TG1/4(log T)3/2.

In a similar vein it is found that∫ 2T

T
t1/4

∑
G<n6T

d(n)n−3/4 cos(4π
√

nt − π/4)|ζ( 1
2 + it)|2 dt

� T1/4


∫ 2T

T

∣∣∣∣ ∑
G<n6T

d(n)n−3/4e4πi
√

nt
∣∣∣∣2 dt

∫ 2T

T
|ζ( 1

2 + it)|4 dt


1/2

� T3/4 log2 T


2T∫

T

∑
n>G

d2(n)
n3/2

+
∑

G<m,n6T

d(m)d(n)
(mn)3/4

e4πi(
√

m−
√

n)
√

t)

 dt


1/2

�ε T3/4 log2 T
{
TG−1/2 log3 T + T1/2+ε

}1/2
� T5/4G−1/4(log T)7/2.
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We finally infer that, for Tε 6 G = G(T) 6 T1−ε,

2T∫
T

∆(t)|ζ( 1
2 + it)|2 dt� TG1/4(log T)3/2 + T5/4G−1/4(log T)7/2

� T9/8(log T)5/2

with the choice G = T1/2 log4 T. This leads to (2.6) on replacing T by T2− j and adding the resulting estimates.

Corollary. We have∫ T

0
E∗(t)|ζ( 1

2 + it)|2 dt � T9/8(log T)5/2. (4.15)

Namely ∫ 2T

T
E∗(t)|ζ( 1

2 + it)|2 dt =

∫ 2T

T

{
E(t) − 2π∆∗(t/(2π))

}
|ζ( 1

2 + it)|2 dt.

The integral with ∆∗ is� T9/8(log T)5/2 by Theorem 4. There remains∫ 2T

T
E(t)|ζ( 1

2 + it)|2 dt = πT
(
log

2T
π

+ 2γ − 1
)

+ O(T3/4 log T) = O(T log T)

by (3.8) of Lemma 6. This gives ∫ 2T

T
E∗(t)|ζ( 1

2 + it)|2 dt � T9/8(log T)5/2.

To complete the proof of (4.15), again one replaces T by T2− j and adds the resulting estimates.

It remains to prove (2.7) of Theorem 5 (the bound (4.15) gives a result when j = 0). The proof is analogous
to the proofs given before, so we shall be brief. We have∫ 2T

T
E∗(t)E j(t)|ζ( 1

2 + it)|2 dt

=

∫ 2T

T
E∗(t)E j(t)

(
log

t
2π

+ 2γ + E′(t)
)

dt = I′ + I′′,

say. By the Cauchy-Schwarz inequality for integrals, Lemma 3 and Lemma 9 (with k = 2 j), it follows that

I′ :=
∫ 2T

T
E∗(t)E j(t)

(
log

t
2π

+ 2γ
)

dt

� log T
{∫ 2T

T
(E∗(t))2 dt

∫ 2T

T
E2 j(t) dt

}1/2

� log T(T4/3 log3 T · T1+ j/2)
1/2

= T7/6+ j/4 log5/2 T.

On the other hand, by (1.4) we have

I′′ :=
∫ 2T

T
E∗(t)E j(t)E′(t) dt

=

∫ 2T

T
E j+1(t)E′(t) dt − 2π

∫ 2T

T
∆∗

( t
2π

)
E j(t)E′(t) dt.

(4.16)
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Note that ∫ 2T

T
E j+1(t)E′(t) dt = 1

j+2 E j+2(t)
∣∣∣∣2T

T
= O(T( j+2)/3)),

and ( j + 2)/3 < 7/6 + j/4 for 0 < j 6 6. By using (3.7) of Lemma 4 it is seen that the last integral in (4.16) is a
multiple of ∫ 2T

T
t1/4

∑
n6N

(−1)nd(n)n−3/4 cos(
√

8πnt − π/4)E j(t)E′(t) dt +J(T), (4.17)

say, where Tε 6 N = N(T) 6 T1−ε. Using Lemma 9 we have

J(T)�ε T1/2+εN−1/2
∫ 2T

T
|E j(t)||E′(t)|dt

�ε T1/2+εN−1/2

{∫ 2T

T
E2 j(t) dt

∫ 2T

T

(
log2 T + |ζ( 1

2 + it)|4
)

dt
}1/2

�ε T1/2+εN−1/2
(
T1+ j/2

· T log4 T
)1/2

= T3/2+ j/4+εN−1/2.

The remaining integral in (4.17) is again integrated by parts. The major contribution will come from a
multiple of∫ 2T

T
E j+1(t)t−1/4

∑
n6N

(−1)nd(n)n−1/4 sin(
√

8πnt − π/4) dt

� T−1/4
{∫ 2T

T
E2 j+2(t) dt

∫ 2T

T

∣∣∣∣∑
n6N

(−1)nd(n)n−1/4ei
√

8πnt
∣∣∣∣2 dt

}1/2

� T−1/4
{
T1+( j+1)/2

· TN1/2 log3 T
}1/2

= T3/4+( j+1)/4N1/4 log3/2 T,

where Lemma 9 was used with k = 2 j + 2 6 8. The choice N = T2/3 gives

T3/4+( j+1)/4N1/4 = T3/2+ j/4+εN−1/2 = T7/6+ j/4,

as asserted by Theorem 5. The bound in (2.7) is an expected one, since (in the mean square sense) E∗(t)
is of the order � t1/6 log3/2 t, E(t) is of the order � t1/4, and |ζ( 1

2 + it)|2 is of logarithmic order. However,
by Hölder’s inequality for integrals (2.7) does not follows directly, since it would require the yet unknown
estimates for higher moments of |ζ( 1

2 + it)|.
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[5] A. Ivić, Mean values of the Riemann zeta-function, LN’s 82, Tata Inst. of Fundamental Research, Bombay, 1991 (distr. by Springer

Verlag, Berlin etc.).
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